Skip to main content
Top
Published in: BMC Infectious Diseases 1/2016

Open Access 01-12-2016 | Research article

Epidemiology of primary rubella infection in the Central African Republic: data from measles surveillance, 2007–2014

Authors: Alain Farra, Marilou Pagonendji, Alexandre Manikariza, Dieubéni Rawago, Rock Ouambita-Mabo, Gilbert Guifara, Ionela Gouandjika-Vasilache

Published in: BMC Infectious Diseases | Issue 1/2016

Login to get access

Abstract

Background

Although rubella is generally considered a benign childhood disease, infection of a pregnant woman can cause foetal congenital rubella syndrome, which results in embryo-foetal disease and malformations. The syndrome is still a public health problem in developing countries where the vaccine has not yet been introduced, such as the Central African Republic (CAR). The aim of the study reported here was to define the epidemiology of primary rubella infection, in order to determine its effect on morbidity rates in the country.

Methods

Data derived from epidemiological surveillance of measles and rubella were analysed retrospectively between 1 January 2007 and 31 December 2014. The database includes cases of suspected measles, according to the WHO clinical case definition. In this algorithm, samples that are negative or doubtful by ELISA for measles (presence of immunoglobulin M) are tested in another ELISA for detection of rubella-specific IgM. Descriptive analyses were conducted for socio-demographic characteristics, including age, sex and health region, for patients tested for rubella.

Results

Of the sera tested for rubella, 30.2 % (425/1409) were positive, 62.3 % (878/1409) were negative, and 7.5 % (106/1409) were doubtful. Among the 425 positive cases, 213 (50.1 %) were female and 212 (40.9 %) were male with a sex ratio of 1.03. The mean age was 8 years (range, 6–37 years). The highest prevalence (47.3 %; 116/425) was seen in 2007 and the lowest (8.9 %; 11/425) in 2012. Primary infections were always more frequent during the first 3 months of the year, with a peak at the same time, between January and February which is the hottest period of the year in the CAR. In both sexes, rubella IgM was rarely found before the age of 1 year (0.5 %; 2/425). The highest rate (43.5 %; 185/425) was observed at ages 5–9 years; however, at least 8 % (18/213) of girls aged 15 or more had primary infections.

Conclusions

Sentinel sites for surveillance of congenital rubella syndrome are urgently needed, and introduction of vaccination against rubella in the Expanded Programme of Immunization should be considered, to ensure immunization of girls of reproductive age.
Literature
1.
go back to reference Goodson JL, Masresha B, Dosseh A, Byabamazima C, Nshimirimana D, Cochi S, et al. Rubella epidemiology in Africa in the prevaccine era, 2002–2009. J Infect Dis. 2011;204 Suppl 1:S215–25.CrossRefPubMed Goodson JL, Masresha B, Dosseh A, Byabamazima C, Nshimirimana D, Cochi S, et al. Rubella epidemiology in Africa in the prevaccine era, 2002–2009. J Infect Dis. 2011;204 Suppl 1:S215–25.CrossRefPubMed
2.
go back to reference WHO P. Rubella vaccines: WHO position paper--recommendations. Vaccine. 2011;29(48):8767–8.CrossRef WHO P. Rubella vaccines: WHO position paper--recommendations. Vaccine. 2011;29(48):8767–8.CrossRef
3.
4.
go back to reference Losos J. Report of the Workgroup on Viral Diseases. Bull World Health Organ. 1998;76 Suppl 2:94–102. discussion 104-108.PubMedPubMedCentral Losos J. Report of the Workgroup on Viral Diseases. Bull World Health Organ. 1998;76 Suppl 2:94–102. discussion 104-108.PubMedPubMedCentral
5.
go back to reference Mitiku K, Bedada T, Masresha B, Kegne W, Nafo-Traore F, Tesfaye N, et al. The epidemiology of rubella disease in Ethiopia: data from the measles case-based surveillance system. J Infect Dis. 2011;204 Suppl 1:S239–42.CrossRefPubMed Mitiku K, Bedada T, Masresha B, Kegne W, Nafo-Traore F, Tesfaye N, et al. The epidemiology of rubella disease in Ethiopia: data from the measles case-based surveillance system. J Infect Dis. 2011;204 Suppl 1:S239–42.CrossRefPubMed
7.
go back to reference Manirakiza A, Kipela JM, Sosler S, Daba RM, Gouandjika-Vasilache I. Seroprevalence of measles and natural rubella antibodies among children in Bangui, Central African Republic. BMC Public Health. 2011;11:327.CrossRefPubMedPubMedCentral Manirakiza A, Kipela JM, Sosler S, Daba RM, Gouandjika-Vasilache I. Seroprevalence of measles and natural rubella antibodies among children in Bangui, Central African Republic. BMC Public Health. 2011;11:327.CrossRefPubMedPubMedCentral
8.
go back to reference Hinman AR, Irons B, Lewis M, Kandola K. Economic analyses of rubella and rubella vaccines: a global review. Bull World Health Organ. 2002;80(4):264–70.PubMedPubMedCentral Hinman AR, Irons B, Lewis M, Kandola K. Economic analyses of rubella and rubella vaccines: a global review. Bull World Health Organ. 2002;80(4):264–70.PubMedPubMedCentral
9.
go back to reference Measles surveillance: guidelines for laboratory support. Can Commun Dis Rep. 1999;25(24):201–16. Measles surveillance: guidelines for laboratory support. Can Commun Dis Rep. 1999;25(24):201–16.
10.
go back to reference Macoumba T. Synthèse du Recensement Général de la Population et de l’Habitation de 2003. 2005. Macoumba T. Synthèse du Recensement Général de la Population et de l’Habitation de 2003. 2005.
11.
go back to reference Kurtz JB, Anderson MJ. Cross-reactions in rubella and parvovirus specific IgM tests. Lancet. 1985;2(8468):1356.CrossRefPubMed Kurtz JB, Anderson MJ. Cross-reactions in rubella and parvovirus specific IgM tests. Lancet. 1985;2(8468):1356.CrossRefPubMed
12.
go back to reference Cohen BJ, Shirley JA. Dual infection with rubella and human parvovirus. Lancet. 1985;2(8456):662–3.CrossRefPubMed Cohen BJ, Shirley JA. Dual infection with rubella and human parvovirus. Lancet. 1985;2(8456):662–3.CrossRefPubMed
13.
go back to reference Donovan SM. False-positive results of an enzyme immunoassay for rubella IgM in a case of measles. Clin Infect Dis. 1997;24(2):271–2.CrossRefPubMed Donovan SM. False-positive results of an enzyme immunoassay for rubella IgM in a case of measles. Clin Infect Dis. 1997;24(2):271–2.CrossRefPubMed
14.
go back to reference Jensen IP, Vestergaard BF. Assessment of the specificity of a commercial human parvovirus B19 IgM assay. Clin Diagn Virol. 1997;7(3):133–7.CrossRefPubMed Jensen IP, Vestergaard BF. Assessment of the specificity of a commercial human parvovirus B19 IgM assay. Clin Diagn Virol. 1997;7(3):133–7.CrossRefPubMed
15.
go back to reference Thomas HI, Barrett E, Hesketh LM, Wynne A, Morgan-Capner P. Simultaneous IgM reactivity by EIA against more than one virus in measles, parvovirus B19 and rubella infection. J Clin Virol. 1999;14(2):107–18.CrossRefPubMed Thomas HI, Barrett E, Hesketh LM, Wynne A, Morgan-Capner P. Simultaneous IgM reactivity by EIA against more than one virus in measles, parvovirus B19 and rubella infection. J Clin Virol. 1999;14(2):107–18.CrossRefPubMed
16.
go back to reference Khorrami SM, Mokhtari-Azad T, Yavarian J, Nasab GS, Naseri M, Jandaghi NZ. The etiology of Rubella IgM positivity in patients with rubella-like illness in Iran from 2011 to 2013. J Med Virol. 2015;87(11):1846–52.CrossRefPubMed Khorrami SM, Mokhtari-Azad T, Yavarian J, Nasab GS, Naseri M, Jandaghi NZ. The etiology of Rubella IgM positivity in patients with rubella-like illness in Iran from 2011 to 2013. J Med Virol. 2015;87(11):1846–52.CrossRefPubMed
17.
go back to reference Chimhuya S, Manangazira P, Mukaratirwa A, Nziramasanga P, Berejena C, Shonhai A, et al. Trends of rubella incidence during a 5-year period of case based surveillance in Zimbabwe. BMC Public Health. 2015;15:294.CrossRefPubMedPubMedCentral Chimhuya S, Manangazira P, Mukaratirwa A, Nziramasanga P, Berejena C, Shonhai A, et al. Trends of rubella incidence during a 5-year period of case based surveillance in Zimbabwe. BMC Public Health. 2015;15:294.CrossRefPubMedPubMedCentral
18.
go back to reference Metcalf CJ, Bjornstad ON, Ferrari MJ, Klepac P, Bharti N, Lopez-Gatell H, et al. The epidemiology of rubella in Mexico: seasonality, stochasticity and regional variation. Epidemiol Infect. 2011;139(7):1029–38.CrossRefPubMed Metcalf CJ, Bjornstad ON, Ferrari MJ, Klepac P, Bharti N, Lopez-Gatell H, et al. The epidemiology of rubella in Mexico: seasonality, stochasticity and regional variation. Epidemiol Infect. 2011;139(7):1029–38.CrossRefPubMed
19.
20.
go back to reference Kanbur NO, Derman O, Kutluk T, Kinik E. Age specific rubella seroprevalence of an unvaccinated population of adolescents in Ankara, Turkey. Jpn J Infect Dis. 2003;56(1):23–5.PubMed Kanbur NO, Derman O, Kutluk T, Kinik E. Age specific rubella seroprevalence of an unvaccinated population of adolescents in Ankara, Turkey. Jpn J Infect Dis. 2003;56(1):23–5.PubMed
21.
go back to reference Bartoloni A, Bartalesi F, Roselli M, Mantella A, Dini F, Carballo ES, et al. Seroprevalence of varicella zoster and rubella antibodies among rural populations of the Chaco region, south-eastern Bolivia. Trop Med Int Health. 2002;7(6):512–7.CrossRefPubMed Bartoloni A, Bartalesi F, Roselli M, Mantella A, Dini F, Carballo ES, et al. Seroprevalence of varicella zoster and rubella antibodies among rural populations of the Chaco region, south-eastern Bolivia. Trop Med Int Health. 2002;7(6):512–7.CrossRefPubMed
22.
go back to reference Ramamurty N, Murugan S, Raja D, Elango V, Mohana, Dhanagaran D. Serosurvey of rubella in five blocks of Tamil Nadu. Indian J Med Res. 2006;123(1):51–4.PubMed Ramamurty N, Murugan S, Raja D, Elango V, Mohana, Dhanagaran D. Serosurvey of rubella in five blocks of Tamil Nadu. Indian J Med Res. 2006;123(1):51–4.PubMed
23.
go back to reference Nsambu MN, Coulibaly T, Donnen P, Dramaix-Wilmet M, Likwela JL. Incidence of rubella in 2010–2012 in Kinshasa, Democratic Republic of Congo: data from the measles case-based surveillance system. Sante Publique. 2014;26(3):393–7.PubMed Nsambu MN, Coulibaly T, Donnen P, Dramaix-Wilmet M, Likwela JL. Incidence of rubella in 2010–2012 in Kinshasa, Democratic Republic of Congo: data from the measles case-based surveillance system. Sante Publique. 2014;26(3):393–7.PubMed
24.
go back to reference Ministère de la Santé Publique, de la Population et de la lutte contre le Sida: Guide Technique de Surveillance Integrée de la Maladie et la Riposte en République Centrafricaine (SMIR) Version Septembre 2011. Ministère de la Santé Publique, de la Population et de la lutte contre le Sida: Guide Technique de Surveillance Integrée de la Maladie et la Riposte en République Centrafricaine (SMIR) Version Septembre 2011.
Metadata
Title
Epidemiology of primary rubella infection in the Central African Republic: data from measles surveillance, 2007–2014
Authors
Alain Farra
Marilou Pagonendji
Alexandre Manikariza
Dieubéni Rawago
Rock Ouambita-Mabo
Gilbert Guifara
Ionela Gouandjika-Vasilache
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2016
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-016-1842-2

Other articles of this Issue 1/2016

BMC Infectious Diseases 1/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.