Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Research article

Protection via a ROM4 DNA vaccine and peptide against Toxoplasma gondii in BALB/c mice

Authors: Yali Han, Aihua Zhou, Gang Lu, Guanghui Zhao, Lin Wang, Jingjing Guo, Pengxia Song, Jian Zhou, Huaiyu Zhou, Hua Cong, Shenyi He

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite with a broad host range including most warm-blooded animals, including humans. T. gondii surface antigen 1 (SAG1) is a well-characterized T. gondii antigen. T. gondii expresses five nonmitochondrial rhomboid intramembrane proteases, TgROM1-5. TgROM4 is uniformly distributed on the surface of T. gondii and involved in regulating MIC2, MIC3, MIC6, and AMA1 during T. gondii invasion of host cells. Bioinformatics have predicted ROM4 B-cell and T-cell epitopes. Immunization strategy is also a key factor in determining the effectiveness of the immune response and has gained increasing attention in T. gondii vaccine research. In this study, we used a DNA prime-peptide boost vaccination regimen to assess the protective efficacy of various vaccination strategies using TgROM4.

Methods

We identified a polypeptide (YALLGALIPYCVEYWKSIPR) using a bioinformatics approach, and immunized mice using a DNA-prime and polypeptide-boost regimen. BALB/c mice were randomly divided into six groups, including three experimental groups (peptide, pROM4 and pROM4/peptide) and three control groups (PBS, pEGFP-C1 and pSAG1). Mice were then immunized intramuscularly four times. After immunization, IgG and cytokine productions were determined using enzyme-linked immunosorbent assays. The survival time of mice was evaluated after challenge with tachyzoites of T. gondii RH strain. Additionally, the number of cysts in the brain was determined after intragastric challenge with cysts of T. gondii PRU strain.

Results

Mice vaccinated with different immunization regimens (peptide, pROM4 and pROM4/peptide) elicited specific humoral and cellular responses, with high levels of IgG, IgG2a, and interferon (IFN)-γ. Moreover, IgG, IgG2a and IFN-γ levels were highest in the pROM4/peptide group. Immunized mice, especially those in the pROM4/peptide group, had prolonged survival times after challenge with tachyzoites and reduced numbers of brain cysts after infection compared with negative controls.

Conclusion

A DNA prime-peptide boost regimen based on ROM4 elicited the highest level of humoral and cellular immune responses among immunization regimens, and may be a promising approach to increase the efficacy of DNA immunization.
Literature
1.
go back to reference Dubey JP. The history of Toxoplasma gondii--the first 100 years. J Eukaryot Microbiol. 2008;55(6):467–75.CrossRefPubMed Dubey JP. The history of Toxoplasma gondii--the first 100 years. J Eukaryot Microbiol. 2008;55(6):467–75.CrossRefPubMed
2.
go back to reference Cenci-Goga BT, Rossitto PV, Sechi P, McCrindle CM, Cullor JS. Toxoplasma in animals, food, and humans: an old parasite of new concern. Foodborne Pathog Dis. 2011;8(7):751–62.CrossRefPubMed Cenci-Goga BT, Rossitto PV, Sechi P, McCrindle CM, Cullor JS. Toxoplasma in animals, food, and humans: an old parasite of new concern. Foodborne Pathog Dis. 2011;8(7):751–62.CrossRefPubMed
4.
go back to reference Dubey JP, Lindsay DS, Speer CA. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev. 1998;11(2):267–99.PubMedPubMedCentral Dubey JP, Lindsay DS, Speer CA. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev. 1998;11(2):267–99.PubMedPubMedCentral
5.
go back to reference Meng M, Zhou A, Lu G, Wang L, Zhao G, Han Y, et al. DNA prime and peptide boost immunization protocol encoding the Toxoplasma gondii GRA4 induces strong protective immunity in BALB/c mice. BMC Infect Dis. 2013;13:494. 5.CrossRefPubMedPubMedCentral Meng M, Zhou A, Lu G, Wang L, Zhao G, Han Y, et al. DNA prime and peptide boost immunization protocol encoding the Toxoplasma gondii GRA4 induces strong protective immunity in BALB/c mice. BMC Infect Dis. 2013;13:494. 5.CrossRefPubMedPubMedCentral
6.
go back to reference Jongert E, Roberts CW, Gargano N, Förster-Waldl E, Petersen E. Vaccines against Toxoplasma gondii:challenges and opportunities. Mem Inst Oswaldo Cruz. 2009;104(2):252–66.CrossRefPubMed Jongert E, Roberts CW, Gargano N, Förster-Waldl E, Petersen E. Vaccines against Toxoplasma gondii:challenges and opportunities. Mem Inst Oswaldo Cruz. 2009;104(2):252–66.CrossRefPubMed
7.
go back to reference Hiszczyńska-Sawicka E, Holec-Gasior L, Kur J. DNA vaccines and recombinant antigens in prevention of Toxoplasma gondii infections-current status of the studies. Wiad Parazytol. 2009;55(2):125–39.PubMed Hiszczyńska-Sawicka E, Holec-Gasior L, Kur J. DNA vaccines and recombinant antigens in prevention of Toxoplasma gondii infections-current status of the studies. Wiad Parazytol. 2009;55(2):125–39.PubMed
8.
go back to reference Liu KY, Zhang DB, Wei QK, Li J, Li GP, Yu JZ. Biological role of surface Toxoplasma gondii antigen in development of vaccine. World J Gastroenterol. 2006;12(15):2363–8.CrossRefPubMedPubMedCentral Liu KY, Zhang DB, Wei QK, Li J, Li GP, Yu JZ. Biological role of surface Toxoplasma gondii antigen in development of vaccine. World J Gastroenterol. 2006;12(15):2363–8.CrossRefPubMedPubMedCentral
9.
go back to reference Kim K. Role of proteases in host cell invasion by Toxoplasma gondii and other Apicomplexa. Acta Trop. 2004;91(1):69–81.CrossRefPubMed Kim K. Role of proteases in host cell invasion by Toxoplasma gondii and other Apicomplexa. Acta Trop. 2004;91(1):69–81.CrossRefPubMed
10.
go back to reference Dou Z, Carruthers VB. Cathepsin proteases in Toxoplasma gondii. Adv Exp Med Biol. 2011;2011(712):49–61.CrossRef Dou Z, Carruthers VB. Cathepsin proteases in Toxoplasma gondii. Adv Exp Med Biol. 2011;2011(712):49–61.CrossRef
11.
go back to reference Zhao G, Zhou A, Lv G, Meng M, Sun M, Bai Y, et al. Toxoplasma gondii cathepsin proteases are undeveloped prominent vaccine antigens against toxoplasmosis. BMC Infect Dis. 2013;13:207.CrossRefPubMedPubMedCentral Zhao G, Zhou A, Lv G, Meng M, Sun M, Bai Y, et al. Toxoplasma gondii cathepsin proteases are undeveloped prominent vaccine antigens against toxoplasmosis. BMC Infect Dis. 2013;13:207.CrossRefPubMedPubMedCentral
12.
go back to reference Dowse TJ, Pascall JC, Brown KD, Soldati D. Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Int J Parasitol. 2005;35(7):747–56.CrossRefPubMed Dowse TJ, Pascall JC, Brown KD, Soldati D. Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Int J Parasitol. 2005;35(7):747–56.CrossRefPubMed
13.
go back to reference Brossier F, Jewett TJ, Sibley LD, Urban S. A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc Natl Acad Sci U S A. 2005;102(11):4146–51.CrossRefPubMedPubMedCentral Brossier F, Jewett TJ, Sibley LD, Urban S. A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc Natl Acad Sci U S A. 2005;102(11):4146–51.CrossRefPubMedPubMedCentral
14.
go back to reference Buguliskis JS, Brossier F, Shuman J, Sibley LD. Rhomboid 4 (ROM4) affects the processing of surface adhesins and facilitates host cell invasion by Toxoplasma gondii. PLoS Pathog. 2010;6(4):e1000858.CrossRefPubMedPubMedCentral Buguliskis JS, Brossier F, Shuman J, Sibley LD. Rhomboid 4 (ROM4) affects the processing of surface adhesins and facilitates host cell invasion by Toxoplasma gondii. PLoS Pathog. 2010;6(4):e1000858.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Rugarabamu G, Marq JB, Guérin A, Lebrun M, Soldati-Favre D. Distinct contribution of Toxoplasma gondii rhomboid proteases 4 and 5 to micronemal protein protease 1 activity during invasion. Mol Microbiol. 2015;97(2):244–62.CrossRefPubMed Rugarabamu G, Marq JB, Guérin A, Lebrun M, Soldati-Favre D. Distinct contribution of Toxoplasma gondii rhomboid proteases 4 and 5 to micronemal protein protease 1 activity during invasion. Mol Microbiol. 2015;97(2):244–62.CrossRefPubMed
17.
go back to reference Li J, Han Q, Gong P, Yang T, Ren B, Li S, Zhang X. Toxoplasma gondii rhomboid protein 1 (TgROM1) is a potential vaccine candidate against toxoplasmosis. Vet Parasitol. 2012;184(2–4):154–60.CrossRefPubMed Li J, Han Q, Gong P, Yang T, Ren B, Li S, Zhang X. Toxoplasma gondii rhomboid protein 1 (TgROM1) is a potential vaccine candidate against toxoplasmosis. Vet Parasitol. 2012;184(2–4):154–60.CrossRefPubMed
18.
go back to reference Sollner J, Grohmann R, Rapberger R, Perco P, Lukas A, Mayer B. Analysis and prediction of protective continuous B-cell epitopes on pathogen proteins. Immunome Res. 2008;4:1.CrossRefPubMedPubMedCentral Sollner J, Grohmann R, Rapberger R, Perco P, Lukas A, Mayer B. Analysis and prediction of protective continuous B-cell epitopes on pathogen proteins. Immunome Res. 2008;4:1.CrossRefPubMedPubMedCentral
19.
go back to reference Zhang ZW, Zhang YG, Wang YL, Pan L, Fang YZ, Jiang ST, et al. Screening and identification of B cell epitopes of structural proteins of foot-and-mouth disease virus serotype Asia I. Vet Microbiol. 2010;140(1–2):25–33.CrossRefPubMed Zhang ZW, Zhang YG, Wang YL, Pan L, Fang YZ, Jiang ST, et al. Screening and identification of B cell epitopes of structural proteins of foot-and-mouth disease virus serotype Asia I. Vet Microbiol. 2010;140(1–2):25–33.CrossRefPubMed
20.
go back to reference Shedlock DJ, Weiner DB. DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol. 2000;68(6):793–806.PubMed Shedlock DJ, Weiner DB. DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol. 2000;68(6):793–806.PubMed
21.
22.
go back to reference Alekseeva E, Sominskaya I, Skrastina D, Egorova I, Starodubova E, Kushners E, et al. Enhancement of the expression of HCV core gene does not enhance core-specific immune response in DNA immunization: advantages of the heterologous DNA prime, protein boost immunization regimen. Genet Vaccines Ther. 2009;7:7.CrossRefPubMedPubMedCentral Alekseeva E, Sominskaya I, Skrastina D, Egorova I, Starodubova E, Kushners E, et al. Enhancement of the expression of HCV core gene does not enhance core-specific immune response in DNA immunization: advantages of the heterologous DNA prime, protein boost immunization regimen. Genet Vaccines Ther. 2009;7:7.CrossRefPubMedPubMedCentral
23.
go back to reference Zhang G, Huong VT, Battur B, Zhou J, Zhang H, Liao M, et al. A heterologous prime-boost vaccination regime using DNA and a vaccinia virus, both expressing GRA4, induced protective immunity against Toxoplasma gondii infection in mice. Parasitology. 2007;134(Pt 10):1339–46.CrossRefPubMed Zhang G, Huong VT, Battur B, Zhou J, Zhang H, Liao M, et al. A heterologous prime-boost vaccination regime using DNA and a vaccinia virus, both expressing GRA4, induced protective immunity against Toxoplasma gondii infection in mice. Parasitology. 2007;134(Pt 10):1339–46.CrossRefPubMed
24.
go back to reference Min J, Qu D, Li C, Song X, Zhao Q, Li XA, et al. Enhancement of protective immune responses induced by Toxoplasma gondii dense granule antigen 7 (GRA7) against toxoplasmosis in mice using a prime-boost vaccination strategy. Vaccine. 2012;30(38):5631–6.CrossRefPubMed Min J, Qu D, Li C, Song X, Zhao Q, Li XA, et al. Enhancement of protective immune responses induced by Toxoplasma gondii dense granule antigen 7 (GRA7) against toxoplasmosis in mice using a prime-boost vaccination strategy. Vaccine. 2012;30(38):5631–6.CrossRefPubMed
25.
go back to reference Wang Y, Wang M, Wang G, Pang A, Fu B, Yin H, et al. Increased survival time in mice vaccinated with a branched lysine multiple antigenic peptide containing B- and T-cell epitopes from T. gondii antigens. Vaccine. 2011;29(47):8619–23.CrossRefPubMed Wang Y, Wang M, Wang G, Pang A, Fu B, Yin H, et al. Increased survival time in mice vaccinated with a branched lysine multiple antigenic peptide containing B- and T-cell epitopes from T. gondii antigens. Vaccine. 2011;29(47):8619–23.CrossRefPubMed
26.
go back to reference Mahajan B, Berzofsky JA, Boykins RA, Majam V, Zheng H, Chattopadhyay R, et al. Multiple antigen peptide vaccines against Plasmodium falciparum malaria. Infect Immun. 2010;78(11):4613–24.CrossRefPubMedPubMedCentral Mahajan B, Berzofsky JA, Boykins RA, Majam V, Zheng H, Chattopadhyay R, et al. Multiple antigen peptide vaccines against Plasmodium falciparum malaria. Infect Immun. 2010;78(11):4613–24.CrossRefPubMedPubMedCentral
28.
29.
go back to reference El-Kady IM. T-cell immunity in human chronic toxoplasmosis. J Egypt Soc Parasitol. 2011;41(1):17–28.PubMed El-Kady IM. T-cell immunity in human chronic toxoplasmosis. J Egypt Soc Parasitol. 2011;41(1):17–28.PubMed
30.
go back to reference Langermans JA, Van der Hulst ME, Nibbering PH, Hiemstra PS, Fransen L, Van Furth R. IFN-gamma-induced L-arginine-dependent toxoplasmastatic activity in murine peritoneal macrophages is mediated by endogenous tumor necrosis factor-alpha. J Immunol. 1992;148(2):568–74.PubMed Langermans JA, Van der Hulst ME, Nibbering PH, Hiemstra PS, Fransen L, Van Furth R. IFN-gamma-induced L-arginine-dependent toxoplasmastatic activity in murine peritoneal macrophages is mediated by endogenous tumor necrosis factor-alpha. J Immunol. 1992;148(2):568–74.PubMed
31.
go back to reference Filisetti D, Candolfi E. Immune response to Toxoplasma gondii. Ann Ist Super Sanita. 2004;40(1):71–80.PubMed Filisetti D, Candolfi E. Immune response to Toxoplasma gondii. Ann Ist Super Sanita. 2004;40(1):71–80.PubMed
32.
go back to reference Oldenhove G, et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity. 2009;31(5):772–86.CrossRefPubMedPubMedCentral Oldenhove G, et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity. 2009;31(5):772–86.CrossRefPubMedPubMedCentral
33.
go back to reference Zheng B, Lu S, Tong Q, Kong Q, Lou D. The virulence-related rhoptry protein 5 (ROP5) of Toxoplasma gondii is a novel vaccine candidate against toxoplasmosis in mice. Vaccine. 2013;31(41):4578–84.CrossRefPubMed Zheng B, Lu S, Tong Q, Kong Q, Lou D. The virulence-related rhoptry protein 5 (ROP5) of Toxoplasma gondii is a novel vaccine candidate against toxoplasmosis in mice. Vaccine. 2013;31(41):4578–84.CrossRefPubMed
34.
go back to reference Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A, Kühn R, et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12. IFN-gamma and TNF-alpha J Immunol. 1996;157(2):798–805.PubMed Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A, Kühn R, et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12. IFN-gamma and TNF-alpha J Immunol. 1996;157(2):798–805.PubMed
35.
go back to reference Dawson HD, Beshah E, Nishi S, Solano-Aguilar G, Morimoto M, Zhao A, et al. Localized multigene expression patterns support an evolving Th1/Th2-like paradigm in response to infections with Toxoplasma gondii and Ascaris suum. Infect Immun. 2005;73(2):1116–28.CrossRefPubMedPubMedCentral Dawson HD, Beshah E, Nishi S, Solano-Aguilar G, Morimoto M, Zhao A, et al. Localized multigene expression patterns support an evolving Th1/Th2-like paradigm in response to infections with Toxoplasma gondii and Ascaris suum. Infect Immun. 2005;73(2):1116–28.CrossRefPubMedPubMedCentral
36.
go back to reference Kang H, Remington JS, Suzuki Y. Decreased resistance of B cell-deficient mice to infection with Toxoplasma gondii despite unimpaired expression of IFN-gamma, TNF-alpha, and inducible nitric oxide synthase. J Immunol. 2000;164(5):2629–34.CrossRefPubMed Kang H, Remington JS, Suzuki Y. Decreased resistance of B cell-deficient mice to infection with Toxoplasma gondii despite unimpaired expression of IFN-gamma, TNF-alpha, and inducible nitric oxide synthase. J Immunol. 2000;164(5):2629–34.CrossRefPubMed
37.
go back to reference Sayles PC, Gibson GW, Johnson LL. B cells are essential for vaccination-induced resistance to virulent Toxoplasma gondii. Infect Immun. 2000;68(3):1026–33.CrossRefPubMedPubMedCentral Sayles PC, Gibson GW, Johnson LL. B cells are essential for vaccination-induced resistance to virulent Toxoplasma gondii. Infect Immun. 2000;68(3):1026–33.CrossRefPubMedPubMedCentral
38.
go back to reference Zhang NZ, Xu Y, Wang M, Petersen E, Chen J, Huang SY, et al. Protective efficacy of two novel DNA vaccines expressing Toxoplasma gondii rhomboid 4 and rhomboid 5 proteins against acute and chronic toxoplasmosis in mice. Expert Rev Vaccines. 2015;14(9):1289–97.CrossRefPubMed Zhang NZ, Xu Y, Wang M, Petersen E, Chen J, Huang SY, et al. Protective efficacy of two novel DNA vaccines expressing Toxoplasma gondii rhomboid 4 and rhomboid 5 proteins against acute and chronic toxoplasmosis in mice. Expert Rev Vaccines. 2015;14(9):1289–97.CrossRefPubMed
39.
go back to reference Zhao G, Zhou A, Lu G, Meng M, Sun M, Bai Y, et al. Identification and characterization of Toxoplasma gondii aspartic protease 1 as a novel vaccine candidate against toxoplasmosis. Parasit Vectors. 2013;6:175.CrossRefPubMedPubMedCentral Zhao G, Zhou A, Lu G, Meng M, Sun M, Bai Y, et al. Identification and characterization of Toxoplasma gondii aspartic protease 1 as a novel vaccine candidate against toxoplasmosis. Parasit Vectors. 2013;6:175.CrossRefPubMedPubMedCentral
40.
go back to reference Lambracht-Washington D, Qu BX, Fu M, Anderson Jr LD, Eagar TN, Stuve O, et al. A peptide prime-DNA boost immunization protocol provides significant benefits as a new generation Abeta42 DNA vaccine for Alzheimer disease. J Neuroimmunol. 2013;254(1–2):63–8.CrossRefPubMed Lambracht-Washington D, Qu BX, Fu M, Anderson Jr LD, Eagar TN, Stuve O, et al. A peptide prime-DNA boost immunization protocol provides significant benefits as a new generation Abeta42 DNA vaccine for Alzheimer disease. J Neuroimmunol. 2013;254(1–2):63–8.CrossRefPubMed
41.
go back to reference Ciesielski MJ, Kazim AL, Barth RF, Fenstermaker RA. Cellular antitumor immune response to a branched lysine multiple antigenic peptide containing epitopes of a common tumor-specific antigen in a rat glioma model. Cancer Immunol Immunother. 2005;54(2):107–19.CrossRefPubMed Ciesielski MJ, Kazim AL, Barth RF, Fenstermaker RA. Cellular antitumor immune response to a branched lysine multiple antigenic peptide containing epitopes of a common tumor-specific antigen in a rat glioma model. Cancer Immunol Immunother. 2005;54(2):107–19.CrossRefPubMed
42.
go back to reference Woodland DL. Jump-starting the immune system: prime-boosting comes of age. Trends Immunol.2004; 25(2):98-104 Woodland DL. Jump-starting the immune system: prime-boosting comes of age. Trends Immunol.2004; 25(2):98-104
Metadata
Title
Protection via a ROM4 DNA vaccine and peptide against Toxoplasma gondii in BALB/c mice
Authors
Yali Han
Aihua Zhou
Gang Lu
Guanghui Zhao
Lin Wang
Jingjing Guo
Pengxia Song
Jian Zhou
Huaiyu Zhou
Hua Cong
Shenyi He
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-016-2104-z

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue