Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Research article

Treatment completion for latent tuberculosis infection: a retrospective cohort study comparing 9 months of isoniazid, 4 months of rifampin and 3 months of isoniazid and rifapentine

Authors: Adelaide H. McClintock, McKenna Eastment, Christy M. McKinney, Caroline L. Pitney, Masahiro Narita, David R. Park, Shireesha Dhanireddy, Alexandra Molnar

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

The U.S. Centers for Disease Control and Prevention (CDC) recommended a new regimen for treatment of latent tuberculosis (three months of weekly isoniazid and rifapentine) in late 2011. While completion rates of this regimen were reported to be higher than nine months of isoniazid, little is known about the completion rates of three months of isoniazid and rifapentine compared to nine months of isoniazid or four months of rifampin in actual use scenarios.

Methods

We conducted a retrospective cohort study comparing treatment completion for latent tuberculosis (TB) infection in patients treated with nine months of isoniazid, three months of isoniazid and rifapentine or four months of rifampin in outpatient clinics and a public health TB clinic in Seattle, Washington. The primary outcome of treatment completion was defined as 270 doses of isoniazid within 12 months, 120 doses of rifampin within six months and 12 doses of isoniazid and rifapentine within four months.

Results

Three hundred ninety-three patients were included in the study. Patients were equally likely to complete three months of weekly isoniazid and rifapentine or four months of rifampin (85% completion rate of both regimens), as compared to 52% in the nine months of isoniazid group (p < 0.001). These associations remained statistically significant even after adjusting for clinic location and type of monitoring. Monitoring type (weekly versus monthly versus less often than monthly) had less impact on treatment completion than the type of treatment offered.

Conclusions

Patients were equally as likely to complete the three months of isoniazid and rifapentine as four months of rifampin. Four months of rifampin is similar in efficacy compared to placebo as isoniazid and rifapentine but does not require directly observed therapy (DOT), and is less expensive compared to combination therapy with isoniazid and rifapentine, and thus can be the optimal treatment regimen to achieve the maximal efficacy in a community setting.
Literature
3.
go back to reference Miramontes R, Hill AN, Yelk Woodruff RS, et al. Tuberculosis Infection in the United States: Prevalence Estimates from the National Health and Nutrition Examination Survey, 2011-2012. PLoS One. 2015;10, e0140881.CrossRefPubMedPubMedCentral Miramontes R, Hill AN, Yelk Woodruff RS, et al. Tuberculosis Infection in the United States: Prevalence Estimates from the National Health and Nutrition Examination Survey, 2011-2012. PLoS One. 2015;10, e0140881.CrossRefPubMedPubMedCentral
4.
go back to reference Bennett DE, Courval JM, Onorato I, et al. Prevalence of tuberculosis infection in the United States population: the national health and nutrition examination survey, 1999-2000. Am J Respir Crit Care Med. 2008;177:348–55.CrossRefPubMed Bennett DE, Courval JM, Onorato I, et al. Prevalence of tuberculosis infection in the United States population: the national health and nutrition examination survey, 1999-2000. Am J Respir Crit Care Med. 2008;177:348–55.CrossRefPubMed
5.
go back to reference Porco TC, Lewis B, Marseille E, Grinsdale J, Flood JM, Royce SE. Cost-effectiveness of tuberculosis evaluation and treatment of newly-arrived immigrants. BMC Public Health. 2006;6:157.CrossRefPubMedPubMedCentral Porco TC, Lewis B, Marseille E, Grinsdale J, Flood JM, Royce SE. Cost-effectiveness of tuberculosis evaluation and treatment of newly-arrived immigrants. BMC Public Health. 2006;6:157.CrossRefPubMedPubMedCentral
6.
go back to reference Colleen Scott D, Hannah L, Kirking M, Carla Jeffries J, Price SF, Pratt R. Tuberculosis Trends - United States, 2014. Morbidity and Mortality Weekly Report (MMWR). 2014;64:265–369. Colleen Scott D, Hannah L, Kirking M, Carla Jeffries J, Price SF, Pratt R. Tuberculosis Trends - United States, 2014. Morbidity and Mortality Weekly Report (MMWR). 2014;64:265–369.
7.
go back to reference Centers for Disease C. Targeted tuberculin testing and treatment of latent tuberculosis infection. MMWR Morb Mortal Wkly Rep. 2000;49:2. Centers for Disease C. Targeted tuberculin testing and treatment of latent tuberculosis infection. MMWR Morb Mortal Wkly Rep. 2000;49:2.
8.
go back to reference Stagg HR, Zenner D, Harris RJ, Munoz L, Lipman MC, Abubakar I. Treatment of latent tuberculosis infection: a network meta-analysis. Ann Intern Med. 2014;161:419–28.CrossRefPubMed Stagg HR, Zenner D, Harris RJ, Munoz L, Lipman MC, Abubakar I. Treatment of latent tuberculosis infection: a network meta-analysis. Ann Intern Med. 2014;161:419–28.CrossRefPubMed
9.
go back to reference Goswami ND, Gadkowski LB, Piedrahita C, et al. Predictors of latent tuberculosis treatment initiation and completion at a U.S. public health clinic: a prospective cohort study. BMC Public Health. 2012;12:468.CrossRefPubMedPubMedCentral Goswami ND, Gadkowski LB, Piedrahita C, et al. Predictors of latent tuberculosis treatment initiation and completion at a U.S. public health clinic: a prospective cohort study. BMC Public Health. 2012;12:468.CrossRefPubMedPubMedCentral
10.
go back to reference Hess K, Goad J, Wu J, Johnson K. Isoniazid completion rates for latent tuberculosis infection among college students managed by a community pharmacist. J Am Coll Health. 2009;57:553–5.CrossRefPubMed Hess K, Goad J, Wu J, Johnson K. Isoniazid completion rates for latent tuberculosis infection among college students managed by a community pharmacist. J Am Coll Health. 2009;57:553–5.CrossRefPubMed
11.
go back to reference Rivest P, Street MC, Allard R. Completion rates of treatment for latent tuberculosis infection in Quebec, Canada from 2006 to 2010. Can J Public Health. 2013;104:e235–9.CrossRefPubMed Rivest P, Street MC, Allard R. Completion rates of treatment for latent tuberculosis infection in Quebec, Canada from 2006 to 2010. Can J Public Health. 2013;104:e235–9.CrossRefPubMed
12.
go back to reference Centers for Disease C. Recommendations for Use of an Isoniazid–Rifapentine Regimen with Direct Observation to Treat Latent Mycobacterium tuberculosis Infection. MMWR Morb Mortal Wkly Rep 2011;60:1650-3. Centers for Disease C. Recommendations for Use of an Isoniazid–Rifapentine Regimen with Direct Observation to Treat Latent Mycobacterium tuberculosis Infection. MMWR Morb Mortal Wkly Rep 2011;60:1650-3.
13.
go back to reference Benator D, Bhattacharya M, Bozeman L, et al. Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: a randomised clinical trial. Lancet. 2002;360:528–34.CrossRefPubMed Benator D, Bhattacharya M, Bozeman L, et al. Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: a randomised clinical trial. Lancet. 2002;360:528–34.CrossRefPubMed
14.
go back to reference Schechter M, Zajdenverg R, Falco G, et al. Weekly rifapentine/isoniazid or daily rifampin/pyrazinamide for latent tuberculosis in household contacts. Am J Respir Crit Care Med. 2006;173:922–6.CrossRefPubMedPubMedCentral Schechter M, Zajdenverg R, Falco G, et al. Weekly rifapentine/isoniazid or daily rifampin/pyrazinamide for latent tuberculosis in household contacts. Am J Respir Crit Care Med. 2006;173:922–6.CrossRefPubMedPubMedCentral
15.
go back to reference Sterling TR, Villarino ME, Borisov AS, et al. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med. 2011;365:2155–66.CrossRefPubMed Sterling TR, Villarino ME, Borisov AS, et al. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med. 2011;365:2155–66.CrossRefPubMed
16.
go back to reference Getahun H, Matteelli A, Abubakar I, et al. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur Respir J. 2015;46:1563–76.CrossRefPubMedPubMedCentral Getahun H, Matteelli A, Abubakar I, et al. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur Respir J. 2015;46:1563–76.CrossRefPubMedPubMedCentral
17.
go back to reference Shepardson D, Marks SM, Chesson H, et al. Cost-effectiveness of a 12-dose regimen for treating latent tuberculous infection in the United States. Int J Tuberc Lung Dis. 2013;17:1531–7.CrossRefPubMed Shepardson D, Marks SM, Chesson H, et al. Cost-effectiveness of a 12-dose regimen for treating latent tuberculous infection in the United States. Int J Tuberc Lung Dis. 2013;17:1531–7.CrossRefPubMed
18.
go back to reference Shepardson D, MacKenzie WR. Update on cost-effectiveness of a 12-dose regimen for latent tuberculous infection at new rifapentine prices. Int J Tuberc Lung Dis. 2014;18:751.CrossRefPubMed Shepardson D, MacKenzie WR. Update on cost-effectiveness of a 12-dose regimen for latent tuberculous infection at new rifapentine prices. Int J Tuberc Lung Dis. 2014;18:751.CrossRefPubMed
19.
go back to reference Holland DP, Sanders GD, Hamilton CD, Stout JE. Costs and cost-effectiveness of four treatment regimens for latent tuberculosis infection. Am J Respir Crit Care Med. 2009;179:1055–60.CrossRefPubMedPubMedCentral Holland DP, Sanders GD, Hamilton CD, Stout JE. Costs and cost-effectiveness of four treatment regimens for latent tuberculosis infection. Am J Respir Crit Care Med. 2009;179:1055–60.CrossRefPubMedPubMedCentral
20.
go back to reference Lardizabal A, Passannante M, Kojakali F, Hayden C, Reichman LB. Enhancement of treatment completion for latent tuberculosis infection with 4 months of rifampin. Chest. 2006;130:1712–7.CrossRefPubMed Lardizabal A, Passannante M, Kojakali F, Hayden C, Reichman LB. Enhancement of treatment completion for latent tuberculosis infection with 4 months of rifampin. Chest. 2006;130:1712–7.CrossRefPubMed
21.
go back to reference Fresard I, Bridevaux PO, Rochat T, Janssens JP. Adverse effects and adherence to treatment of rifampicin 4 months vs isoniazid 6 months for latent tuberculosis: a retrospective analysis. Swiss Med Wkly. 2011;141:w13240.PubMed Fresard I, Bridevaux PO, Rochat T, Janssens JP. Adverse effects and adherence to treatment of rifampicin 4 months vs isoniazid 6 months for latent tuberculosis: a retrospective analysis. Swiss Med Wkly. 2011;141:w13240.PubMed
22.
go back to reference Getahun H, Matteelli A, Chaisson RE, Raviglione M. Latent Mycobacterium tuberculosis infection. N Engl J Med. 2015;372:2127–35.CrossRefPubMed Getahun H, Matteelli A, Chaisson RE, Raviglione M. Latent Mycobacterium tuberculosis infection. N Engl J Med. 2015;372:2127–35.CrossRefPubMed
23.
go back to reference StataCorp. Stata. 13th ed. College Station, TX: Stata Corp L; 2013. StataCorp. Stata. 13th ed. College Station, TX: Stata Corp L; 2013.
24.
go back to reference Center for Disease Control. TB Notes Newsletter No. 3. 2012. Accessed 5 Nov 5 2012. Center for Disease Control. TB Notes Newsletter No. 3. 2012. Accessed 5 Nov 5 2012.
25.
go back to reference Menzies D, Al Jahdali H, Al OB. Recent developments in treatment of latent tuberculosis infection. Indian J Med Res. 2011;133:257–66.PubMedPubMedCentral Menzies D, Al Jahdali H, Al OB. Recent developments in treatment of latent tuberculosis infection. Indian J Med Res. 2011;133:257–66.PubMedPubMedCentral
26.
go back to reference Menzies D, Long R, Trajman A, et al. Adverse events with 4 months of rifampin therapy or 9 months of isoniazid therapy for latent tuberculosis infection: a randomized trial. Ann Intern Med. 2008;149:689–97.CrossRefPubMed Menzies D, Long R, Trajman A, et al. Adverse events with 4 months of rifampin therapy or 9 months of isoniazid therapy for latent tuberculosis infection: a randomized trial. Ann Intern Med. 2008;149:689–97.CrossRefPubMed
27.
go back to reference Lutge EE, Wiysonge CS, Knight SE, Sinclair D, Volmink J. Incentives and enablers to improve adherence in tuberculosis. Cochrane Database Syst Rev. 2015;9:CD007952. Lutge EE, Wiysonge CS, Knight SE, Sinclair D, Volmink J. Incentives and enablers to improve adherence in tuberculosis. Cochrane Database Syst Rev. 2015;9:CD007952.
Metadata
Title
Treatment completion for latent tuberculosis infection: a retrospective cohort study comparing 9 months of isoniazid, 4 months of rifampin and 3 months of isoniazid and rifapentine
Authors
Adelaide H. McClintock
McKenna Eastment
Christy M. McKinney
Caroline L. Pitney
Masahiro Narita
David R. Park
Shireesha Dhanireddy
Alexandra Molnar
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2245-8

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue