Skip to main content
Top
Published in: BMC Infectious Diseases 1/2016

Open Access 01-12-2016 | Research article

Cerebrospinal fluid in tuberculous meningitis exhibits only the L-enantiomer of lactic acid

Authors: Shayne Mason, Carolus J. Reinecke, Willem Kulik, Arno van Cruchten, Regan Solomons, A. Marceline Tutu van Furth

Published in: BMC Infectious Diseases | Issue 1/2016

Login to get access

Abstract

Background

The defining feature of the cerebrospinal fluid (CSF) collected from infants and children with tuberculous meningitis (TBM), derived from an earlier untargeted nuclear magnetic resonance (NMR) metabolomics study, was highly elevated lactic acid. Undetermined was the contribution from host response (L-lactic acid) or of microbial origin (D-lactic acid), which was set out to be determined in this study.

Methods

In this follow-up study, we used targeted ultra-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UPLC–ESI–MS/MS) to determine the ratio of the L and D enantiomers of lactic acid in these CSF samples.

Results

Here we report for the first time that the lactic acid observed in the CSF of confirmed TBM cases was in the L-form and solely a response from the host to the infection, with no contribution from any bacteria. The significance of elevated lactic acid in TBM appears to be that it is a crucial energy substrate, used preferentially over glucose by microglia, and exhibits neuroprotective capabilities.

Conclusion

These results provide experimental evidence to support our conceptual astrocyte–microglia lactate shuttle model formulated from our previous NMR-based metabolomics study — highlighting the fact that lactic acid plays an important role in neuroinflammatory diseases such as TBM. Furthermore, this study reinforces our belief that the determination of enantiomers of metabolites corresponding to infectious diseases is of critical importance in substantiating the clinical significance of disease markers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ewaschuk JB, Naylor JM, Zello GA. D-lactate in human and ruminant metabolism. J Nutr. 2005;135(7):1619–25.PubMed Ewaschuk JB, Naylor JM, Zello GA. D-lactate in human and ruminant metabolism. J Nutr. 2005;135(7):1619–25.PubMed
2.
go back to reference Stolberg L, Rolfe R, Gitlin N, Merritt J, Mann Jr L, Linder J, et al. D-Lactic acidosis due to abnormal gut flora: diagnosis and treatment of two cases. N Engl J Med. 1982;306:1344–8.CrossRefPubMed Stolberg L, Rolfe R, Gitlin N, Merritt J, Mann Jr L, Linder J, et al. D-Lactic acidosis due to abnormal gut flora: diagnosis and treatment of two cases. N Engl J Med. 1982;306:1344–8.CrossRefPubMed
3.
go back to reference Duzgun AP, Bugdayci G, Sayin B, Ozmen MM, Ozer MV, Coskun F. Serum D-lactate: a useful diagnostic marker for acute appendicitis. Hepatogastroenterology. 2006;54(77):1483–6. Duzgun AP, Bugdayci G, Sayin B, Ozmen MM, Ozer MV, Coskun F. Serum D-lactate: a useful diagnostic marker for acute appendicitis. Hepatogastroenterology. 2006;54(77):1483–6.
4.
go back to reference Çaglayan F, Çakmak M, Çaglayan O, Çavusoglu T. Plasma D-lactate levels in diagnosis of appendicitis. J Invest Surg. 2003;16:233–7.CrossRefPubMed Çaglayan F, Çakmak M, Çaglayan O, Çavusoglu T. Plasma D-lactate levels in diagnosis of appendicitis. J Invest Surg. 2003;16:233–7.CrossRefPubMed
5.
go back to reference Scheijen JL, Hanssen NM, van de Waarenburg MP, Jonkers DM, Stehouwer CD, Schalkwijk CG. L (+) and D (−) lactate are increased in plasma and urine samples of type 2 diabetes as measured by a simultaneous quantification of L (+) and D (−) lactate by reversed-phase liquid chromatography tandem mass spectrometry. Exp Diabetes Res. 2012;2012:234812.CrossRefPubMedPubMedCentral Scheijen JL, Hanssen NM, van de Waarenburg MP, Jonkers DM, Stehouwer CD, Schalkwijk CG. L (+) and D (−) lactate are increased in plasma and urine samples of type 2 diabetes as measured by a simultaneous quantification of L (+) and D (−) lactate by reversed-phase liquid chromatography tandem mass spectrometry. Exp Diabetes Res. 2012;2012:234812.CrossRefPubMedPubMedCentral
6.
go back to reference Sheedy JR, Wettenhall RE, Scanlon D, Gooley PR, Lewis DP, McGregor N, et al. Increased D-lactic acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo. 2009;23(4):621–8.PubMed Sheedy JR, Wettenhall RE, Scanlon D, Gooley PR, Lewis DP, McGregor N, et al. Increased D-lactic acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo. 2009;23(4):621–8.PubMed
8.
go back to reference Genton B, Berger JP. Cerebrospinal fluid lactate in 78 cases of adult meningitis. J Intensive Care Med. 1990;16:196–200.CrossRef Genton B, Berger JP. Cerebrospinal fluid lactate in 78 cases of adult meningitis. J Intensive Care Med. 1990;16:196–200.CrossRef
9.
go back to reference Huy NT, Thao NT, Diep DT, Kikuchi M, Zamora J, Hirayama K. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: a systemic review and meta-analysis. Crit Care. 2010;14:R240.CrossRefPubMedPubMedCentral Huy NT, Thao NT, Diep DT, Kikuchi M, Zamora J, Hirayama K. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: a systemic review and meta-analysis. Crit Care. 2010;14:R240.CrossRefPubMedPubMedCentral
10.
go back to reference Abro AH, Abdou AS, Ustadi AM, Saleh AA, Younis J, Doleh WF. CSF lactate level: a useful diagnostic tool to differentiate acute bacterial and viral meningitis. JPMA J Pak Med Assoc. 2009;59(8):508–11.PubMed Abro AH, Abdou AS, Ustadi AM, Saleh AA, Younis J, Doleh WF. CSF lactate level: a useful diagnostic tool to differentiate acute bacterial and viral meningitis. JPMA J Pak Med Assoc. 2009;59(8):508–11.PubMed
11.
go back to reference Thwaites GE, Chau TTH, Stepniewska K, Phu NH, Chuong LV, Sinh DX, et al. Diagnosis of adult tuberculous meningitis by use of clinical and laboratory features. Lancet. 2002;360:1287–92.CrossRefPubMed Thwaites GE, Chau TTH, Stepniewska K, Phu NH, Chuong LV, Sinh DX, et al. Diagnosis of adult tuberculous meningitis by use of clinical and laboratory features. Lancet. 2002;360:1287–92.CrossRefPubMed
12.
go back to reference Thwaites GE, Caws M, Chau TTH, Dung NT, Campbell JI, Phu NH, et al. Comparison of conventional bacteriology with nucleic acid amplification (amplified mycobacterium direct test) for diagnosis of tuberculous meningitis before and after inception of antituberculosis chemotherapy. J Clin Microbiol. 2004;42:996–1002.CrossRefPubMedPubMedCentral Thwaites GE, Caws M, Chau TTH, Dung NT, Campbell JI, Phu NH, et al. Comparison of conventional bacteriology with nucleic acid amplification (amplified mycobacterium direct test) for diagnosis of tuberculous meningitis before and after inception of antituberculosis chemotherapy. J Clin Microbiol. 2004;42:996–1002.CrossRefPubMedPubMedCentral
13.
go back to reference Torok ME, Chau TTH, Mai PP, Phong ND, Dung NT, Chuong LV, et al. Clinical and microbiological features of HIV-associated tuberculous meningitis in Vietnamese adults. PLoS One. 2008;3:e1772.CrossRefPubMedPubMedCentral Torok ME, Chau TTH, Mai PP, Phong ND, Dung NT, Chuong LV, et al. Clinical and microbiological features of HIV-associated tuberculous meningitis in Vietnamese adults. PLoS One. 2008;3:e1772.CrossRefPubMedPubMedCentral
14.
go back to reference Mason S, van Furth AM, Mienie LJ, Engelke UF, Wevers RA, Solomons R, et al. A hypothetical astrocyte–microglia lactate shuttle derived from a 1H NMR metabolomics analysis of cerebrospinal fluid from a cohort of South African children with tuberculous meningitis. Metabolomics. 2015;11:822–37.CrossRefPubMed Mason S, van Furth AM, Mienie LJ, Engelke UF, Wevers RA, Solomons R, et al. A hypothetical astrocyte–microglia lactate shuttle derived from a 1H NMR metabolomics analysis of cerebrospinal fluid from a cohort of South African children with tuberculous meningitis. Metabolomics. 2015;11:822–37.CrossRefPubMed
15.
go back to reference Leen WG, Willemsen MA, Wevers RA, Verbeek MM. Cerebrospinal fluid glucose and lactate: age-specific reference values and implications for clinical practice. PLoS One. 2012;7:e42745.CrossRefPubMedPubMedCentral Leen WG, Willemsen MA, Wevers RA, Verbeek MM. Cerebrospinal fluid glucose and lactate: age-specific reference values and implications for clinical practice. PLoS One. 2012;7:e42745.CrossRefPubMedPubMedCentral
16.
go back to reference White N, Looareesuwan S, Phillips R, Warrell D, Chanthavanich P, Pongpaew P. Pathophysiological and prognostic significance of cerebrospinal-fluid lactate in cerebral malaria. Lancet. 1985;325:776–8.CrossRef White N, Looareesuwan S, Phillips R, Warrell D, Chanthavanich P, Pongpaew P. Pathophysiological and prognostic significance of cerebrospinal-fluid lactate in cerebral malaria. Lancet. 1985;325:776–8.CrossRef
17.
go back to reference Medana IM, Hien TT, Day NP, Nguyen HP, Nguyen THM, Van Chu’ong L, et al. The clinical significance of cerebrospinal fluid levels of kynurenine pathway metabolites and lactate in severe malaria. J Infect Dis. 2002;185:650–6.CrossRefPubMed Medana IM, Hien TT, Day NP, Nguyen HP, Nguyen THM, Van Chu’ong L, et al. The clinical significance of cerebrospinal fluid levels of kynurenine pathway metabolites and lactate in severe malaria. J Infect Dis. 2002;185:650–6.CrossRefPubMed
18.
go back to reference Yao H, Sadoshima S, Fujii K, Kusuda K, Ishitsuka T, Tamaki K, et al. Cerebrospinal fluid lactate in patients with hepatic encephalopathy. Eur Neurol. 1987;27:182–7.CrossRefPubMed Yao H, Sadoshima S, Fujii K, Kusuda K, Ishitsuka T, Tamaki K, et al. Cerebrospinal fluid lactate in patients with hepatic encephalopathy. Eur Neurol. 1987;27:182–7.CrossRefPubMed
20.
go back to reference Castillo X, Rosafio K, Wyss MT, Drandarov K, Buck A, Pellerin L, et al. A probable dual mode of action for both L-and D-lactate neuroprotection in cerebral ischemia. J Cereb Blood Flow Metab. 2015;35(10):1561–9.PubMed Castillo X, Rosafio K, Wyss MT, Drandarov K, Buck A, Pellerin L, et al. A probable dual mode of action for both L-and D-lactate neuroprotection in cerebral ischemia. J Cereb Blood Flow Metab. 2015;35(10):1561–9.PubMed
21.
go back to reference Marais S, Thwaites G, Schoeman JF, Török ME, Misra UK, Prasad K, et al. Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect Dis. 2010;10(11):803–12.CrossRefPubMed Marais S, Thwaites G, Schoeman JF, Török ME, Misra UK, Prasad K, et al. Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect Dis. 2010;10(11):803–12.CrossRefPubMed
22.
go back to reference Thwaites G, Fisher M, Hemingway C, Scott G, Solomon T, Innes J. British Infection Society guidelines for the diagnosis of tuberculosis of the central nervous system in adults and children. J Infect. 2009;59:167–87.CrossRefPubMed Thwaites G, Fisher M, Hemingway C, Scott G, Solomon T, Innes J. British Infection Society guidelines for the diagnosis of tuberculosis of the central nervous system in adults and children. J Infect. 2009;59:167–87.CrossRefPubMed
23.
go back to reference Brodersen P, Jørgensen EO. Cerebral blood flow and oxygen uptake, and cerebrospinal fluid biochemistry in severe coma. J Neurol Neurosurg Psychiatry. 1974;37:384–91.CrossRefPubMedPubMedCentral Brodersen P, Jørgensen EO. Cerebral blood flow and oxygen uptake, and cerebrospinal fluid biochemistry in severe coma. J Neurol Neurosurg Psychiatry. 1974;37:384–91.CrossRefPubMedPubMedCentral
24.
go back to reference DeSalles AA, Kontos HA, Becker DP, Yang MS, Ward JD, Moulton R, et al. Prognostic significance of ventricular CSF lactic acidosis in severe head injury. J Neurosurg. 1986;65:615–24.CrossRefPubMed DeSalles AA, Kontos HA, Becker DP, Yang MS, Ward JD, Moulton R, et al. Prognostic significance of ventricular CSF lactic acidosis in severe head injury. J Neurosurg. 1986;65:615–24.CrossRefPubMed
25.
go back to reference De Salles AA, Muizelaar PJ, Young HF. Hyperglycemia, cerebrospinal fluid lactic acidosis, and cerebral blood flow in severely head-injured patients. Neurosurgery. 1987;21:45–50.CrossRefPubMed De Salles AA, Muizelaar PJ, Young HF. Hyperglycemia, cerebrospinal fluid lactic acidosis, and cerebral blood flow in severely head-injured patients. Neurosurgery. 1987;21:45–50.CrossRefPubMed
26.
go back to reference Schurr A, West CA, Rigor BM. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science. 1988;240:1326–8.CrossRefPubMed Schurr A, West CA, Rigor BM. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science. 1988;240:1326–8.CrossRefPubMed
27.
go back to reference Schurr A, Payne RS, Miller JJ, Rigor BM. Glia are the main source of lactate utilized by neurons for recovery of function posthypoxia. Brain Res. 1997;774:221–4.CrossRefPubMed Schurr A, Payne RS, Miller JJ, Rigor BM. Glia are the main source of lactate utilized by neurons for recovery of function posthypoxia. Brain Res. 1997;774:221–4.CrossRefPubMed
28.
go back to reference Schurr A, Payne RS, Miller JJ, Rigor BM. Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem. 1997;69:423–6.CrossRefPubMed Schurr A, Payne RS, Miller JJ, Rigor BM. Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem. 1997;69:423–6.CrossRefPubMed
29.
go back to reference Schurr A, Payne RS, Miller JJ, Rigor BM. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res. 1997;744:105–11.CrossRefPubMed Schurr A, Payne RS, Miller JJ, Rigor BM. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res. 1997;744:105–11.CrossRefPubMed
30.
go back to reference Schurr A, Payne RS, Tseng MT, Miller JJ, Rigor BM. The glucose paradox in cerebral ischemia: new insights. Ann N Y Acad Sci. 1999;893:386–90.CrossRefPubMed Schurr A, Payne RS, Tseng MT, Miller JJ, Rigor BM. The glucose paradox in cerebral ischemia: new insights. Ann N Y Acad Sci. 1999;893:386–90.CrossRefPubMed
31.
go back to reference Cater HL, Benham CD, Sundstrom LE. Neuroprotective role of monocarboxylate transport during glucose deprivation in slice cultures of rat hippocampus. J Physiol. 2001;531:459–66.CrossRefPubMedPubMedCentral Cater HL, Benham CD, Sundstrom LE. Neuroprotective role of monocarboxylate transport during glucose deprivation in slice cultures of rat hippocampus. J Physiol. 2001;531:459–66.CrossRefPubMedPubMedCentral
32.
go back to reference Cater HL, Chandratheva A, Benham CD, Morrison B, Sundstrom LE. Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices. J Neurochem. 2003;87:1381–90.CrossRefPubMed Cater HL, Chandratheva A, Benham CD, Morrison B, Sundstrom LE. Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices. J Neurochem. 2003;87:1381–90.CrossRefPubMed
33.
go back to reference Taher M, Leen WG, Wevers RA, Willemsen MA. Lactate and its many faces. Eur J Paediatr Neurol. 2016;20(1):3–10.CrossRefPubMed Taher M, Leen WG, Wevers RA, Willemsen MA. Lactate and its many faces. Eur J Paediatr Neurol. 2016;20(1):3–10.CrossRefPubMed
Metadata
Title
Cerebrospinal fluid in tuberculous meningitis exhibits only the L-enantiomer of lactic acid
Authors
Shayne Mason
Carolus J. Reinecke
Willem Kulik
Arno van Cruchten
Regan Solomons
A. Marceline Tutu van Furth
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2016
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-016-1597-9

Other articles of this Issue 1/2016

BMC Infectious Diseases 1/2016 Go to the issue