Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Research article

An easy tool to assess ventilation in health facilities as part of air-borne transmission prevention: a cross-sectional survey from Uganda

Authors: Miranda Brouwer, Achilles Katamba, Elly Tebasoboke Katabira, Frank van Leth

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

No guidelines exist on assessing ventilation through air changes per hour (ACH) using a vaneometer. The objective of the study was to evaluate the position and frequency for measuring air velocity using a vaneometer to assess ventilation with ACH; and to assess influence of ambient temperature and weather on ACH.

Methods

Cross-sectional survey in six urban health facilities in Kampala, Uganda. Measurements consisted of taking air velocity on nine separate moments in five positions in each opening of the TB clinic, laboratory, outpatient consultation and outpatient waiting room using a vaneometer. We assessed in addition the ventilation with the “20% rule”, and compared this estimation with the ventilation in ACH assessed using the vaneometer.

Results

A total of 189 measurements showed no influence on air velocity of the position and moment of the measurement. No significant influence existed of ambient temperature and a small but significant influence of sunny weather. Ventilation was adequate in 17/24 (71%) of all measurements. Using the “20% rule”, ventilation was adequate in 50% of rooms assessed. Agreement between both methods existed in 13/23 (56%) of the rooms assessed.

Conclusion

Most rooms had adequate ventilation when assessed using a vaneometer for measuring air velocity. A single vaneometer measurement of air velocity is adequate to assess ventilation in this setting. These findings provide practical input for clear guidelines on assessing ventilation using a vaneometer. Assessing ventilation with a vaneometer differs substantially from applying the “20% rule”.
Literature
1.
go back to reference Joshi R, Reingold AL, Menzies D, Pai M. Tuberculosis among health-care workers in low- and middle-income countries: a systematic review. PLoS Med. 2006;3:e494.CrossRefPubMedPubMedCentral Joshi R, Reingold AL, Menzies D, Pai M. Tuberculosis among health-care workers in low- and middle-income countries: a systematic review. PLoS Med. 2006;3:e494.CrossRefPubMedPubMedCentral
2.
go back to reference World Health Organization. Policy on TB infection control in health-care facilities, congregate settings and households. 2009. World Health Organization. Policy on TB infection control in health-care facilities, congregate settings and households. 2009.
4.
go back to reference World Health Organization. Tuberculosis laboratory Biosafety manual. WHO/HTM/TB/2012.11. 2012. World Health Organization. Tuberculosis laboratory Biosafety manual. WHO/HTM/TB/2012.11. 2012.
5.
go back to reference Jiamjarasrangsi W, Bualert S, Chongthaleong A, Chaindamporn A, Udomsantisuk N, Euasamarnjit W. Inadequate ventilation for nosocomial tuberculosis prevention in public hospitals in Central Thailand. Int J Tuberc Lung Dis. 2009;13:454–9.PubMed Jiamjarasrangsi W, Bualert S, Chongthaleong A, Chaindamporn A, Udomsantisuk N, Euasamarnjit W. Inadequate ventilation for nosocomial tuberculosis prevention in public hospitals in Central Thailand. Int J Tuberc Lung Dis. 2009;13:454–9.PubMed
6.
go back to reference Hubad B, Lapanje A. Inadequate hospital ventilation system increases the risk of nosocomial mycobacterium tuberculosis. J Hosp Infect. 2012;80:88–91.CrossRefPubMed Hubad B, Lapanje A. Inadequate hospital ventilation system increases the risk of nosocomial mycobacterium tuberculosis. J Hosp Infect. 2012;80:88–91.CrossRefPubMed
7.
go back to reference Escombe AR, Oeser CC, Gilman RH, Navincopa M, Ticona E, Pan W, et al. Natural ventilation for the prevention of airborne contagion. PLoS Med. 2007;4:e68.CrossRefPubMedPubMedCentral Escombe AR, Oeser CC, Gilman RH, Navincopa M, Ticona E, Pan W, et al. Natural ventilation for the prevention of airborne contagion. PLoS Med. 2007;4:e68.CrossRefPubMedPubMedCentral
8.
go back to reference Menzies R, Schwartzman K, Loo V, Pasztor J. Measuring ventilation of patient care areas in hospitals. Description of a new protocol. Am J Respir Crit Care Med. 1995;152:1992–9.CrossRefPubMed Menzies R, Schwartzman K, Loo V, Pasztor J. Measuring ventilation of patient care areas in hospitals. Description of a new protocol. Am J Respir Crit Care Med. 1995;152:1992–9.CrossRefPubMed
9.
go back to reference Javed S, Zaboli M, Zehra A, Shah N. Assessment of the protective measures taken in preventing nosocomial transmission of pulmonary tuberculosis among health-care workers. East J Med. 2013;17:115–8. Javed S, Zaboli M, Zehra A, Shah N. Assessment of the protective measures taken in preventing nosocomial transmission of pulmonary tuberculosis among health-care workers. East J Med. 2013;17:115–8.
10.
go back to reference Buregyeya E, Nuwaha F, Verver S, Criel B, Colebunders R, Wanyenze R, et al. Implementation of tuberculosis infection control in health facilities in Mukono and Wakiso districts, Uganda. BMC Infect Dis. 2013;13:360.CrossRefPubMedPubMedCentral Buregyeya E, Nuwaha F, Verver S, Criel B, Colebunders R, Wanyenze R, et al. Implementation of tuberculosis infection control in health facilities in Mukono and Wakiso districts, Uganda. BMC Infect Dis. 2013;13:360.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Naidoo S, Seevnarain K, Nordstrom DL. Tuberculosis infection control in primary health clinics in eThekwini, KwaZulu-Natal, South Africa. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2012;16:1600–4. Naidoo S, Seevnarain K, Nordstrom DL. Tuberculosis infection control in primary health clinics in eThekwini, KwaZulu-Natal, South Africa. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2012;16:1600–4.
15.
go back to reference Li Y, Leung GM, Tang JW, Yang X, Chao CYH, Lin JZ, et al. Role of ventilation in airborne transmission of infectious agents in the built environment - a multidisciplinary systematic review. Indoor Air. 2007;17:2–18.CrossRefPubMed Li Y, Leung GM, Tang JW, Yang X, Chao CYH, Lin JZ, et al. Role of ventilation in airborne transmission of infectious agents in the built environment - a multidisciplinary systematic review. Indoor Air. 2007;17:2–18.CrossRefPubMed
16.
go back to reference Menzies D, Fanning A, Yuan L, FitzGerald JM. Hospital ventilation and risk for tuberculous infection in canadian health care workers. Canadian collaborative Group in Nosocomial Transmission of TB. Ann Intern Med. 2000;133:779–89.CrossRefPubMed Menzies D, Fanning A, Yuan L, FitzGerald JM. Hospital ventilation and risk for tuberculous infection in canadian health care workers. Canadian collaborative Group in Nosocomial Transmission of TB. Ann Intern Med. 2000;133:779–89.CrossRefPubMed
18.
go back to reference Taylor JG, Yates TA, Mthethwa M, Tanser F, Abubakar I, Altamirano H. Measuring ventilation and modelling M. Tuberculosis transmission in indoor congregate settings, rural KwaZulu-Natal. Int. J Tuberc Lung Dis. 2016;20:1155–61.CrossRef Taylor JG, Yates TA, Mthethwa M, Tanser F, Abubakar I, Altamirano H. Measuring ventilation and modelling M. Tuberculosis transmission in indoor congregate settings, rural KwaZulu-Natal. Int. J Tuberc Lung Dis. 2016;20:1155–61.CrossRef
19.
go back to reference Brouwer M, Coelho E. Das Dores Mosse C, van Leth F. Implementation of tuberculosis infection prevention and control in Mozambican health care facilities. Int J Tuberc Lung Dis. 2015;19:44–9.CrossRefPubMed Brouwer M, Coelho E. Das Dores Mosse C, van Leth F. Implementation of tuberculosis infection prevention and control in Mozambican health care facilities. Int J Tuberc Lung Dis. 2015;19:44–9.CrossRefPubMed
20.
go back to reference Sherman MH. Tracer-gas techniques for measuring ventilation in a single zone. Build Environ. 1990;25:365–74.CrossRef Sherman MH. Tracer-gas techniques for measuring ventilation in a single zone. Build Environ. 1990;25:365–74.CrossRef
Metadata
Title
An easy tool to assess ventilation in health facilities as part of air-borne transmission prevention: a cross-sectional survey from Uganda
Authors
Miranda Brouwer
Achilles Katamba
Elly Tebasoboke Katabira
Frank van Leth
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2425-6

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue