Skip to main content
Top
Published in: BMC Infectious Diseases 1/2016

Open Access 01-12-2016 | Research article

A spatial model of Wild Poliovirus Type 1 in Kano State, Nigeria: calibration and assessment of elimination probability

Authors: Kevin A. McCarthy, Guillaume Chabot-Couture, Faisal Shuaib

Published in: BMC Infectious Diseases | Issue 1/2016

Login to get access

Abstract

Background

Since the launch of the Global Polio Eradication Initiative, all but three countries (Nigeria, Pakistan, and Afghanistan) have apparently interrupted all wild poliovirus (WPV) transmission, and only one of three wild serotypes has been reported globally since 2012. Countrywide supplemental immunization campaigns in Nigeria produced dramatic reduction in WPV Type 1 paralysis cases since 2010 compared to the 2000’s, and WPV1 has not been observed in Nigeria since July 24, 2014. This article presents the development and calibration of a spatial metapopulation model of wild poliovirus Type 1 transmission in Kano State, Nigeria, which was the location of the most recent WPV1 case and 5 out of 6 of the reported WPV1 paralytic cases in Nigeria in 2014.

Methods

The model is calibrated to data on the case counts and age at onset of paralysis from 2003–2009. The features of the data drive model development from a simple susceptible-exposed-infective-recovered (SEIR) model to a spatial metapopulation model featuring seasonal forcing and age-dependent transmission. The calibrated parameter space is then resampled, projected forward, and compared to more recent case counts to estimate the probability that Type 1 poliovirus has been eliminated in Kano state.

Results

The model indicates a 91 % probability that Type 1 poliovirus has been eliminated from Kano state as of October 2015. This probability rises to >99 % if no WPV1 paralysis cases are detected for another year. The other states in Nigeria have experienced even longer case-free periods (the only other state with a WPV1 case was Yobe, on April 19, 2014), and Nigeria is the last remaining country in Africa to experience endemic WPV1 transmission, so these results can be interpreted as an upper bound on the probability that WPV1 transmission is currently interrupted continent-wide.

Conclusions

While the results indicate optimism that WPV1 transmission has been interrupted in Kano state, the model also assumes that frequent SIAs with high coverage continue to take place in Kano state through the end of the certification period. We conclude that though WPV1 appears to be on the brink of continent-wide elimination (WHO officially removed Nigeria from the list of polio-endemic countries on September 25, 2015), it is important for the polio program to maintain vigilance in surveillance and vaccination activities to prevent WPV1 resurgence through the WHO’s 3-year eradication certification period.
Appendix
Available only for authorised users
Literature
6.
go back to reference Kalkowska DA, Duintjer Tebbens RJ, Pallansch MA, Cochi SL, Wassilak SGF, Thompson KM. Modeling undetected live poliovirus circulation after apparent interruption of transmission: implications for surveillance and vaccination. BMC Infect Dis [Internet]. 2015 [cited 2015 Apr 14];15:66. Available from: http://www.biomedcentral.com/1471-2334/15/66. Kalkowska DA, Duintjer Tebbens RJ, Pallansch MA, Cochi SL, Wassilak SGF, Thompson KM. Modeling undetected live poliovirus circulation after apparent interruption of transmission: implications for surveillance and vaccination. BMC Infect Dis [Internet]. 2015 [cited 2015 Apr 14];15:66. Available from: http://​www.​biomedcentral.​com/​1471-2334/​15/​66.
13.
go back to reference Sutter RW, John TJ, Jain H, Agarkhedkar S, Ramanan PV, Verma H, et al. Immunogenicity of bivalent types 1 and 3 oral poliovirus vaccine: a randomised, double-blind, controlled trial. Lancet (London, England) [Internet]. 2010 [cited 2015 Jul 7];376:1682–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20980048. Sutter RW, John TJ, Jain H, Agarkhedkar S, Ramanan PV, Verma H, et al. Immunogenicity of bivalent types 1 and 3 oral poliovirus vaccine: a randomised, double-blind, controlled trial. Lancet (London, England) [Internet]. 2010 [cited 2015 Jul 7];376:1682–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20980048.
20.
22.
go back to reference El-Sayed N, El-Gamal Y, Abbassy A-A, Seoud I, Salama M, Kandeel A, et al. Monovalent type 1 oral poliovirus vaccine in newborns. N. Engl. J. Med. Mass Medical Soc. 2008;359:1655–65. El-Sayed N, El-Gamal Y, Abbassy A-A, Seoud I, Salama M, Kandeel A, et al. Monovalent type 1 oral poliovirus vaccine in newborns. N. Engl. J. Med. Mass Medical Soc. 2008;359:1655–65.
34.
go back to reference Gelfand HM, Fox JP, LeBlanc DR, Elveback L. Studies on the development of natural immunity to poliomyelitis in Louisiana. V. Passive transfer of polioantibody from mother to fetus, and natural decline and disappearance of antibody in the infant. J Immunol [Internet]. 1960 [cited 2015 Sep 17];85:46–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13827179. Gelfand HM, Fox JP, LeBlanc DR, Elveback L. Studies on the development of natural immunity to poliomyelitis in Louisiana. V. Passive transfer of polioantibody from mother to fetus, and natural decline and disappearance of antibody in the infant. J Immunol [Internet]. 1960 [cited 2015 Sep 17];85:46–55. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​13827179.
36.
40.
go back to reference Grenfell BT, Bolker BM. Kleczkowski a. Seasonality and Extinction in Chaotic Metapopulations. Proc R Soc B Biol Sci. 1995;259:97–103.CrossRef Grenfell BT, Bolker BM. Kleczkowski a. Seasonality and Extinction in Chaotic Metapopulations. Proc R Soc B Biol Sci. 1995;259:97–103.CrossRef
46.
Metadata
Title
A spatial model of Wild Poliovirus Type 1 in Kano State, Nigeria: calibration and assessment of elimination probability
Authors
Kevin A. McCarthy
Guillaume Chabot-Couture
Faisal Shuaib
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2016
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-016-1817-3

Other articles of this Issue 1/2016

BMC Infectious Diseases 1/2016 Go to the issue