Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Research article

An agent-based model simulation of influenza interactions at the host level: insight into the influenza-related burden of pneumococcal infections

Authors: Hélène Arduin, Matthieu Domenech de Cellès, Didier Guillemot, Laurence Watier, Lulla Opatowski

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

Host-level influenza virus–respiratory pathogen interactions are often reported. Although the exact biological mechanisms involved remain unelucidated, secondary bacterial infections are known to account for a large part of the influenza-associated burden, during seasonal and pandemic outbreaks. Those interactions probably impact the microorganisms’ transmission dynamics and the influenza public health toll. Mathematical models have been widely used to examine influenza epidemics and the public health impact of control measures. However, most influenza models overlooked interaction phenomena and ignored other co-circulating pathogens.

Methods

Herein, we describe a novel agent-based model (ABM) of influenza transmission during interaction with another respiratory pathogen. The interacting microorganism can persist in the population year round (endemic type, e.g. respiratory bacteria) or cause short-term annual outbreaks (epidemic type, e.g. winter respiratory viruses). The agent-based framework enables precise formalization of the pathogens’ natural histories and complex within-host phenomena. As a case study, this ABM is applied to the well-known influenza virus–pneumococcus interaction, for which several biological mechanisms have been proposed. Different mechanistic hypotheses of interaction are simulated and the resulting virus-induced pneumococcal infection (PI) burden is assessed.

Results

This ABM generates realistic data for both pathogens in terms of weekly incidences of PI cases, carriage rates, epidemic size and epidemic timing. Notably, distinct interaction hypotheses resulted in different transmission patterns and led to wide variations of the associated PI burden. Interaction strength was also of paramount importance: when influenza increased pneumococcus acquisition, 4–27% of the PI burden during the influenza season was attributable to influenza depending on the interaction strength.

Conclusions

This open-source ABM provides new opportunities to investigate influenza interactions from a theoretical point of view and could easily be extended to other pathogens. It provides a unique framework to generate in silico data for different scenarios and thereby test mechanistic hypotheses.
Appendix
Available only for authorised users
Literature
5.
go back to reference Tanner H, Boxall E, Osman H. Respiratory viral infections during the 2009–2010 winter season in Central England, UK: incidence and patterns of multiple virus co-infections. Eur J Clin Microbiol Infect Dis. 2012; doi:10.1007/s10096-012-1653-3. Tanner H, Boxall E, Osman H. Respiratory viral infections during the 2009–2010 winter season in Central England, UK: incidence and patterns of multiple virus co-infections. Eur J Clin Microbiol Infect Dis. 2012; doi:10.​1007/​s10096-012-1653-3.
6.
go back to reference Mackay IM, Lambert SB, Faux CE, Arden KE, Nissen MD, Sloots TP, et al. Community-wide, contemporaneous circulation of a broad spectrum of human rhinoviruses in healthy Australian preschool-aged children during a 12-month period. J Infect Dis. 2013; doi:10.1093/infdis/jis476. Mackay IM, Lambert SB, Faux CE, Arden KE, Nissen MD, Sloots TP, et al. Community-wide, contemporaneous circulation of a broad spectrum of human rhinoviruses in healthy Australian preschool-aged children during a 12-month period. J Infect Dis. 2013; doi:10.​1093/​infdis/​jis476.
7.
go back to reference Short K, Habets M. Interactions between Streptococcus pneumoniae and influenza virus: a mutually beneficial relationship? Future Microbiol. 2012; doi:10.2217/FMB.12.29. Short K, Habets M. Interactions between Streptococcus pneumoniae and influenza virus: a mutually beneficial relationship? Future Microbiol. 2012; doi:10.​2217/​FMB.​12.​29.
9.
10.
go back to reference Sun K, Metzger DW. Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary methicillin-resistant Staphylococcus aureus infection. J Immunol. 2014; doi:10.4049/jimmunol.1303049. Sun K, Metzger DW. Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary methicillin-resistant Staphylococcus aureus infection. J Immunol. 2014; doi:10.​4049/​jimmunol.​1303049.
11.
go back to reference Jacoby P, Watson K, Bowman J, Taylor A, Riley TV, Smith DW, et al. Modelling the co-occurrence of Streptococcus pneumoniae with other bacterial and viral pathogens in the upper respiratory tract. Vaccine. 2007; doi:10.1016/j.vaccine.2006.09.020. Jacoby P, Watson K, Bowman J, Taylor A, Riley TV, Smith DW, et al. Modelling the co-occurrence of Streptococcus pneumoniae with other bacterial and viral pathogens in the upper respiratory tract. Vaccine. 2007; doi:10.​1016/​j.​vaccine.​2006.​09.​020.
12.
go back to reference Joseph C, Togawa Y, Shindo N. Bacterial and viral infections associated with influenza. Influenza Other Respir Viruses. 2013; doi:10.1111/irv.12089. Joseph C, Togawa Y, Shindo N. Bacterial and viral infections associated with influenza. Influenza Other Respir Viruses. 2013; doi:10.​1111/​irv.​12089.
13.
go back to reference Hament JM, Kimpen JL, Fleer A, Wolfs TF. Respiratory viral infection predisposing for bacterial disease: a concise review. FEMS Immunol Med Microbiol. 1999;26:189–95.CrossRefPubMed Hament JM, Kimpen JL, Fleer A, Wolfs TF. Respiratory viral infection predisposing for bacterial disease: a concise review. FEMS Immunol Med Microbiol. 1999;26:189–95.CrossRefPubMed
15.
17.
go back to reference Adegbola RA, DeAntonio R, Hill PC, Roca A, Usuf E, Hoet B, et al. Carriage of Streptococcus pneumoniae and other respiratory bacterial pathogens in low and lower-middle income countries: a systematic review and meta-analysis. PLoS One. 2014; doi:10.1371/journal.pone.0103293. Adegbola RA, DeAntonio R, Hill PC, Roca A, Usuf E, Hoet B, et al. Carriage of Streptococcus pneumoniae and other respiratory bacterial pathogens in low and lower-middle income countries: a systematic review and meta-analysis. PLoS One. 2014; doi:10.​1371/​journal.​pone.​0103293.
18.
go back to reference Abdullahi O, Karani A, Tigoi CC, Mugo D, Kungu S, Wanjiru E, et al. Rates of acquisition and clearance of pneumococcal serotypes in the nasopharynges of children in Kilifi District. Kenya J Infect Dis. 2012; doi:10.1093/infdis/jis447. Abdullahi O, Karani A, Tigoi CC, Mugo D, Kungu S, Wanjiru E, et al. Rates of acquisition and clearance of pneumococcal serotypes in the nasopharynges of children in Kilifi District. Kenya J Infect Dis. 2012; doi:10.​1093/​infdis/​jis447.
19.
go back to reference Simell B, Auranen K, Käyhty H, Goldblatt D, Dagan R, O’Brien KL, et al. The fundamental link between pneumococcal carriage and disease. Expert Rev Vaccines. 2012; doi:10.1586/erv.12.53. Simell B, Auranen K, Käyhty H, Goldblatt D, Dagan R, O’Brien KL, et al. The fundamental link between pneumococcal carriage and disease. Expert Rev Vaccines. 2012; doi:10.​1586/​erv.​12.​53.
20.
go back to reference Diavatopoulos DA, Short KR, Price JT, Wilksch JJ, Brown LE, Briles DE, et al. Influenza a virus facilitates Streptococcus pneumoniae transmission and disease. FASEB J. 2010; doi:10.1096/fj.09-146779. Diavatopoulos DA, Short KR, Price JT, Wilksch JJ, Brown LE, Briles DE, et al. Influenza a virus facilitates Streptococcus pneumoniae transmission and disease. FASEB J. 2010; doi:10.​1096/​fj.​09-146779.
22.
go back to reference Boianelli A, Nguyen VK, Ebensen T, Schulze K, Wilk E, Sharma N, et al. Modeling influenza virus infection: a roadmap for influenza research. Viruses. 2015; doi:10.3390/v7102875. Boianelli A, Nguyen VK, Ebensen T, Schulze K, Wilk E, Sharma N, et al. Modeling influenza virus infection: a roadmap for influenza research. Viruses. 2015; doi:10.​3390/​v7102875.
24.
go back to reference Colijn C, Cohen T, Fraser C, Hanage W, Goldstein E, Givon-Lavi N, et al. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae? J R Soc Interface. 2010; doi:10.1098/rsif.2009.0400. Colijn C, Cohen T, Fraser C, Hanage W, Goldstein E, Givon-Lavi N, et al. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae? J R Soc Interface. 2010; doi:10.​1098/​rsif.​2009.​0400.
25.
go back to reference Greenhalgh D, Lamb KE, Robertson C. A mathematical model for the spread of Streptococcus pneumoniae with transmission due to sequence type. Discrete Contin Dyn Syst Ser A. 2011; doi:10.1080/17513758.2011.592548. Greenhalgh D, Lamb KE, Robertson C. A mathematical model for the spread of Streptococcus pneumoniae with transmission due to sequence type. Discrete Contin Dyn Syst Ser A. 2011; doi:10.​1080/​17513758.​2011.​592548.
28.
go back to reference Opatowski L, Varon E, Dupont C, Temime L, van der Werf S, Gutmann L, et al. Assessing pneumococcal meningitis association with viral respiratory infections and antibiotics: insights from statistical and mathematical models. Proc R Soc B. 2013; doi:10.1098/rspb.2013.0519. Opatowski L, Varon E, Dupont C, Temime L, van der Werf S, Gutmann L, et al. Assessing pneumococcal meningitis association with viral respiratory infections and antibiotics: insights from statistical and mathematical models. Proc R Soc B. 2013; doi:10.​1098/​rspb.​2013.​0519.
29.
go back to reference Shrestha S, Foxman B, Dawid S, Aiello AE, Davis BM, Berus J, et al. Time and dose-dependent risk of pneumococcal pneumonia following influenza: a model for within-host interaction between influenza and Streptococcus pneumoniae. J R Soc Interface. 2013; doi:10.1098/rsif.2013.0233. Shrestha S, Foxman B, Dawid S, Aiello AE, Davis BM, Berus J, et al. Time and dose-dependent risk of pneumococcal pneumonia following influenza: a model for within-host interaction between influenza and Streptococcus pneumoniae. J R Soc Interface. 2013; doi:10.​1098/​rsif.​2013.​0233.
31.
32.
go back to reference Béraud G, Kazmercziak S, Beutels P, Levy-Bruhl D, Lenne X, Mielcarek N, et al. The French connection: the first large population-based contact survey in France relevant for the spread of infectious diseases. PLoS One. 2015; doi:10.1371/journal.pone.0133203. Béraud G, Kazmercziak S, Beutels P, Levy-Bruhl D, Lenne X, Mielcarek N, et al. The French connection: the first large population-based contact survey in France relevant for the spread of infectious diseases. PLoS One. 2015; doi:10.​1371/​journal.​pone.​0133203.
33.
go back to reference Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol. 2008; doi:10.1093/aje/kwm375. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol. 2008; doi:10.​1093/​aje/​kwm375.
36.
37.
go back to reference Hill PC, Townend J, Antonio M, Akisanya B, Ebruke C, Lahai G, et al. Transmission of Streptococcus pneumoniae in rural Gambian villages: a longitudinal study. Clin Infect Dis. 2010; doi:10.1086/652443. Hill PC, Townend J, Antonio M, Akisanya B, Ebruke C, Lahai G, et al. Transmission of Streptococcus pneumoniae in rural Gambian villages: a longitudinal study. Clin Infect Dis. 2010; doi:10.​1086/​652443.
38.
go back to reference Chidiac C. Antibiothérapie par voie générale dans les infections respiratoires basses de l’adulte. Pneumonie aiguë communautaire Exacerbations de bronchopneumopathie chronique obstructive Médecine Mal Infect. 2011; doi:10.1016/j.medmal.2010.10.001. Chidiac C. Antibiothérapie par voie générale dans les infections respiratoires basses de l’adulte. Pneumonie aiguë communautaire Exacerbations de bronchopneumopathie chronique obstructive Médecine Mal Infect. 2011; doi:10.​1016/​j.​medmal.​2010.​10.​001.
40.
go back to reference Abdullahi O, Nyiro J, Lewa P, Slack M, Scott JAG. The descriptive epidemiology of Streptococcus pneumoniae and Haemophilus influenzae nasopharyngeal carriage in children and adults in Kilifi district, Kenya. Pediatr Infect Dis J. 2008; doi:10.1097/INF.0b013e31814da70c. Abdullahi O, Nyiro J, Lewa P, Slack M, Scott JAG. The descriptive epidemiology of Streptococcus pneumoniae and Haemophilus influenzae nasopharyngeal carriage in children and adults in Kilifi district, Kenya. Pediatr Infect Dis J. 2008; doi:10.​1097/​INF.​0b013e31814da70c​.
41.
go back to reference Gaillat J. Epidemiology of systemic Streptococcus pneumoniae infections. Presse Méd. 1998;27(Suppl 1):9–16.PubMed Gaillat J. Epidemiology of systemic Streptococcus pneumoniae infections. Presse Méd. 1998;27(Suppl 1):9–16.PubMed
42.
go back to reference Weinberger DM, Harboe ZB, Viboud C, Krause TG, Miller M, Mølbak K, et al. Pneumococcal disease seasonality: incidence, severity, and the role of influenza activity. Eur Respir J. 2014; doi:10.1183/09031936.00056813. Weinberger DM, Harboe ZB, Viboud C, Krause TG, Miller M, Mølbak K, et al. Pneumococcal disease seasonality: incidence, severity, and the role of influenza activity. Eur Respir J. 2014; doi:10.​1183/​09031936.​00056813.
43.
go back to reference Dowell SF, Whitney CG, Wright C, Rose CE, Schuchat A. Seasonal patterns of invasive pneumococcal disease. Emerg Infect Dis. 2003;9(5):573–9.CrossRefPubMed Dowell SF, Whitney CG, Wright C, Rose CE, Schuchat A. Seasonal patterns of invasive pneumococcal disease. Emerg Infect Dis. 2003;9(5):573–9.CrossRefPubMed
45.
go back to reference Shrestha S, Foxman B, Weinberger DM, Steiner C, Viboud C, Rohani P. Identifying the interaction between influenza and pneumococcal pneumonia using incidence data. Sci Transl Med. 2013; doi:10.1126/scitranslmed.3005982. Shrestha S, Foxman B, Weinberger DM, Steiner C, Viboud C, Rohani P. Identifying the interaction between influenza and pneumococcal pneumonia using incidence data. Sci Transl Med. 2013; doi:10.​1126/​scitranslmed.​3005982.
46.
go back to reference Walter ND, Taylor TH, Shay DK, Thompson WW, Brammer L, Dowell SF, et al. Influenza circulation and the burden of invasive pneumococcal pneumonia during a non-pandemic period in the United States. Clin Infect Dis. 2010; doi:10.1086/649208. Walter ND, Taylor TH, Shay DK, Thompson WW, Brammer L, Dowell SF, et al. Influenza circulation and the burden of invasive pneumococcal pneumonia during a non-pandemic period in the United States. Clin Infect Dis. 2010; doi:10.​1086/​649208.
47.
go back to reference Nicoli EJ, Trotter CL, Turner KME, Colijn C, Waight P, Miller E. Influenza and RSV make a modest contribution to invasive pneumococcal disease incidence in the UK. J Inf Secur. 2013; doi:10.1016/j.jinf.2013.02.007. Nicoli EJ, Trotter CL, Turner KME, Colijn C, Waight P, Miller E. Influenza and RSV make a modest contribution to invasive pneumococcal disease incidence in the UK. J Inf Secur. 2013; doi:10.​1016/​j.​jinf.​2013.​02.​007.
Metadata
Title
An agent-based model simulation of influenza interactions at the host level: insight into the influenza-related burden of pneumococcal infections
Authors
Hélène Arduin
Matthieu Domenech de Cellès
Didier Guillemot
Laurence Watier
Lulla Opatowski
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2464-z

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue