Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Research article

Systematic review and network meta-analysis of tedizolid for the treatment of acute bacterial skin and skin structure infections caused by MRSA

Authors: Rachael McCool, Ian M. Gould, Jacqui Eales, Teresa Barata, Mick Arber, Kelly Fleetwood, Julie Glanville, Teresa L. Kauf

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

Tedizolid, the active moiety of tedizolid phosphate, is approved in the United States, the European Union, Canada and a number of other countries for the treatment of acute bacterial skin and skin structure infections (ABSSSI) caused by certain susceptible bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). This network meta-analysis (NMA) evaluates the comparative effectiveness of tedizolid and other antibacterials indicated for the treatment of ABSSSI caused by MRSA.

Methods

Systematic review of 10 databases was undertaken to inform an NMA to estimate the relative effectiveness of tedizolid and established monotherapy comparators (ceftaroline, daptomycin, linezolid, teicoplanin, tigecycline, vancomycin) for treating MRSA-associated ABSSSI. Randomized controlled trials enrolling adults with ABSSSI or complicated skin and skin structure infections caused by suspected/documented MRSA were eligible for inclusion. Networks were developed based on similarity of study design, patient characteristics, outcome measures and available data. Outcomes of interest included clinical response at end of therapy (EOT), post-therapy evaluation (PTE) or test-of-cure assessment and treatment discontinuations resulting from adverse events (AEs). Bayesian NMA was conducted for each outcome using fixed-effects and random effects models.

Results

Literature searches identified 3,618 records; 15 trials met the inclusion criteria and were considered suitable for NMA comparison. In fixed-effects models, tedizolid had higher odds of clinical response at EOT (odds ratio [OR], 1.7; credible interval, 1.0, 3.0) and PTE than vancomycin (OR, 1.6; credible interval, 1.1, 2.5). No differences in odds of clinical response at EOT or PTE were observed between tedizolid and other comparators. There was no evidence of a difference among treatments for discontinuation due to AEs. Results from random effects and fixed-effects models were generally consistent.

Conclusions

Tedizolid was superior to vancomycin for clinical response at EOT and PTE. There was no evidence of a difference between tedizolid and other comparators and no evidence of a difference between tedizolid and all comparators when evaluating discontinuation due to AEs. These findings suggest that tedizolid provides an alternative option for the management of serious skin infections caused by suspected or documented MRSA. This study is subject to the limitations inherent in all NMAs, and the results should be interpreted accordingly.
Appendix
Available only for authorised users
Literature
2.
go back to reference Zervos MJ, Freeman K, Vo L, Haque N, Pokharna H, Raut M, Kim M. Epidemiology and outcomes of complicated skin and soft tissue infections in hospitalized patients. J Clin Microbiol. 2012;50:238–45.CrossRefPubMedPubMedCentral Zervos MJ, Freeman K, Vo L, Haque N, Pokharna H, Raut M, Kim M. Epidemiology and outcomes of complicated skin and soft tissue infections in hospitalized patients. J Clin Microbiol. 2012;50:238–45.CrossRefPubMedPubMedCentral
3.
go back to reference Rajan S. Skin and soft-tissue infections: classifying and treating a spectrum. Cleve Clin J Med. 2012;79:57–66.CrossRefPubMed Rajan S. Skin and soft-tissue infections: classifying and treating a spectrum. Cleve Clin J Med. 2012;79:57–66.CrossRefPubMed
4.
go back to reference Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, J Rybak M, Talan DA, Chambers HF, Infectious Diseases Society of America. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52:e18–55.CrossRefPubMed Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, J Rybak M, Talan DA, Chambers HF, Infectious Diseases Society of America. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52:e18–55.CrossRefPubMed
5.
go back to reference Shorr AF. Epidemiology and economic impact of methicillin-resistant Staphylococcus aureus. Pharmacoeconomics. 2007;25:751–68.CrossRefPubMed Shorr AF. Epidemiology and economic impact of methicillin-resistant Staphylococcus aureus. Pharmacoeconomics. 2007;25:751–68.CrossRefPubMed
6.
go back to reference Stevens DL, Bisno AL, Chambers HF, Dellinger P, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan EL, Montoya JG, Wade JC, Infectious Diseases Society of America. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis. 2005;41:1373–406.CrossRefPubMed Stevens DL, Bisno AL, Chambers HF, Dellinger P, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan EL, Montoya JG, Wade JC, Infectious Diseases Society of America. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis. 2005;41:1373–406.CrossRefPubMed
7.
go back to reference Stevens DL, Bisno AL, Chambers HF, Dellinger P, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan EL, Montoya JG, Wade JC, Infectious Diseases Society of America. Practice guidelines for the diagnosis and management of skin and soft-tissue infections: 2014 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59:e10–52.CrossRefPubMed Stevens DL, Bisno AL, Chambers HF, Dellinger P, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan EL, Montoya JG, Wade JC, Infectious Diseases Society of America. Practice guidelines for the diagnosis and management of skin and soft-tissue infections: 2014 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59:e10–52.CrossRefPubMed
8.
go back to reference Micek ST. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis. 2007;45 suppl 3:S184–90.CrossRefPubMed Micek ST. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis. 2007;45 suppl 3:S184–90.CrossRefPubMed
9.
go back to reference Moran GJ, Fang E, Corey GR, Das AF, De Anda C, Prokocimer P. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2014;14:696–705.CrossRefPubMed Moran GJ, Fang E, Corey GR, Das AF, De Anda C, Prokocimer P. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2014;14:696–705.CrossRefPubMed
10.
go back to reference Prokocimer P, De Anda C, Fang E, Mehra P, Das A. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial. JAMA. 2013;309:559–69.CrossRefPubMed Prokocimer P, De Anda C, Fang E, Mehra P, Das A. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial. JAMA. 2013;309:559–69.CrossRefPubMed
12.
go back to reference National Institute for Health and Care Excellence. Single technology appraisal (STA)—specification for manufacturer/sponsor submission of evidence. London: National Institute for Health and Care Excellence; 2012. https://www.nice.org.uk. Accessed 21 April 2016. National Institute for Health and Care Excellence. Single technology appraisal (STA)—specification for manufacturer/sponsor submission of evidence. London: National Institute for Health and Care Excellence; 2012. https://​www.​nice.​org.​uk. Accessed 21 April 2016.
13.
go back to reference Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gøtzsche PC, Dickersin K, Boutron I, Altman DG, Moher D. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162:777–84.CrossRefPubMed Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gøtzsche PC, Dickersin K, Boutron I, Altman DG, Moher D. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162:777–84.CrossRefPubMed
14.
go back to reference Lefebvre C, Manheimer E, Glanville J. Searching for studies. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration; 2011. http://handbook.cochrane.org. Accessed 21 April 2016. Lefebvre C, Manheimer E, Glanville J. Searching for studies. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration; 2011. http://​handbook.​cochrane.​org. Accessed 21 April 2016.
16.
go back to reference Jansen JP, Fleurence R, Devine B, Itzler R, Barrett A, Hawkins N, Lee K, Boersma C, Annemans L, Cappelleri JC. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 1. Value Health. 2011;14:417–28.CrossRefPubMed Jansen JP, Fleurence R, Devine B, Itzler R, Barrett A, Hawkins N, Lee K, Boersma C, Annemans L, Cappelleri JC. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 1. Value Health. 2011;14:417–28.CrossRefPubMed
17.
go back to reference Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000;10:325–37.CrossRef Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000;10:325–37.CrossRef
19.
go back to reference Sturtz S, Ligges U, Gelman AE. R2WinBUGS: a package for running WinBUGS from R. J Stat Softw. 2005;12:1–16.CrossRef Sturtz S, Ligges U, Gelman AE. R2WinBUGS: a package for running WinBUGS from R. J Stat Softw. 2005;12:1–16.CrossRef
22.
go back to reference Aikawa N, Kusachi S, Mikamo H, Takesue Y, Watanabe S, Tanaka Y, Morita A, Tsumori K, Kato Y, Yoshinari T. Efficacy and safety of intravenous daptomycin in Japanese patients with skin and soft tissue infections. J Infect Chemother. 2013;19:447–55.CrossRefPubMed Aikawa N, Kusachi S, Mikamo H, Takesue Y, Watanabe S, Tanaka Y, Morita A, Tsumori K, Kato Y, Yoshinari T. Efficacy and safety of intravenous daptomycin in Japanese patients with skin and soft tissue infections. J Infect Chemother. 2013;19:447–55.CrossRefPubMed
23.
go back to reference Itani KMF, Dryden MS, Bhattacharyya H, Kunkel MJ, Baruch AM, Weigelt JA. Efficacy and safety of linezolid versus vancomycin for the treatment of complicated skin and soft-tissue infections proven to be caused by methicillin-resistant Staphylococcus aureus. Am J Surg. 2010;199:804–16.CrossRefPubMed Itani KMF, Dryden MS, Bhattacharyya H, Kunkel MJ, Baruch AM, Weigelt JA. Efficacy and safety of linezolid versus vancomycin for the treatment of complicated skin and soft-tissue infections proven to be caused by methicillin-resistant Staphylococcus aureus. Am J Surg. 2010;199:804–16.CrossRefPubMed
24.
go back to reference Kohno S, Yamaguchi K, Aikawa N, Sumiyama Y, Odagiri S, Aoki N, Niki Y, Watanabe S, Furue M, Ito T, Croos-Dabrera R, Tack KJ. Linezolid versus vancomycin for the treatment of infections caused by methicillin-resistant Staphylococcus aureus in Japan. J Antimicrob Chemother. 2007;60:1361–9.CrossRefPubMed Kohno S, Yamaguchi K, Aikawa N, Sumiyama Y, Odagiri S, Aoki N, Niki Y, Watanabe S, Furue M, Ito T, Croos-Dabrera R, Tack KJ. Linezolid versus vancomycin for the treatment of infections caused by methicillin-resistant Staphylococcus aureus in Japan. J Antimicrob Chemother. 2007;60:1361–9.CrossRefPubMed
25.
go back to reference Sharpe JN, Shively EH, Polk Jr HC. Clinical and economic outcomes of oral linezolid versus intravenous vancomycin in the treatment of MRSA-complicated, lower-extremity skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. Am J Surg. 2005;189:425–8.CrossRefPubMed Sharpe JN, Shively EH, Polk Jr HC. Clinical and economic outcomes of oral linezolid versus intravenous vancomycin in the treatment of MRSA-complicated, lower-extremity skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. Am J Surg. 2005;189:425–8.CrossRefPubMed
26.
go back to reference Stevens DL, Herr D, Lampiris H, Hunt JL, Batts DH, Hafkin B. Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis. 2002;34:1481–90.CrossRefPubMed Stevens DL, Herr D, Lampiris H, Hunt JL, Batts DH, Hafkin B. Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis. 2002;34:1481–90.CrossRefPubMed
27.
go back to reference Weigelt J, Itani K, Stevens D, Lau W, Dryden M, Knirsch C, Linezolid CSSTI Study Group. Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother. 2005;49:2260–6.CrossRefPubMedPubMedCentral Weigelt J, Itani K, Stevens D, Lau W, Dryden M, Knirsch C, Linezolid CSSTI Study Group. Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother. 2005;49:2260–6.CrossRefPubMedPubMedCentral
28.
go back to reference Wilcox M, Nathwani D, Dryden M. Linezolid compared with teicoplanin for the treatment of suspected or proven gram-positive infections. J Antimicrob Chemother. 2004;53:335–44.CrossRefPubMed Wilcox M, Nathwani D, Dryden M. Linezolid compared with teicoplanin for the treatment of suspected or proven gram-positive infections. J Antimicrob Chemother. 2004;53:335–44.CrossRefPubMed
29.
go back to reference Evers R, Antony NI, Alozie O, Antony S. Pilot study comparing daptomycin and telavancin in the treatment of skin and soft tissue infections. J Infect Dis. 2013;12:1. Evers R, Antony NI, Alozie O, Antony S. Pilot study comparing daptomycin and telavancin in the treatment of skin and soft tissue infections. J Infect Dis. 2013;12:1.
30.
go back to reference Pertel PE, Eisenstein BI, Link AS, Donfrid B, Biermann EJA, Bernardo P, Martone WJ. The efficacy and safety of daptomycin vs. vancomycin for the treatment of cellulitis and erysipelas. Int J Clin Pract. 2009;63:368–75.CrossRefPubMedPubMedCentral Pertel PE, Eisenstein BI, Link AS, Donfrid B, Biermann EJA, Bernardo P, Martone WJ. The efficacy and safety of daptomycin vs. vancomycin for the treatment of cellulitis and erysipelas. Int J Clin Pract. 2009;63:368–75.CrossRefPubMedPubMedCentral
31.
go back to reference Talbot GH, Thye D, Das A, Ge Y. Phase 2 study of ceftaroline versus standard therapy in treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother. 2007;51:3612–6.CrossRefPubMedPubMedCentral Talbot GH, Thye D, Das A, Ge Y. Phase 2 study of ceftaroline versus standard therapy in treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother. 2007;51:3612–6.CrossRefPubMedPubMedCentral
32.
go back to reference Florescu I, Beuran M, Dimov R, Razbadauskas A, Bochan M, Fichev G, Dukart G, Babinchak T, Cooper CA, Ellis-Grosse EJ, Dartois N, Gandjini H, 307 Study Group. Efficacy and safety of tigecycline compared with vancomycin or linezolid for treatment of serious infections with methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci: a phase 3, multicentre, double-blind, randomized study. J Antimicrob Chemother. 2008;62 suppl 1:i17–28.CrossRefPubMed Florescu I, Beuran M, Dimov R, Razbadauskas A, Bochan M, Fichev G, Dukart G, Babinchak T, Cooper CA, Ellis-Grosse EJ, Dartois N, Gandjini H, 307 Study Group. Efficacy and safety of tigecycline compared with vancomycin or linezolid for treatment of serious infections with methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci: a phase 3, multicentre, double-blind, randomized study. J Antimicrob Chemother. 2008;62 suppl 1:i17–28.CrossRefPubMed
33.
go back to reference Stryjewski ME, Graham DR, Wilson SE, O'Riordan W, Young D, Lentnek A, Ross DP, Fowler VG, Hopkins A, Friedland HD, Barriere SL, Kitt MM, Corey GR. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin Infect Dis. 2008;46:1683–93.CrossRefPubMed Stryjewski ME, Graham DR, Wilson SE, O'Riordan W, Young D, Lentnek A, Ross DP, Fowler VG, Hopkins A, Friedland HD, Barriere SL, Kitt MM, Corey GR. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin Infect Dis. 2008;46:1683–93.CrossRefPubMed
34.
go back to reference Lin DF, Zhang YY, Wu JF, Wang F, Zheng JC, Miao JZ, Zheng LY, Sheng RY, Zhou X, Shen HH, Ijzerman MM, Croos-Dabrera RV, Sheng W. Linezolid for the treatment of infections caused by gram-positive pathogens in China. Int J Antimicrob Agents. 2008;32:241–9.CrossRefPubMed Lin DF, Zhang YY, Wu JF, Wang F, Zheng JC, Miao JZ, Zheng LY, Sheng RY, Zhou X, Shen HH, Ijzerman MM, Croos-Dabrera RV, Sheng W. Linezolid for the treatment of infections caused by gram-positive pathogens in China. Int J Antimicrob Agents. 2008;32:241–9.CrossRefPubMed
35.
go back to reference Corey GR, Wilcox M, Talbot GH, Friedland HD, Baculik T, Witherell GW, Critchley I, Das AF, Thye D. Integrated analysis of CANVAS 1 and 2: phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin Infect Dis. 2010;51:641–50.CrossRefPubMed Corey GR, Wilcox M, Talbot GH, Friedland HD, Baculik T, Witherell GW, Critchley I, Das AF, Thye D. Integrated analysis of CANVAS 1 and 2: phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin Infect Dis. 2010;51:641–50.CrossRefPubMed
36.
go back to reference Bally M, Dendukuri N, Sinclair A, Ahern SP, Poisson M, Brophy J. A network meta-analysis of antibiotics for treatment of hospitalised patients with suspected or proven meticillin-resistant Staphylococcus aureus infection. Int J Antimicrob Agents. 2012;40:479–95.CrossRefPubMed Bally M, Dendukuri N, Sinclair A, Ahern SP, Poisson M, Brophy J. A network meta-analysis of antibiotics for treatment of hospitalised patients with suspected or proven meticillin-resistant Staphylococcus aureus infection. Int J Antimicrob Agents. 2012;40:479–95.CrossRefPubMed
37.
go back to reference Cipriani A, Higgins JP, Geddes JR, Salanti G. Conceptual and technical challenges in network meta-analysis. Ann Intern Med. 2013;159:130–7.CrossRefPubMed Cipriani A, Higgins JP, Geddes JR, Salanti G. Conceptual and technical challenges in network meta-analysis. Ann Intern Med. 2013;159:130–7.CrossRefPubMed
Metadata
Title
Systematic review and network meta-analysis of tedizolid for the treatment of acute bacterial skin and skin structure infections caused by MRSA
Authors
Rachael McCool
Ian M. Gould
Jacqui Eales
Teresa Barata
Mick Arber
Kelly Fleetwood
Julie Glanville
Teresa L. Kauf
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-016-2100-3

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.