Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

IL-10+ NK and TGF-β+ NK cells play negative regulatory roles in HIV infection

Authors: Yongjun Jiang, Mei Yang, Xiaojuan Sun, Xi Chen, Meichen Ma, Xiaowan Yin, Shi Qian, Zining Zhang, Yajing Fu, Jing Liu, Xiaoxu Han, Junjie Xu, Hong Shang

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

Natural killer (NK) cells play cytotoxic roles by targeting tumor cells or virus infected cells, they also play regulatory roles by secreting cytokines and chemokines. Transforming growth factor (TGF)-β and interleukin (IL)-10 are important immunosuppressive cytokines potentially related to the immune dysregulation that occurs in the infection of human immunodeficiency virus (HIV). NK cells are an important source of TGF-β and a main early producer of IL-10 in response to viral infection. Here, we evaluated the percentages of IL-10+ and TGF-β+ NK cells in HIV-infected patients relative to healthy controls (HCs).

Methods

Study participants (n = 63) included 31 antiretroviral treatment (ART)-naïve HIV-infected patients, 17 ART-treated HIV-infected patients, and 15 HIV-negative HCs. Expression of IL-10 or TGF-β in NK cells was examined by flow cytometry, and the influences of recombinant IL-10 (rIL-10) or recombinant TGF-β (rTGF-β) on NK cell function were investigated in vitro.

Results

Compared with HCs, ART-naïve HIV-infected patients had increased percentages of IL-10+ (2.0% vs. 0.4%, p = 0.015) and TGF-β+ (4.5% vs. 2.1%, p = 0.022) NK cells, and ART-treated patients also had a higher percentage of IL-10+ NK cells (2.5% vs. 0.4%, p = 0.002). The percentages of IL-10+ and TGF-β+ NK cells were positively correlated (r = 0.388; p = 0.010). The results of in vitro experiments demonstrated that rIL-10 and rTGF-β inhibited NK cell CD107a expression (p = 0.037 and p = 0.024, respectively), IFN-γ secretion (p = 0.006, p = 0.016, respectively), and granzyme B release after stimulation (p = 0.014, p = 0.040, respectively).

Conclusions

Our data suggest that the percentages of IL-10+ or TGF-β+ NK cells are increased in HIV-infected patients, and that rIL-10 and/or rTGF-β can inhibit NK cell functions in vitro, providing a potential therapeutic target for strategies aimed at combating HIV infection.
Literature
2.
go back to reference Littwitz-Salomon E, Dittmer U, Sutter K. Insufficient natural killer cell responses against retroviruses: how to improve NK cell killing of retrovirus-infected cells. Retrovirology. 2016;13(1):77.CrossRefPubMedPubMedCentral Littwitz-Salomon E, Dittmer U, Sutter K. Insufficient natural killer cell responses against retroviruses: how to improve NK cell killing of retrovirus-infected cells. Retrovirology. 2016;13(1):77.CrossRefPubMedPubMedCentral
3.
go back to reference Chester C, Fritsch K, Natural KHE. Killer cell immunomodulation: targeting activating, inhibitory, and co-stimulatory receptor signaling for cancer immunotherapy. Front Immunol. 2015;6:601.CrossRefPubMedPubMedCentral Chester C, Fritsch K, Natural KHE. Killer cell immunomodulation: targeting activating, inhibitory, and co-stimulatory receptor signaling for cancer immunotherapy. Front Immunol. 2015;6:601.CrossRefPubMedPubMedCentral
5.
go back to reference Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood. 2001;97(10):3146–51.CrossRefPubMed Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood. 2001;97(10):3146–51.CrossRefPubMed
6.
go back to reference Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40.CrossRefPubMed Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40.CrossRefPubMed
7.
go back to reference Laouar Y, Sutterwala FS, Gorelik L, Transforming FRA. Growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol. 2005;6(6):600–7.CrossRefPubMed Laouar Y, Sutterwala FS, Gorelik L, Transforming FRA. Growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol. 2005;6(6):600–7.CrossRefPubMed
8.
go back to reference Eriksson M, Meadows SK, Wira CR, Unique SCL. Phenotype of human uterine NK cells and their regulation by endogenous TGF-beta. J Leukoc Biol. 2004;76(3):667–75.CrossRefPubMed Eriksson M, Meadows SK, Wira CR, Unique SCL. Phenotype of human uterine NK cells and their regulation by endogenous TGF-beta. J Leukoc Biol. 2004;76(3):667–75.CrossRefPubMed
9.
go back to reference Ostapchuk YO, Cetin EA, Perfilyeva YV, et al. Peripheral blood NK cells expressing HLA-G, IL-10 and TGF-beta in healthy donors and breast cancer patients. Cell Immunol. 2015;298(1–2):37–46.CrossRefPubMed Ostapchuk YO, Cetin EA, Perfilyeva YV, et al. Peripheral blood NK cells expressing HLA-G, IL-10 and TGF-beta in healthy donors and breast cancer patients. Cell Immunol. 2015;298(1–2):37–46.CrossRefPubMed
10.
go back to reference Elrefaei M, Burke CM, Baker CA, et al. TGF-beta and IL-10 production by HIV-specific CD8+ T cells is regulated by CTLA-4 signaling on CD4+ T cells. PLoS One. 2009;4(12):e8194.CrossRefPubMedPubMedCentral Elrefaei M, Burke CM, Baker CA, et al. TGF-beta and IL-10 production by HIV-specific CD8+ T cells is regulated by CTLA-4 signaling on CD4+ T cells. PLoS One. 2009;4(12):e8194.CrossRefPubMedPubMedCentral
11.
go back to reference Shete A, Suryawanshi P, Godbole S, Pawar J, Paranjape R, Thakar M. HIV-infected CD4+ T cells use T-bet-dependent pathway for production of IL-10 upon antigen recognition. Scand J Immunol. 2016;83(4):288–96.CrossRefPubMed Shete A, Suryawanshi P, Godbole S, Pawar J, Paranjape R, Thakar M. HIV-infected CD4+ T cells use T-bet-dependent pathway for production of IL-10 upon antigen recognition. Scand J Immunol. 2016;83(4):288–96.CrossRefPubMed
13.
go back to reference Perona-Wright G, Mohrs K, Szaba FM, et al. Systemic but not local infections elicit immunosuppressive IL-10 production by natural killer cells. Cell Host Microbe. 2009;6(6):503–12.CrossRefPubMedPubMedCentral Perona-Wright G, Mohrs K, Szaba FM, et al. Systemic but not local infections elicit immunosuppressive IL-10 production by natural killer cells. Cell Host Microbe. 2009;6(6):503–12.CrossRefPubMedPubMedCentral
14.
go back to reference Ng CT, Oldstone MB. Infected CD8alpha- dendritic cells are the predominant source of IL-10 during establishment of persistent viral infection. Proc Natl Acad Sci U S A. 2012;109(35):14116–21.CrossRefPubMedPubMedCentral Ng CT, Oldstone MB. Infected CD8alpha- dendritic cells are the predominant source of IL-10 during establishment of persistent viral infection. Proc Natl Acad Sci U S A. 2012;109(35):14116–21.CrossRefPubMedPubMedCentral
15.
go back to reference Gray JD, Hirokawa M, Ohtsuka K, Horwitz DA. Generation of an inhibitory circuit involving CD8+ T cells, IL-2, and NK cell-derived TGF-beta: contrasting effects of anti-CD2 and anti-CD3. J Immunol. 1998;160(5):2248–54.PubMed Gray JD, Hirokawa M, Ohtsuka K, Horwitz DA. Generation of an inhibitory circuit involving CD8+ T cells, IL-2, and NK cell-derived TGF-beta: contrasting effects of anti-CD2 and anti-CD3. J Immunol. 1998;160(5):2248–54.PubMed
16.
go back to reference Sporn MB, Roberts AB, Wakefield LM, de Crombrugghe B. Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol. 1987;105(3):1039–45.CrossRefPubMed Sporn MB, Roberts AB, Wakefield LM, de Crombrugghe B. Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol. 1987;105(3):1039–45.CrossRefPubMed
17.
go back to reference Wahl SM. Transforming growth factor beta: the good, the bad, and the ugly. J Exp Med. 1994;180(5):1587–90.CrossRefPubMed Wahl SM. Transforming growth factor beta: the good, the bad, and the ugly. J Exp Med. 1994;180(5):1587–90.CrossRefPubMed
18.
go back to reference Clerici M, Wynn TA, Berzofsky JA, et al. Role of interleukin-10 in T helper cell dysfunction in asymptomatic individuals infected with the human immunodeficiency virus. J Clin Invest. 1994;93(2):768–75.CrossRefPubMedPubMedCentral Clerici M, Wynn TA, Berzofsky JA, et al. Role of interleukin-10 in T helper cell dysfunction in asymptomatic individuals infected with the human immunodeficiency virus. J Clin Invest. 1994;93(2):768–75.CrossRefPubMedPubMedCentral
19.
go back to reference Fidler SJ, Antigen RAD. Presenting cell function in HIV-1 infected patients. Immunol Lett. 1999;66(1–3):129–34.CrossRefPubMed Fidler SJ, Antigen RAD. Presenting cell function in HIV-1 infected patients. Immunol Lett. 1999;66(1–3):129–34.CrossRefPubMed
20.
go back to reference Schols D, De Clercq E. Human immunodeficiency virus type 1 gp120 induces anergy in human peripheral blood lymphocytes by inducing interleukin-10 production. J Virol. 1996;70(8):4953–60.PubMedPubMedCentral Schols D, De Clercq E. Human immunodeficiency virus type 1 gp120 induces anergy in human peripheral blood lymphocytes by inducing interleukin-10 production. J Virol. 1996;70(8):4953–60.PubMedPubMedCentral
21.
go back to reference Poggi A, Zocchi MR. HIV-1 tat triggers TGF-beta production and NK cell apoptosis that is prevented by pertussis toxin B. Clin dev immunol. 2006;13(2–4):369–72.CrossRefPubMedPubMedCentral Poggi A, Zocchi MR. HIV-1 tat triggers TGF-beta production and NK cell apoptosis that is prevented by pertussis toxin B. Clin dev immunol. 2006;13(2–4):369–72.CrossRefPubMedPubMedCentral
22.
go back to reference Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MB. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med. 2006;12(11):1301–9.CrossRefPubMedPubMedCentral Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MB. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med. 2006;12(11):1301–9.CrossRefPubMedPubMedCentral
23.
24.
go back to reference Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.CrossRefPubMed Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.CrossRefPubMed
25.
go back to reference Hamidullah, Changkija B, Konwar R. Role of interleukin-10 in breast cancer. Breast Cancer Res Treat. 2012;133(1):11–21.CrossRefPubMed Hamidullah, Changkija B, Konwar R. Role of interleukin-10 in breast cancer. Breast Cancer Res Treat. 2012;133(1):11–21.CrossRefPubMed
26.
go back to reference Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL, TGF-beta PAT. Downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro-Oncology. 2010;12(1):7–13.CrossRefPubMed Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL, TGF-beta PAT. Downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro-Oncology. 2010;12(1):7–13.CrossRefPubMed
27.
go back to reference Wilson EB, El-Jawhari JJ, Neilson AL, et al. Human tumour immune evasion via TGF-beta blocks NK cell activation but not survival allowing therapeutic restoration of anti-tumour activity. PLoS One. 2011;6(9):e22842.CrossRefPubMedPubMedCentral Wilson EB, El-Jawhari JJ, Neilson AL, et al. Human tumour immune evasion via TGF-beta blocks NK cell activation but not survival allowing therapeutic restoration of anti-tumour activity. PLoS One. 2011;6(9):e22842.CrossRefPubMedPubMedCentral
28.
go back to reference Taylor A, Verhagen J, Blaser K, Akdis M, Mechanisms ACA. Of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology. 2006;117(4):433–42.CrossRefPubMedPubMedCentral Taylor A, Verhagen J, Blaser K, Akdis M, Mechanisms ACA. Of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology. 2006;117(4):433–42.CrossRefPubMedPubMedCentral
29.
go back to reference Brockman MA, Kwon DS, Tighe DP, et al. IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells. Blood. 2009;114(2):346–56.CrossRefPubMedPubMedCentral Brockman MA, Kwon DS, Tighe DP, et al. IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells. Blood. 2009;114(2):346–56.CrossRefPubMedPubMedCentral
30.
go back to reference Jiang Y, Zhou F, Tian Y, et al. Higher NK cell IFN-gamma production is associated with delayed HIV disease progression in LTNPs. J Clin Immunol. 2013;33(8):1376–85.CrossRefPubMed Jiang Y, Zhou F, Tian Y, et al. Higher NK cell IFN-gamma production is associated with delayed HIV disease progression in LTNPs. J Clin Immunol. 2013;33(8):1376–85.CrossRefPubMed
31.
go back to reference Qi W, Yongjun J, Yanan W, et al. Differential expression of perforin in cytotoxic lymphocyte in HIV/AIDS patients of China. J Clin Immunol. 2006;26(4):339–46.CrossRefPubMed Qi W, Yongjun J, Yanan W, et al. Differential expression of perforin in cytotoxic lymphocyte in HIV/AIDS patients of China. J Clin Immunol. 2006;26(4):339–46.CrossRefPubMed
32.
go back to reference Shete A, Thakar M, Singh DP, et al. Short communication: HIV antigen-specific reactivation of HIV infection from cellular reservoirs: implications in the settings of therapeutic vaccinations. AIDS Res Hum Retrovir. 2012;28(8):835–43.CrossRefPubMed Shete A, Thakar M, Singh DP, et al. Short communication: HIV antigen-specific reactivation of HIV infection from cellular reservoirs: implications in the settings of therapeutic vaccinations. AIDS Res Hum Retrovir. 2012;28(8):835–43.CrossRefPubMed
33.
go back to reference Badou A, Bennasser Y, Moreau M, Leclerc C, Benkirane M, Tat BE. Protein of human immunodeficiency virus type 1 induces interleukin-10 in human peripheral blood monocytes: implication of protein kinase C-dependent pathway. J Virol. 2000;74(22):10551–62.CrossRefPubMedPubMedCentral Badou A, Bennasser Y, Moreau M, Leclerc C, Benkirane M, Tat BE. Protein of human immunodeficiency virus type 1 induces interleukin-10 in human peripheral blood monocytes: implication of protein kinase C-dependent pathway. J Virol. 2000;74(22):10551–62.CrossRefPubMedPubMedCentral
34.
go back to reference Bennasser Y, Bahraoui E. HIV-1 tat protein induces interleukin-10 in human peripheral blood monocytes: involvement of protein kinase C-betaII and -delta. FASEB j : offi pub Feder Am Soc Exper Biol. 2002;16(6):546–54.CrossRef Bennasser Y, Bahraoui E. HIV-1 tat protein induces interleukin-10 in human peripheral blood monocytes: involvement of protein kinase C-betaII and -delta. FASEB j : offi pub Feder Am Soc Exper Biol. 2002;16(6):546–54.CrossRef
35.
go back to reference Gee K, Angel JB, Ma W, et al. Intracellular HIV-tat expression induces IL-10 synthesis by the CREB-1 transcription factor through Ser133 phosphorylation and its regulation by the ERK1/2 MAPK in human monocytic cells. J Biol Chem. 2006;281(42):31647–58.CrossRefPubMed Gee K, Angel JB, Ma W, et al. Intracellular HIV-tat expression induces IL-10 synthesis by the CREB-1 transcription factor through Ser133 phosphorylation and its regulation by the ERK1/2 MAPK in human monocytic cells. J Biol Chem. 2006;281(42):31647–58.CrossRefPubMed
36.
go back to reference Saraiva M, Christensen JR, Veldhoen M, Murphy TL, Murphy KM, O'Garra A. Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity. 2009;31(2):209–19.CrossRefPubMedPubMedCentral Saraiva M, Christensen JR, Veldhoen M, Murphy TL, Murphy KM, O'Garra A. Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity. 2009;31(2):209–19.CrossRefPubMedPubMedCentral
37.
go back to reference Viel S, Marcais A, Guimaraes FS, et al. TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal. 2016;9(415):ra19.CrossRefPubMed Viel S, Marcais A, Guimaraes FS, et al. TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal. 2016;9(415):ra19.CrossRefPubMed
38.
go back to reference Trotta R, Dal Col J, Yu J, et al. TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol. 2008;181(6):3784–92.CrossRefPubMedPubMedCentral Trotta R, Dal Col J, Yu J, et al. TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol. 2008;181(6):3784–92.CrossRefPubMedPubMedCentral
Metadata
Title
IL-10+ NK and TGF-β+ NK cells play negative regulatory roles in HIV infection
Authors
Yongjun Jiang
Mei Yang
Xiaojuan Sun
Xi Chen
Meichen Ma
Xiaowan Yin
Shi Qian
Zining Zhang
Yajing Fu
Jing Liu
Xiaoxu Han
Junjie Xu
Hong Shang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-2991-2

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue