Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Research article

Spatial, temporal and spatio-temporal clusters of measles incidence at the county level in Guangxi, China during 2004–2014: flexibly shaped scan statistics

Authors: Xianyan Tang, Alan Geater, Edward McNeil, Qiuyun Deng, Aihu Dong, Ge Zhong

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

Outbreaks of measles re-emerged in Guangxi province during 2013–2014, where measles again became a major public health concern. A better understanding of the patterns of measles cases would help in identifying high-risk areas and periods for optimizing preventive strategies, yet these patterns remain largely unknown. Thus, this study aimed to determine the patterns of measles clusters in space, time and space-time at the county level over the period 2004–2014 in Guangxi.

Methods

Annual data on measles cases and population sizes for each county were obtained from Guangxi CDC and Guangxi Bureau of Statistics, respectively. Epidemic curves and Kulldorff’s temporal scan statistics were used to identify seasonal peaks and high-risk periods. Tango’s flexible scan statistics were implemented to determine irregular spatial clusters. Spatio-temporal clusters in elliptical cylinder shapes were detected by Kulldorff’s scan statistics. Population attributable risk percent (PAR%) of children aged ≤24 months was used to identify regions with a heavy burden of measles.

Results

Seasonal peaks occurred between April and June, and a temporal measles cluster was detected in 2014. Spatial clusters were identified in West, Southwest and North Central Guangxi. Three phases of spatio-temporal clusters with high relative risk were detected: Central Guangxi during 2004–2005, Midwest Guangxi in 2007, and West and Southwest Guangxi during 2013–2014. Regions with high PAR% were mainly clustered in West, Southwest, North and Central Guangxi.

Conclusions

A temporal uptrend of measles incidence existed in Guangxi between 2010 and 2014, while downtrend during 2004–2009. The hotspots shifted from Central to West and Southwest Guangxi, regions overburdened with measles. Thus, intensifying surveillance of timeliness and completeness of routine vaccination and implementing supplementary immunization activities for measles should prioritized in these regions.
Literature
1.
go back to reference Peng ZQ, Chen WS, He Q, Peng GW, Wu CG, Xu N, et al. Evaluation of the mass measles vaccination campaign in Guangdong Province, China. Int J Infect Dis. 2012;16(2):e99–e103.CrossRefPubMed Peng ZQ, Chen WS, He Q, Peng GW, Wu CG, Xu N, et al. Evaluation of the mass measles vaccination campaign in Guangdong Province, China. Int J Infect Dis. 2012;16(2):e99–e103.CrossRefPubMed
2.
go back to reference Cutts FT, Lessler J, Metcalf CJ. Measles elimination: progress, challenges and implications for rubella control. Expert Rev Vaccines. 2013;12(8):917–32.CrossRefPubMed Cutts FT, Lessler J, Metcalf CJ. Measles elimination: progress, challenges and implications for rubella control. Expert Rev Vaccines. 2013;12(8):917–32.CrossRefPubMed
3.
go back to reference Ma C, An ZJ, Hao LX, Cairns KL, Zhang Y, Ma J, et al. Progress toward measles elimination in the People's Republic of China, 2000–2009. J Infect Dis. 2011;204(suppl 1):S447–54.CrossRefPubMed Ma C, An ZJ, Hao LX, Cairns KL, Zhang Y, Ma J, et al. Progress toward measles elimination in the People's Republic of China, 2000–2009. J Infect Dis. 2011;204(suppl 1):S447–54.CrossRefPubMed
4.
go back to reference Chen M, Zhang Y, Huang F, Wang HL, Liu DL, Li J, et al. Endemic and imported measles virus–associated outbreaks among adults, Beijing, China, 2013. Emerg Infect Dis. 2015;21(3):477–9.CrossRefPubMedPubMedCentral Chen M, Zhang Y, Huang F, Wang HL, Liu DL, Li J, et al. Endemic and imported measles virus–associated outbreaks among adults, Beijing, China, 2013. Emerg Infect Dis. 2015;21(3):477–9.CrossRefPubMedPubMedCentral
5.
go back to reference Ma C, Hao LX, Zhang Y, Su Q, Rodewald L, An ZJ, et al. Monitoring progress towards the elimination of measles in China: an analysis of measles surveillance data. Bull World Health Organ. 2014;92:340–7.CrossRefPubMedPubMedCentral Ma C, Hao LX, Zhang Y, Su Q, Rodewald L, An ZJ, et al. Monitoring progress towards the elimination of measles in China: an analysis of measles surveillance data. Bull World Health Organ. 2014;92:340–7.CrossRefPubMedPubMedCentral
6.
go back to reference Wang X, Boulton ML, Montgomery JLP, Carlson B, Zhang Y, Gillespie B, et al. The epidemiology of measles in Tianjin, China, 2005–2014. Vaccine. 2015;33(46):6186–91.CrossRefPubMedPubMedCentral Wang X, Boulton ML, Montgomery JLP, Carlson B, Zhang Y, Gillespie B, et al. The epidemiology of measles in Tianjin, China, 2005–2014. Vaccine. 2015;33(46):6186–91.CrossRefPubMedPubMedCentral
7.
go back to reference Zhu Y, Xu Q, Lin H, Yue D, Song L, Wang C, et al. Spatiotemporal analysis of infant measles using population attributable risk in Shandong Province, 1999–2008. PLoS ONE. 2013;8(11):e79334.CrossRefPubMedPubMedCentral Zhu Y, Xu Q, Lin H, Yue D, Song L, Wang C, et al. Spatiotemporal analysis of infant measles using population attributable risk in Shandong Province, 1999–2008. PLoS ONE. 2013;8(11):e79334.CrossRefPubMedPubMedCentral
8.
go back to reference Zhuo J, Geng W, Hoekstra EJ, Zhong G, Liang X, Zhang J. Impact of supplementary immunization activities in measles-endemic areas: a case study from Guangxi, China. J Infect Dis. 2011;204(suppl 1):S455–62.CrossRefPubMed Zhuo J, Geng W, Hoekstra EJ, Zhong G, Liang X, Zhang J. Impact of supplementary immunization activities in measles-endemic areas: a case study from Guangxi, China. J Infect Dis. 2011;204(suppl 1):S455–62.CrossRefPubMed
9.
go back to reference Tang X, Geater A, McNeil E, Zhou H, Deng Q, Dong A, et al. Parental migration and children's timely measles vaccination in rural China: a cross-sectional study. Tropical Med Int Health. 2016;21(7):886–94.CrossRef Tang X, Geater A, McNeil E, Zhou H, Deng Q, Dong A, et al. Parental migration and children's timely measles vaccination in rural China: a cross-sectional study. Tropical Med Int Health. 2016;21(7):886–94.CrossRef
10.
go back to reference Kulldorff M. SaTScan user guide for version 9.4. Boston: Department of Ambulatory Care and Prevention, Harvard Medical School; 2015. Kulldorff M. SaTScan user guide for version 9.4. Boston: Department of Ambulatory Care and Prevention, Harvard Medical School; 2015.
11.
go back to reference Carrel M, Emch M, Streatfield PK, Yunus M. Spatio-temporal clustering of cholera: the impact of flood control in Matlab, Bangladesh, 1983–2003. Health Place. 2009;15(3):771–82.CrossRef Carrel M, Emch M, Streatfield PK, Yunus M. Spatio-temporal clustering of cholera: the impact of flood control in Matlab, Bangladesh, 1983–2003. Health Place. 2009;15(3):771–82.CrossRef
12.
go back to reference Iftimi A, Martínez-Ruiz F, Santiyán AM, Montes F. Spatio-temporal cluster detection of chickenpox in Valencia, Spain in the period 2008-2012. Geospat Health. 2015;10(1):54–62.CrossRef Iftimi A, Martínez-Ruiz F, Santiyán AM, Montes F. Spatio-temporal cluster detection of chickenpox in Valencia, Spain in the period 2008-2012. Geospat Health. 2015;10(1):54–62.CrossRef
13.
go back to reference Jones SG, Conner W, Song B, Gordon D, Jayakaran A. Comparing spatio-temporal clusters of arthropod-borne infections using administrative medical claims and state reported surveillance data. Spat Spatio Temporal Epidemiol. 2012;3(3):205–13.CrossRef Jones SG, Conner W, Song B, Gordon D, Jayakaran A. Comparing spatio-temporal clusters of arthropod-borne infections using administrative medical claims and state reported surveillance data. Spat Spatio Temporal Epidemiol. 2012;3(3):205–13.CrossRef
14.
go back to reference Ling CY, Gruebner O, Krämer A, Lakes T. Spatio-temporal patterns of dengue in Malaysia: combining address and sub-district level. Geospat Health. 2014;9(1):131–40.CrossRefPubMed Ling CY, Gruebner O, Krämer A, Lakes T. Spatio-temporal patterns of dengue in Malaysia: combining address and sub-district level. Geospat Health. 2014;9(1):131–40.CrossRefPubMed
15.
go back to reference Liu H, Weng Q, Gaines D. Spatio-temporal analysis of the relationship between WNV dissemination and environmental variables in Indianapolis, USA. Int J Health Geogr. 2008;7:66.CrossRefPubMedPubMedCentral Liu H, Weng Q, Gaines D. Spatio-temporal analysis of the relationship between WNV dissemination and environmental variables in Indianapolis, USA. Int J Health Geogr. 2008;7:66.CrossRefPubMedPubMedCentral
16.
go back to reference Sindato C, Karimuribo ED, Pfeiffer DU, Mboera LEG, Kivaria F, Dautu G, et al. Spatial and temporal pattern of Rift Valley fever outbreaks in Tanzania; 1930 to 2007. PLoS ONE. 2014;9(2):e88897.CrossRefPubMedPubMedCentral Sindato C, Karimuribo ED, Pfeiffer DU, Mboera LEG, Kivaria F, Dautu G, et al. Spatial and temporal pattern of Rift Valley fever outbreaks in Tanzania; 1930 to 2007. PLoS ONE. 2014;9(2):e88897.CrossRefPubMedPubMedCentral
17.
18.
go back to reference Zhang WY, Wang LY, Liu YX, Yin WW, Hu WB, Magalhaes RJS, et al. Spatiotemporal transmission dynamics of hemorrhagic fever with renal syndrome in China, 2005–2012. PLoS Negl Trop Dis. 2014;8(11):e3344.CrossRefPubMedPubMedCentral Zhang WY, Wang LY, Liu YX, Yin WW, Hu WB, Magalhaes RJS, et al. Spatiotemporal transmission dynamics of hemorrhagic fever with renal syndrome in China, 2005–2012. PLoS Negl Trop Dis. 2014;8(11):e3344.CrossRefPubMedPubMedCentral
19.
go back to reference Dept. of Immunization, Vaccines and Biologicals, World Health Organization. Manual for the laboratory diagnosis of measles and rubella virus infection. Geneva, 2007. Dept. of Immunization, Vaccines and Biologicals, World Health Organization. Manual for the laboratory diagnosis of measles and rubella virus infection. Geneva, 2007.
20.
go back to reference Mueller TG, Pusuluri NB, Mathias KK, Cornelius P, Barnhisel R, Shearer S. Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Sci Soc Am J. 2004;68(6):2042–7.CrossRef Mueller TG, Pusuluri NB, Mathias KK, Cornelius P, Barnhisel R, Shearer S. Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Sci Soc Am J. 2004;68(6):2042–7.CrossRef
23.
go back to reference Kulldorff M, Huang L, Pickle L, Duczmal L. An elliptic spatial scan statistic. Stat Med. 2006;25(22):3929–43.CrossRefPubMed Kulldorff M, Huang L, Pickle L, Duczmal L. An elliptic spatial scan statistic. Stat Med. 2006;25(22):3929–43.CrossRefPubMed
25.
go back to reference Zheng J, Zhou Y, Wang H, Liang X. The role of the China experts advisory committee on immunization program. Vaccine. 2010;28(suppl 1):A84–7.CrossRefPubMed Zheng J, Zhou Y, Wang H, Liang X. The role of the China experts advisory committee on immunization program. Vaccine. 2010;28(suppl 1):A84–7.CrossRefPubMed
26.
go back to reference Samphutthanon R, Tripathi NK, Ninsawat S, Duboz R. Spatio-temporal distribution and hotspots of hand, foot and mouth disease (HFMD) in northern Thailand. Int J Environ Res Public Health. 2013;11(1):312–36.CrossRefPubMedPubMedCentral Samphutthanon R, Tripathi NK, Ninsawat S, Duboz R. Spatio-temporal distribution and hotspots of hand, foot and mouth disease (HFMD) in northern Thailand. Int J Environ Res Public Health. 2013;11(1):312–36.CrossRefPubMedPubMedCentral
27.
go back to reference Zhuo J, Hoekstra EJ, Zhong G, Liu W, Zheng Z, Zhang J. Innovative use of surveillance data to harness political will to accelerate measles elimination: experience from Guangxi, China. J Infect Dis. 2011;204(suppl 1):S463–70.CrossRefPubMed Zhuo J, Hoekstra EJ, Zhong G, Liu W, Zheng Z, Zhang J. Innovative use of surveillance data to harness political will to accelerate measles elimination: experience from Guangxi, China. J Infect Dis. 2011;204(suppl 1):S463–70.CrossRefPubMed
28.
go back to reference E Delaporte, E Jeannot, P Sudre, Wyler Lazarevic C, JL Richard and P Chastonay. Measles in Geneva between 2003 and 2010: persistence of measles outbreaks despite high immunisation coverage. Euro Surveill. 2011;16(39). E Delaporte, E Jeannot, P Sudre, Wyler Lazarevic C, JL Richard and P Chastonay. Measles in Geneva between 2003 and 2010: persistence of measles outbreaks despite high immunisation coverage. Euro Surveill. 2011;16(39).
29.
go back to reference Lima M. A link between the North Atlantic oscillation and measles dynamics during the vaccination period in England and Wales. Ecol Lett. 2009;12(4):302–14.CrossRefPubMed Lima M. A link between the North Atlantic oscillation and measles dynamics during the vaccination period in England and Wales. Ecol Lett. 2009;12(4):302–14.CrossRefPubMed
30.
go back to reference Hu Y, Li Q, Luo S, Lou L, Qi X, Xie S. Timeliness vaccination of measles containing vaccine and barriers to vaccination among migrant children in East China. PLoS ONE. 2013;8(8):e73264.CrossRefPubMedPubMedCentral Hu Y, Li Q, Luo S, Lou L, Qi X, Xie S. Timeliness vaccination of measles containing vaccine and barriers to vaccination among migrant children in East China. PLoS ONE. 2013;8(8):e73264.CrossRefPubMedPubMedCentral
31.
go back to reference Sun M, Ma R, Zeng Y, Luo F, Zhang J, Hou W. Immunization status and risk factors of migrant children in densely populated areas of Beijing, China. Vaccine. 2010;28(5):1264–74.CrossRefPubMed Sun M, Ma R, Zeng Y, Luo F, Zhang J, Hou W. Immunization status and risk factors of migrant children in densely populated areas of Beijing, China. Vaccine. 2010;28(5):1264–74.CrossRefPubMed
32.
go back to reference M Kulldorff. Spatial scan statistics: models, calculations, and applications. Scan statistics and applications. Springer, Birkhäuser Boston; 1999, p. 303–322. M Kulldorff. Spatial scan statistics: models, calculations, and applications. Scan statistics and applications. Springer, Birkhäuser Boston; 1999, p. 303–322.
33.
go back to reference Takahashi K, Kulldorff M, Tango T, Yih K. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring. Int J Health Geogr. 2008;7:14.CrossRefPubMedPubMedCentral Takahashi K, Kulldorff M, Tango T, Yih K. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring. Int J Health Geogr. 2008;7:14.CrossRefPubMedPubMedCentral
34.
go back to reference Parenteau MP, Sawada MC. The modifiable areal unit problem (MAUP) in the relationship between exposure to NO2 and respiratory health. Int J Health Geogr. 2011;10:58.CrossRefPubMedPubMedCentral Parenteau MP, Sawada MC. The modifiable areal unit problem (MAUP) in the relationship between exposure to NO2 and respiratory health. Int J Health Geogr. 2011;10:58.CrossRefPubMedPubMedCentral
35.
go back to reference Duczmal L, Kulldorff M, Huang L. Evaluation of spatial scan statistics for irregularly shaped clusters. J Comput Graph Stat. 2012;15(2):428–42.CrossRef Duczmal L, Kulldorff M, Huang L. Evaluation of spatial scan statistics for irregularly shaped clusters. J Comput Graph Stat. 2012;15(2):428–42.CrossRef
36.
go back to reference Read S, Bath P, Willett P, Maheswaran R. Measuring the spatial accuracy of the spatial scan statistic. Spat Spatio-Temporal Epidemiol. 2011;2(2):69–78.CrossRef Read S, Bath P, Willett P, Maheswaran R. Measuring the spatial accuracy of the spatial scan statistic. Spat Spatio-Temporal Epidemiol. 2011;2(2):69–78.CrossRef
Metadata
Title
Spatial, temporal and spatio-temporal clusters of measles incidence at the county level in Guangxi, China during 2004–2014: flexibly shaped scan statistics
Authors
Xianyan Tang
Alan Geater
Edward McNeil
Qiuyun Deng
Aihu Dong
Ge Zhong
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2357-1

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue