Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Software

Modular programming for tuberculosis control, the “AuTuMN” platform

Authors: James McCracken Trauer, Romain Ragonnet, Tan Nhut Doan, Emma Sue McBryde

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

Tuberculosis (TB) is now the world’s leading infectious killer and major programmatic advances will be needed if we are to meet the ambitious new End TB Targets. Although mathematical models are powerful tools for TB control, such models must be flexible enough to capture the complexity and heterogeneity of the global TB epidemic. This includes simulating a disease that affects age groups and other risk groups differently, has varying levels of infectiousness depending upon the organ involved and varying outcomes from treatment depending on the drug resistance pattern of the infecting strain.

Results

We adopted sound basic principles of software engineering to develop a modular software platform for simulation of TB control interventions (“AuTuMN”). These included object-oriented programming, logical linkage between modules and consistency of code syntax and variable naming. The underlying transmission dynamic model incorporates optional stratification by age, risk group, strain and organ involvement, while our approach to simulating time-variant programmatic parameters better captures the historical progression of the epidemic. An economic model is overlaid upon this epidemiological model which facilitates comparison between new and existing technologies. A “Model runner” module allows for predictions of future disease burden trajectories under alternative scenario situations, as well as uncertainty, automatic calibration, cost-effectiveness and optimisation. The model has now been used to guide TB control strategies across a range of settings and countries, with our modular approach enabling repeated application of the tool without the need for extensive modification for each application.

Conclusions

The modular construction of the platform minimises errors, enhances readability and collaboration between multiple programmers and enables rapid adaptation to answer questions in a broad range of contexts without the need for extensive re-programming. Such features are particularly important in simulating an epidemic as complex and diverse as TB.
Appendix
Available only for authorised users
Literature
10.
go back to reference Houben RM, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N, Goldhaber-Fiebert JD, et al. Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models. Lancet glob heal. 2016;4:e806–15. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27720688. Houben RM, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N, Goldhaber-Fiebert JD, et al. Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models. Lancet glob heal. 2016;4:e806–15. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27720688.
15.
go back to reference Trauer JM, Moyo N, Tay E-L, Dale K, Ragonnet R, McBryde ES, et al. Risk of Active Tuberculosis in the Five Years Following Infection. .. 15%? Chest. 2016;149:516–25.CrossRefPubMed Trauer JM, Moyo N, Tay E-L, Dale K, Ragonnet R, McBryde ES, et al. Risk of Active Tuberculosis in the Five Years Following Infection. .. 15%? Chest. 2016;149:516–25.CrossRefPubMed
16.
go back to reference Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJ. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLoS one. 2011/04/13. 2011;6:e17601. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21483732. Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJ. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLoS one. 2011/04/13. 2011;6:e17601. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21483732.
18.
go back to reference Menzies NA, Gomez GB, Bozzani F, Chatterjee S, Foster N, Baena IG, et al. Cost-effectiveness and resource implications of aggressive action on tuberculosis in China, India, and South Africa: a combined analysis of nine models. Lancet glob heal. 2016;4:e816–26. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27720689. Menzies NA, Gomez GB, Bozzani F, Chatterjee S, Foster N, Baena IG, et al. Cost-effectiveness and resource implications of aggressive action on tuberculosis in China, India, and South Africa: a combined analysis of nine models. Lancet glob heal. 2016;4:e816–26. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​27720689.
19.
go back to reference Corbett EL, Marston B, Churchyard GJ, De Cock KM, Salaniponi F, Elzinga G. Tuberculosis in sub-Saharan Africa: opportunities, challenges, and change in the era of antiretroviral treatment. Lancet. World Health Organization, Geneva; 2006 [cited 2017 mar 6];367:926–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16546541. Corbett EL, Marston B, Churchyard GJ, De Cock KM, Salaniponi F, Elzinga G. Tuberculosis in sub-Saharan Africa: opportunities, challenges, and change in the era of antiretroviral treatment. Lancet. World Health Organization, Geneva; 2006 [cited 2017 mar 6];367:926–37. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​16546541.
22.
24.
go back to reference Abubakar I, Pimpin L, Ariti C, Beynon R, Mangtani P, Sterne J, et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette–Guérin vaccination against tuberculosis. Heal. Technol Assess. 2013 [cited 2017 mar 6];17:1–372, v–vi. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24021245. Abubakar I, Pimpin L, Ariti C, Beynon R, Mangtani P, Sterne J, et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette–Guérin vaccination against tuberculosis. Heal. Technol Assess. 2013 [cited 2017 mar 6];17:1–372, v–vi. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24021245.
29.
34.
go back to reference Grefenstette JJ, Brown ST, Rosenfeld R, DePasse J, Stone NT, Cooley PC, et al. FRED (a framework for reconstructing epidemic dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations. BMC public health. 2013;13:940. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24103508. Grefenstette JJ, Brown ST, Rosenfeld R, DePasse J, Stone NT, Cooley PC, et al. FRED (a framework for reconstructing epidemic dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations. BMC public health. 2013;13:940. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24103508.
Metadata
Title
Modular programming for tuberculosis control, the “AuTuMN” platform
Authors
James McCracken Trauer
Romain Ragonnet
Tan Nhut Doan
Emma Sue McBryde
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2648-6

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue