Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Research article

An integrated study of human and animal infectious disease in the Lake Victoria crescent small-holder crop-livestock production system, Kenya

Authors: Eric M. Fèvre, William A. de Glanville, Lian F. Thomas, Elizabeth A. J. Cook, Samuel Kariuki, Claire N. Wamae

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

The neglected zoonotic diseases (NZD) are an understudied group that are a major cause of illness throughout the developing world. In general, little is known about the prevalence and burden of NZDs in affected communities, particularly in relation to other infectious diseases with which they are often co-endemic. We describe the design and descriptive epidemiological outputs from an integrated study of human and animal zoonotic and non-zoonotic disease in a rural farming community in western Kenya.

Methods

This cross-sectional survey involved 2113 people, their cattle (n = 983) and pigs (n = 91). People and animals were tested for infection or exposure to a wide range of zoonotic and non-zoonotic pathogens. Prevalence estimates, with adjustment for the complex study design, were derived. Evidence for spatial clustering in exposure or infection was identified using the spatial scan statistic.

Results

There was a high prevalence of human parasitism in the community, particularly with hookworm (Ancylostoma duodenale or Necator americanus) (36.3% (95% CI 32.8–39.9)), Entamoeba histolytica/dispar (30.1% (95% CI 27.5–32.8)), and Plasmodium falciparum (29.4% (95% CI 26.8–32.0)). Human infection with Taenia spp. was also prevalent (19.7% (95% CI 16.7–22.7)), while exposure to other zoonotic pathogens was comparatively rarer (Brucella spp., 0.6% (95% CI 0.2–0.9); Coxiella burnetii, 2.2% (95% CI 1.5–2.9); Rift Valley fever, 0.5% (95% CI 0.2–0.8)). A low prevalence of exposure to Brucella spp. was observed in cattle (0.26% (95% CI 0–0.56). This was higher for Rift Valley fever virus (1.4% (95% CI 0.5–2.22)) and C. burnetii (10.0% (95% CI 7.7–12.2)). The prevalence of Taenia spp. cysticercosis was 53.5% (95% CI 48.7–58.3) in cattle and 17.2% (95% CI 9.1–25.3) in pigs. Mycobacterium bovis infection was found in 2.2% of cattle (95% CI 1.3–3.2), while the prevalence of infection with Mycobacterium spp. was 8.2% (95% CI 6.8–9.6) in people.

Conclusion

Zoonotic infections in people and animals occur in the context of a wide range of co-endemic pathogens in a rural community in western Kenya. The wide diversity of pathogens under study provides a unique opportunity to explore the distribution and determinants of infection in a multi-pathogen, multi-host system.
Literature
1.
go back to reference King L. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases: Opportunities for Integrated Intervention Strategies. In: Choffnes ER, Relman DA, editors. Neglected Zoonotic Diseases. Washington (DC): National Academies Press (US); 2011. p. 342–5. King L. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases: Opportunities for Integrated Intervention Strategies. In: Choffnes ER, Relman DA, editors. Neglected Zoonotic Diseases. Washington (DC): National Academies Press (US); 2011. p. 342–5.
2.
go back to reference WHO. The Control of Neglected Zoonotic Diseases: A Route to Poverty Alleviation. WHO, Geneva; 2009. WHO. The Control of Neglected Zoonotic Diseases: A Route to Poverty Alleviation. WHO, Geneva; 2009.
3.
go back to reference WHO. Integrated Control of Neglected Zoonotic Diseases in Africa: Applying the “One Health” Concept. WHO, Geneva; 2009. WHO. Integrated Control of Neglected Zoonotic Diseases in Africa: Applying the “One Health” Concept. WHO, Geneva; 2009.
4.
go back to reference Zinsstag J, Schelling E, Bonfoh B, Fooks AR, Kasymbekov J, Waltner-Toews D, et al. Towards a “one health” research and application tool box. Vet Ital. 2009;45:121–33.PubMed Zinsstag J, Schelling E, Bonfoh B, Fooks AR, Kasymbekov J, Waltner-Toews D, et al. Towards a “one health” research and application tool box. Vet Ital. 2009;45:121–33.PubMed
5.
go back to reference Perry BD, Randolph TF, McDermott JJ, Sones KR, Thornton PK. Investing in animal Health Research to alleviate poverty. Nairobi: ILRI; 2002. Perry BD, Randolph TF, McDermott JJ, Sones KR, Thornton PK. Investing in animal Health Research to alleviate poverty. Nairobi: ILRI; 2002.
6.
go back to reference Schelling E, Diguimbaye C, Daoud S, Nicolet J, Boerlin P, Tanner M, et al. Brucellosis and Q-fever seroprevalences of nomadic pastoralists and their livestock in Chad. Prev Vet Med. 2003;61:279–93.PubMed Schelling E, Diguimbaye C, Daoud S, Nicolet J, Boerlin P, Tanner M, et al. Brucellosis and Q-fever seroprevalences of nomadic pastoralists and their livestock in Chad. Prev Vet Med. 2003;61:279–93.PubMed
7.
go back to reference Cleaveland S, Shaw DJ, Mfinanga SG, Shirima G, Kazwala RR, Eblate E, et al. Mycobacterium Bovis in rural Tanzania: risk factors for infection in human and cattle populations. Tuberculosis. 2007;87:30–43.PubMed Cleaveland S, Shaw DJ, Mfinanga SG, Shirima G, Kazwala RR, Eblate E, et al. Mycobacterium Bovis in rural Tanzania: risk factors for infection in human and cattle populations. Tuberculosis. 2007;87:30–43.PubMed
8.
go back to reference Phiri IK, Ngowi H, Afonso S, Matenga E, Boa M, Mukaratirwa S, et al. The emergence of Taenia solium cysticercosis in eastern and southern Africa as a serious agricultural problem and public health risk. Acta Trop. 2003;87:13–23.PubMed Phiri IK, Ngowi H, Afonso S, Matenga E, Boa M, Mukaratirwa S, et al. The emergence of Taenia solium cysticercosis in eastern and southern Africa as a serious agricultural problem and public health risk. Acta Trop. 2003;87:13–23.PubMed
9.
go back to reference Woods CW, Karpati AM, Grein T, McCarthy N, Gaturuku P, Muchiri E, et al. An outbreak of Rift Valley fever in northeastern Kenya, 1997-98. Emerging Infect Dis. 2002;8:138–44.PubMedPubMedCentral Woods CW, Karpati AM, Grein T, McCarthy N, Gaturuku P, Muchiri E, et al. An outbreak of Rift Valley fever in northeastern Kenya, 1997-98. Emerging Infect Dis. 2002;8:138–44.PubMedPubMedCentral
10.
go back to reference Steinmann P, Bonfoh B, Péter O, Schelling E, Traoré M, Zinsstag J. Seroprevalence of Q-fever in febrile individuals in Mali. Tropical Med Int Health. 2005;10:612–7. Steinmann P, Bonfoh B, Péter O, Schelling E, Traoré M, Zinsstag J. Seroprevalence of Q-fever in febrile individuals in Mali. Tropical Med Int Health. 2005;10:612–7.
11.
go back to reference Odiit M, Coleman PG, Liu W-C, McDermott JJ, Fèvre EM, Welburn SC, et al. Quantifying the level of under-detection of Trypanosoma brucei rhodesiense sleeping sickness cases. Tropical Med Int Health. 2005;10:840–9. Odiit M, Coleman PG, Liu W-C, McDermott JJ, Fèvre EM, Welburn SC, et al. Quantifying the level of under-detection of Trypanosoma brucei rhodesiense sleeping sickness cases. Tropical Med Int Health. 2005;10:840–9.
12.
go back to reference Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis. 2007;7:775–86.PubMed Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis. 2007;7:775–86.PubMed
13.
go back to reference Cruz ME, Schantz PM, Cruz I, Espinosa P, Preux PM, Cruz A, et al. Epilepsy and neurocysticercosis in an Andean community. Int J Epidemiol. 1999;28:799–803.PubMed Cruz ME, Schantz PM, Cruz I, Espinosa P, Preux PM, Cruz A, et al. Epilepsy and neurocysticercosis in an Andean community. Int J Epidemiol. 1999;28:799–803.PubMed
14.
go back to reference Fèvre EM, Odiit M, Coleman PG, Woolhouse MEJ, Welburn SC. Estimating the burden of rhodesiense sleeping sickness during an outbreak in Serere, eastern Uganda. BMC Public Health. 2008;8:96.PubMedPubMedCentral Fèvre EM, Odiit M, Coleman PG, Woolhouse MEJ, Welburn SC. Estimating the burden of rhodesiense sleeping sickness during an outbreak in Serere, eastern Uganda. BMC Public Health. 2008;8:96.PubMedPubMedCentral
15.
go back to reference Carabin H, Budke CM, Cowan LD, Willingham AL, Torgerson PR. Methods for assessing the burden of parasitic zoonoses: echinococcosis and cysticercosis. Trends Parasitol. 2005;21:327–33.PubMed Carabin H, Budke CM, Cowan LD, Willingham AL, Torgerson PR. Methods for assessing the burden of parasitic zoonoses: echinococcosis and cysticercosis. Trends Parasitol. 2005;21:327–33.PubMed
16.
go back to reference Solera J, Lozano E, Martínez-Alfaro E, Espinosa A, Castillejos ML, Abad L. Brucellar spondylitis: review of 35 cases and literature survey. Clin Infect Dis. 1999;29:1440–9.PubMed Solera J, Lozano E, Martínez-Alfaro E, Espinosa A, Castillejos ML, Abad L. Brucellar spondylitis: review of 35 cases and literature survey. Clin Infect Dis. 1999;29:1440–9.PubMed
17.
go back to reference Odiit M, Kansiime F, Enyaru JC. Duration of symptoms and case fatality of sleeping sickness caused by Trypanosoma brucei rhodesiense in Tororo. Uganda East Afr Med J. 1997;74:792–5.PubMed Odiit M, Kansiime F, Enyaru JC. Duration of symptoms and case fatality of sleeping sickness caused by Trypanosoma brucei rhodesiense in Tororo. Uganda East Afr Med J. 1997;74:792–5.PubMed
18.
go back to reference Gibson LR, Li B, Remold SK. Treating cofactors can reverse the expansion of a primary disease epidemic. BMC Infect Dis. 2010;10:248.PubMedPubMedCentral Gibson LR, Li B, Remold SK. Treating cofactors can reverse the expansion of a primary disease epidemic. BMC Infect Dis. 2010;10:248.PubMedPubMedCentral
19.
go back to reference Conelly WT, Chaiken MS. Intensive farming, agro-diversity, and food security under conditions of extreme population pressure in western Kenya. Hum Ecol. 2000;28:19–51. Conelly WT, Chaiken MS. Intensive farming, agro-diversity, and food security under conditions of extreme population pressure in western Kenya. Hum Ecol. 2000;28:19–51.
20.
go back to reference Grace D, Himstedt H, Sidibe I, Randolph T, Clausen P-H. Comparing FAMACHA eye color chart and hemoglobin color scale tests for detecting anemia and improving treatment of bovine trypanosomosis in West Africa. Vet Parasitol. 2007;147:26–39.PubMed Grace D, Himstedt H, Sidibe I, Randolph T, Clausen P-H. Comparing FAMACHA eye color chart and hemoglobin color scale tests for detecting anemia and improving treatment of bovine trypanosomosis in West Africa. Vet Parasitol. 2007;147:26–39.PubMed
21.
go back to reference Nicholson MJ, Butterworth MH. A guide to condition scoring of zebu cattle. Ethiopia: International Livestock Centre for Africa; 1986. Nicholson MJ, Butterworth MH. A guide to condition scoring of zebu cattle. Ethiopia: International Livestock Centre for Africa; 1986.
22.
go back to reference Katz N, Chaves A, Pellegrino J. A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo. 1972;14:397–400.PubMed Katz N, Chaves A, Pellegrino J. A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo. 1972;14:397–400.PubMed
23.
go back to reference Allen AV, Ridley DS. Further observations on the formol-ether concentration technique for faecal parasites. J Clin Pathol. 1970;23:545–6.PubMedPubMedCentral Allen AV, Ridley DS. Further observations on the formol-ether concentration technique for faecal parasites. J Clin Pathol. 1970;23:545–6.PubMedPubMedCentral
24.
go back to reference Cheesbrough M. District Laboratory Practice in Tropical Countries: Part 1. Cambridge University Press, UK; 2005. pp. 1–454. Cheesbrough M. District Laboratory Practice in Tropical Countries: Part 1. Cambridge University Press, UK; 2005. pp. 1–454.
25.
go back to reference Allan JC, Velasquez-Tohom M, Torres-Alvarez R, Yurrita P, Garcia-Noval J. Field trial of the coproantigen-based diagnosis of Taenia solium taeniasis by enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1996;54:352–6.PubMed Allan JC, Velasquez-Tohom M, Torres-Alvarez R, Yurrita P, Garcia-Noval J. Field trial of the coproantigen-based diagnosis of Taenia solium taeniasis by enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1996;54:352–6.PubMed
26.
go back to reference Woo PT. Evaluation of the haematocrit centrifuge and other techniques for the field diagnosis of human trypanosomiasis and filariasis. Acta Trop. 1971;28:298–303.PubMed Woo PT. Evaluation of the haematocrit centrifuge and other techniques for the field diagnosis of human trypanosomiasis and filariasis. Acta Trop. 1971;28:298–303.PubMed
27.
go back to reference LaBeaud AD, Muchiri EM, Ndzovu M, Mwanje MT, Muiruri S, Peters CJ, et al. Interepidemic Rift Valley fever virus seropositivity, northeastern Kenya. Emerging Infect Dis. 2008;14:1240–6.PubMedPubMedCentral LaBeaud AD, Muchiri EM, Ndzovu M, Mwanje MT, Muiruri S, Peters CJ, et al. Interepidemic Rift Valley fever virus seropositivity, northeastern Kenya. Emerging Infect Dis. 2008;14:1240–6.PubMedPubMedCentral
28.
go back to reference Harrison LJS, Joshua GWP, Wright SH, Parkhouse RME. Specific detection of circulating surface/secreted glycoproteins of viable cysticerci in Taenia saginata cysticercosis. Parasite Immunol. 1989;11:351–70.PubMed Harrison LJS, Joshua GWP, Wright SH, Parkhouse RME. Specific detection of circulating surface/secreted glycoproteins of viable cysticerci in Taenia saginata cysticercosis. Parasite Immunol. 1989;11:351–70.PubMed
29.
go back to reference Hansen J, Perry BD. The epidemiology, diagnosis and control of helminth parasites of ruminants. Nairobi: ILRAD; 1994. Hansen J, Perry BD. The epidemiology, diagnosis and control of helminth parasites of ruminants. Nairobi: ILRAD; 1994.
30.
go back to reference Olaechea FV, Christensen NO, Henriksen SA. A comparison of the filtration, concentration, and thick smear techniques in the diagnosis of Schistosoma Bovis infection in cattle and goats. Acta Trop. 1990;47:217–21.PubMed Olaechea FV, Christensen NO, Henriksen SA. A comparison of the filtration, concentration, and thick smear techniques in the diagnosis of Schistosoma Bovis infection in cattle and goats. Acta Trop. 1990;47:217–21.PubMed
31.
go back to reference Lumley T. Analysis of complex survey samples. J Stat Softw. 2004;9:1–19. Lumley T. Analysis of complex survey samples. J Stat Softw. 2004;9:1–19.
32.
go back to reference Koch GG, Freeman DH Jr, Freeman JL. Strategies in the multivariate analysis of data from complex surveys. Int Stat Rev. 1975;43:59–78. Koch GG, Freeman DH Jr, Freeman JL. Strategies in the multivariate analysis of data from complex surveys. Int Stat Rev. 1975;43:59–78.
33.
go back to reference Kulldorff M. A spatial scan statistic. Commun Stat. 2007;26:1481–96. Kulldorff M. A spatial scan statistic. Commun Stat. 2007;26:1481–96.
34.
go back to reference Pfeiffer DU, Robinson TP, Stevenson M, Stevens KB, Rogers DJ, Clements ACA. Spatial Analysis in Epidemiology. Oxford University Press, UK; 2008. pp. 1–160. Pfeiffer DU, Robinson TP, Stevenson M, Stevens KB, Rogers DJ, Clements ACA. Spatial Analysis in Epidemiology. Oxford University Press, UK; 2008. pp. 1–160.
35.
go back to reference Davies TM. Hazelton ML. Marshall JC sparr: Analyzing spatial relative risk using fixed and adaptive kernel density estimation in R J Stat Softw. 2011;39:1–14. Davies TM. Hazelton ML. Marshall JC sparr: Analyzing spatial relative risk using fixed and adaptive kernel density estimation in R J Stat Softw. 2011;39:1–14.
36.
go back to reference Petney TN, Andrews RH. Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int J Parasitol. 1998;28:377–93.PubMed Petney TN, Andrews RH. Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int J Parasitol. 1998;28:377–93.PubMed
37.
go back to reference Buck AA, Anderson RI, MacRae AA. Epidemiology of poly-parasitism. I. Occurrence, frequency and distribution of multiple infections in rural communities in Chad, Peru, Afghanistan, and Zaire. Tropenmed Parasitol. 1978;29:61–70.PubMed Buck AA, Anderson RI, MacRae AA. Epidemiology of poly-parasitism. I. Occurrence, frequency and distribution of multiple infections in rural communities in Chad, Peru, Afghanistan, and Zaire. Tropenmed Parasitol. 1978;29:61–70.PubMed
38.
go back to reference Bisanzio D, Mutuku F, Bustinduy AL, Mungai PL, Muchiri EM, King CH, et al. Cross-sectional study of the burden of vector-borne and soil-transmitted polyparasitism in rural communities of Coast Province, Kenya. Cooper PJ, editor. PLoS Negl Trop Dis. 2014;8:e2992. Bisanzio D, Mutuku F, Bustinduy AL, Mungai PL, Muchiri EM, King CH, et al. Cross-sectional study of the burden of vector-borne and soil-transmitted polyparasitism in rural communities of Coast Province, Kenya. Cooper PJ, editor. PLoS Negl Trop Dis. 2014;8:e2992.
39.
go back to reference Kolaczinski JH, Kabatereine NB, Onapa AW, Ndyomugyenyi R, Kakembo ASL, Brooker S. Neglected tropical diseases in Uganda: the prospect and challenge of integrated control. Trends Parasitol. 2007;23:485–93.PubMedPubMedCentral Kolaczinski JH, Kabatereine NB, Onapa AW, Ndyomugyenyi R, Kakembo ASL, Brooker S. Neglected tropical diseases in Uganda: the prospect and challenge of integrated control. Trends Parasitol. 2007;23:485–93.PubMedPubMedCentral
40.
go back to reference Utzinger J, Bergquist R, Shu-Hua X, Singer BH, Tanner M. Sustainable schistosomiasis control - the way forward. Lancet. 2003;362:1932–4.PubMed Utzinger J, Bergquist R, Shu-Hua X, Singer BH, Tanner M. Sustainable schistosomiasis control - the way forward. Lancet. 2003;362:1932–4.PubMed
41.
go back to reference Griffiths EC, Pedersen AB, Fenton A, Petchey OL. The nature and consequences of coinfection in humans. J Inf Secur. 2011;63:200–6. Griffiths EC, Pedersen AB, Fenton A, Petchey OL. The nature and consequences of coinfection in humans. J Inf Secur. 2011;63:200–6.
42.
go back to reference Webb EL, Ekii AO, Pala P. Epidemiology and immunology of helminth-HIV interactions. Curr Opin HIV AIDS. 2012;7:245–53.PubMed Webb EL, Ekii AO, Pala P. Epidemiology and immunology of helminth-HIV interactions. Curr Opin HIV AIDS. 2012;7:245–53.PubMed
43.
go back to reference Brooker S, Clements ACA, Hotez PJ, Hay SI, Tatem AJ, Bundy DAP, et al. The co-distribution of Plasmodium falciparum and hookworm among African schoolchildren. Malar J. 2006;5:99.PubMedPubMedCentral Brooker S, Clements ACA, Hotez PJ, Hay SI, Tatem AJ, Bundy DAP, et al. The co-distribution of Plasmodium falciparum and hookworm among African schoolchildren. Malar J. 2006;5:99.PubMedPubMedCentral
44.
go back to reference Chaix B, Merlo J, Chauvin P. Comparison of a spatial approach with the multilevel approach for investigating place effects on health: the example of healthcare utilisation in France. J Epidemiol Community Health. 2005;59:517–26.PubMedPubMedCentral Chaix B, Merlo J, Chauvin P. Comparison of a spatial approach with the multilevel approach for investigating place effects on health: the example of healthcare utilisation in France. J Epidemiol Community Health. 2005;59:517–26.PubMedPubMedCentral
45.
go back to reference Logan JR. Making a place for space: spatial thinking in social science. Annu Rev Sociol. 2012;38:507–24. Logan JR. Making a place for space: spatial thinking in social science. Annu Rev Sociol. 2012;38:507–24.
46.
go back to reference Curtis S, Jones IR. Is there a place for geography in the analysis of health inequality? Sociol Health Ill. 1998;20:645–72. Curtis S, Jones IR. Is there a place for geography in the analysis of health inequality? Sociol Health Ill. 1998;20:645–72.
47.
go back to reference Pullan RL, Sturrock HJW, Soares Magalhães RJ, Clements ACA, Brooker SJ. Spatial parasite ecology and epidemiology: a review of methods and applications. Parasitology. 2012;139:1870–87.PubMedPubMedCentral Pullan RL, Sturrock HJW, Soares Magalhães RJ, Clements ACA, Brooker SJ. Spatial parasite ecology and epidemiology: a review of methods and applications. Parasitology. 2012;139:1870–87.PubMedPubMedCentral
48.
go back to reference Kadohira M, McDermott JJ, Shoukri MM, Kyule MN. Variations in the prevalence of antibody to brucella infection in cattle by farm, area and district in Kenya. Epidemiol Infect. 1997;118:35–41.PubMedPubMedCentral Kadohira M, McDermott JJ, Shoukri MM, Kyule MN. Variations in the prevalence of antibody to brucella infection in cattle by farm, area and district in Kenya. Epidemiol Infect. 1997;118:35–41.PubMedPubMedCentral
49.
go back to reference Maichomo MW, McDermott JJ, Arimi SM, Gathura PB, Mugambi TJ, Muriuki SM. Study of brucellosis in a pastoral community and evaluation of the usefulness of clinical signs and symptoms in differentiating it from other flu-like diseases. Afr J Health Sci. 2000;7:114–9.PubMed Maichomo MW, McDermott JJ, Arimi SM, Gathura PB, Mugambi TJ, Muriuki SM. Study of brucellosis in a pastoral community and evaluation of the usefulness of clinical signs and symptoms in differentiating it from other flu-like diseases. Afr J Health Sci. 2000;7:114–9.PubMed
50.
go back to reference Brink M. Brucellosis in Kenya: epidemiology and human burden of a neglected zoonotic disease. MSc Thesis: University of Uppsala; 2013. Brink M. Brucellosis in Kenya: epidemiology and human burden of a neglected zoonotic disease. MSc Thesis: University of Uppsala; 2013.
51.
go back to reference Knobel DL, Maina AN, Cutler SJ, Ogola E, Feikin DR, Junghae M, et al. Coxiella burnetii in humans, domestic ruminants, and ticks in rural western Kenya. Am J Trop Med Hyg. 2013;88:513–8.PubMedPubMedCentral Knobel DL, Maina AN, Cutler SJ, Ogola E, Feikin DR, Junghae M, et al. Coxiella burnetii in humans, domestic ruminants, and ticks in rural western Kenya. Am J Trop Med Hyg. 2013;88:513–8.PubMedPubMedCentral
52.
go back to reference Murithi RM, Munyua P, Ithondeka PM, Macharia JM, Hightower A, Luman ET, et al. Rift Valley fever in Kenya: history of epizootics and identification of vulnerable districts. Epidemiol Infect. 2011;139:372–80.PubMed Murithi RM, Munyua P, Ithondeka PM, Macharia JM, Hightower A, Luman ET, et al. Rift Valley fever in Kenya: history of epizootics and identification of vulnerable districts. Epidemiol Infect. 2011;139:372–80.PubMed
53.
go back to reference Cook EAJ. Epidemiology of zoonoses in slaughterhouse workers in western Kenya. PhD Thesis, University of Edinburgh. 2015. Cook EAJ. Epidemiology of zoonoses in slaughterhouse workers in western Kenya. PhD Thesis, University of Edinburgh. 2015.
54.
go back to reference Thomas LF. Epidemiology of Taenia solium cysticercosis in western Kenya. PhD Thesis, University of Edinburgh. 2014. Thomas LF. Epidemiology of Taenia solium cysticercosis in western Kenya. PhD Thesis, University of Edinburgh. 2014.
55.
go back to reference Deckers N, Dorny P. Immunodiagnosis of Taenia solium taeniosis/cysticercosis. Trends Parasitol. 2010;26:137–44.PubMed Deckers N, Dorny P. Immunodiagnosis of Taenia solium taeniosis/cysticercosis. Trends Parasitol. 2010;26:137–44.PubMed
56.
go back to reference Braae UC, Kabululu M, Nørmark ME, Nejsum P, Ngowi HA, Johansen MV. Taenia hydatigena cysticercosis in slaughtered pigs, goats, and sheep in Tanzania. Trop Anim Health Prod. 2015;47:1523–30.PubMed Braae UC, Kabululu M, Nørmark ME, Nejsum P, Ngowi HA, Johansen MV. Taenia hydatigena cysticercosis in slaughtered pigs, goats, and sheep in Tanzania. Trop Anim Health Prod. 2015;47:1523–30.PubMed
57.
go back to reference Okello A, Ash A, Keokhamphet C, Hobbs E, Khamlome B, Dorny P, et al. Investigating a hyper-endemic focus of Taenia solium in northern Lao PDR. Parasit Vectors. 2014;7:134.PubMedPubMedCentral Okello A, Ash A, Keokhamphet C, Hobbs E, Khamlome B, Dorny P, et al. Investigating a hyper-endemic focus of Taenia solium in northern Lao PDR. Parasit Vectors. 2014;7:134.PubMedPubMedCentral
58.
go back to reference Praet N, Verweij JJ, Mwape KE, Phiri IK, Muma JB, Zulu G, et al. Bayesian modelling to estimate the test characteristics of coprology, coproantigen ELISA and a novel real-time PCR for the diagnosis of taeniasis. Tropical Med Int Health. 2013;18:608–14. Praet N, Verweij JJ, Mwape KE, Phiri IK, Muma JB, Zulu G, et al. Bayesian modelling to estimate the test characteristics of coprology, coproantigen ELISA and a novel real-time PCR for the diagnosis of taeniasis. Tropical Med Int Health. 2013;18:608–14.
59.
go back to reference Kindu M, Duncan AJ, Valbuena D, Gerard B, Dagnachew L, Mesfin B, et al. Intensification of crop-livestock farming Systems in East Africa: a comparison of selected sites in the highlands of Ethiopia and Kenya. In: Vanlauwe B, VanAsten B, Blomme P, editors. Challenges and opportunities for agricultural intensification of the humid highland Systems of sub-Saharan Africa. Springer: Switzerland; 2014. p. 19–28. Kindu M, Duncan AJ, Valbuena D, Gerard B, Dagnachew L, Mesfin B, et al. Intensification of crop-livestock farming Systems in East Africa: a comparison of selected sites in the highlands of Ethiopia and Kenya. In: Vanlauwe B, VanAsten B, Blomme P, editors. Challenges and opportunities for agricultural intensification of the humid highland Systems of sub-Saharan Africa. Springer: Switzerland; 2014. p. 19–28.
60.
go back to reference Dobson JE, Bright EA, Coleman PR, Durfee RC, Worley BA. LandScan: a global population database for estimating populations at risk. Photogramm Eng Remote Sensing. 2000;66:849–57. Dobson JE, Bright EA, Coleman PR, Durfee RC, Worley BA. LandScan: a global population database for estimating populations at risk. Photogramm Eng Remote Sensing. 2000;66:849–57.
Metadata
Title
An integrated study of human and animal infectious disease in the Lake Victoria crescent small-holder crop-livestock production system, Kenya
Authors
Eric M. Fèvre
William A. de Glanville
Lian F. Thomas
Elizabeth A. J. Cook
Samuel Kariuki
Claire N. Wamae
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2559-6

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue