Skip to main content
Top
Published in: BMC Infectious Diseases 1/2016

Open Access 01-12-2016 | Research article

Urine colorimetry to detect Low rifampin exposure during tuberculosis therapy: a proof-of-concept study

Authors: Isaac Zentner, Hans P. Schlecht, Lorna Khensouvann, Neo Tamuhla, Michele Kutzler, Vijay Ivaturi, Jotam G. Pasipanodya, Tawanda Gumbo, Charles A. Peloquin, Gregory P. Bisson, Christopher Vinnard

Published in: BMC Infectious Diseases | Issue 1/2016

Login to get access

Abstract

Background

The cost and complexity of current approaches to therapeutic drug monitoring during tuberculosis (TB) therapy limits widespread use in areas of greatest need. We sought to determine whether urine colorimetry could have a novel application as a form of therapeutic drug monitoring during anti-TB therapy.

Methods

Among healthy volunteers, we evaluated 3 dose sizes of rifampin (150 mg, 300 mg, and 600 mg), performed intensive pharmacokinetic sampling, and collected a timed urine void at 4 h post-dosing. The absorbance peak at 475 nm was measured after rifamycin extraction. The optimal cutoff was evaluated in a study of 39 HIV/TB patients undergoing TB treatment in Botswana.

Results

In the derivation study, a urine colorimetric assay value of 4.0 × 10−2 Abs, using a timed void 4 h after dosing, demonstrated a sensitivity of 92 % and specificity of 60 % to detect a peak rifampin concentration (Cmax) under 8 mg/L, with an area under the ROC curve of 0.92. In the validation study, this cutoff was specific (100 %) but insensitive (28 %). We observed similar test characteristics for a target Cmax target of 6.6 mg/L, and a target area under the drug concentration-versus-time curve (AUC0–8) target of 24.1 mg•hour/L.

Conclusions

The urine colorimetric assay was specific but insensitive to detect low rifampin serum concentrations among HIV/TB patients. In future work we will attempt to optimize sampling times and assay performance, with the goal of delivering a method that can translate into a point-of-care assessment of rifampin exposure during anti-TB therapy.
Literature
1.
go back to reference Treatment of tuberculosis. MMWR Recomm Rep 2003;52:1–77. Treatment of tuberculosis. MMWR Recomm Rep 2003;52:1–77.
2.
go back to reference Pasipanodya J, Gumbo T. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agent Chemother. 2011;55:24–34.CrossRef Pasipanodya J, Gumbo T. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agent Chemother. 2011;55:24–34.CrossRef
3.
go back to reference Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2014;208:1464–73.CrossRef Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2014;208:1464–73.CrossRef
4.
go back to reference Tappero JW, Bradford WZ, Agerton TB, Hopewell P, Reingold AL, Lockman S, et al. Serum concentrations of antimycobacterial drugs in patients with pulmonary tuberculosis in Botswana. Clin Infect Dis. 2005;41:461–9.CrossRefPubMed Tappero JW, Bradford WZ, Agerton TB, Hopewell P, Reingold AL, Lockman S, et al. Serum concentrations of antimycobacterial drugs in patients with pulmonary tuberculosis in Botswana. Clin Infect Dis. 2005;41:461–9.CrossRefPubMed
5.
go back to reference Dorman SE, Savic RM, Goldberg S, et al. Daily rifapentine for treatment of pulmonary tuberculosis. A randomized, dose-ranging trial. Am J Respir Crit Care Med. 2015;191:333–43.CrossRefPubMed Dorman SE, Savic RM, Goldberg S, et al. Daily rifapentine for treatment of pulmonary tuberculosis. A randomized, dose-ranging trial. Am J Respir Crit Care Med. 2015;191:333–43.CrossRefPubMed
6.
go back to reference Pasipanodya JG, Sristava S, Gumbo T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clin Infect Dis. 2012;55:169–77.CrossRefPubMedPubMedCentral Pasipanodya JG, Sristava S, Gumbo T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clin Infect Dis. 2012;55:169–77.CrossRefPubMedPubMedCentral
7.
go back to reference Chigutsa E, Pasipanodya JG, Visser ME, van Helden PD, Smith PJ, Sirgel FA, et al. Impact of nonlinear interactions of pharmacokinetics and MICs on sputum bacillary kill rates as a marker of sterilizing effect in tuberculosis. Antimicrob Agents Chemother. 2015;59:38–45.CrossRefPubMedPubMedCentral Chigutsa E, Pasipanodya JG, Visser ME, van Helden PD, Smith PJ, Sirgel FA, et al. Impact of nonlinear interactions of pharmacokinetics and MICs on sputum bacillary kill rates as a marker of sterilizing effect in tuberculosis. Antimicrob Agents Chemother. 2015;59:38–45.CrossRefPubMedPubMedCentral
8.
go back to reference Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74:839–54.CrossRefPubMed Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74:839–54.CrossRefPubMed
9.
go back to reference Heysell SK, Moore JL, Peloquin CA, Ashkin D, Houpt ER. Outcomes and use of therapeutic drug monitoring in multidrug-resistant tuberculosis patients treated in Virginia, 2009–2014. Tuberc Respir Dis. 2015;78:78–84.CrossRef Heysell SK, Moore JL, Peloquin CA, Ashkin D, Houpt ER. Outcomes and use of therapeutic drug monitoring in multidrug-resistant tuberculosis patients treated in Virginia, 2009–2014. Tuberc Respir Dis. 2015;78:78–84.CrossRef
10.
go back to reference Vu DH, Koster RA, Bolhuis MS, Greijdanus B, Altena RV, Nguyen DH, et al. Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC-MS/MS. Talanta. 2014;121:9–17.CrossRefPubMed Vu DH, Koster RA, Bolhuis MS, Greijdanus B, Altena RV, Nguyen DH, et al. Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC-MS/MS. Talanta. 2014;121:9–17.CrossRefPubMed
11.
go back to reference Allanson AL, Cotton MM, Tettey JN, Boyter AC. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. J Pharm Biomed Anal. 2007;44:963–9.CrossRefPubMed Allanson AL, Cotton MM, Tettey JN, Boyter AC. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. J Pharm Biomed Anal. 2007;44:963–9.CrossRefPubMed
12.
go back to reference Brechnuhler S, Fluehler H, Riess W, Theobald W. The renal elimination of rifampin as a function of the oral dose. A convenient way to assess relative bioavailability. Arzneimittelforschung. 1978;28:480–3. Brechnuhler S, Fluehler H, Riess W, Theobald W. The renal elimination of rifampin as a function of the oral dose. A convenient way to assess relative bioavailability. Arzneimittelforschung. 1978;28:480–3.
13.
go back to reference Ellard GA, Fourie PB. Rifampin bioavailability: a review of its pharmacology and the chemotherapeutic necessity for ensuring optimal absorption. Int J Tuberc Lung Dis. 1999;11 Suppl 3:S301–8. Ellard GA, Fourie PB. Rifampin bioavailability: a review of its pharmacology and the chemotherapeutic necessity for ensuring optimal absorption. Int J Tuberc Lung Dis. 1999;11 Suppl 3:S301–8.
14.
go back to reference Pillai G, Ellard GA, Smith PJ, Fourie PB. The potential use of urinary excretion data for assessing the relative bioavailability of rifampin in fixed dose combination anti-tuberculosis formulations. Int J Tuberc Lung Dis. 2001;5:691–5.PubMed Pillai G, Ellard GA, Smith PJ, Fourie PB. The potential use of urinary excretion data for assessing the relative bioavailability of rifampin in fixed dose combination anti-tuberculosis formulations. Int J Tuberc Lung Dis. 2001;5:691–5.PubMed
15.
go back to reference Nicolau I, Tian L, Menzies D, Ostiguy G, Pai M. Point-of-care urine tests for smoking status and isoniazid treatment monitoring in adult patients. PLoS One. 2012;7, e45913.CrossRefPubMedPubMedCentral Nicolau I, Tian L, Menzies D, Ostiguy G, Pai M. Point-of-care urine tests for smoking status and isoniazid treatment monitoring in adult patients. PLoS One. 2012;7, e45913.CrossRefPubMedPubMedCentral
16.
go back to reference Sunahara S, Nakagawa H. Metabolic study and controlled clinical trials of rifampin. Chest. 1972;61:526–32.CrossRefPubMed Sunahara S, Nakagawa H. Metabolic study and controlled clinical trials of rifampin. Chest. 1972;61:526–32.CrossRefPubMed
17.
go back to reference Pepe MS. The statistical evaluation of medical tests for classification and prediction. New York: Oxford University Press; 2003. Pepe MS. The statistical evaluation of medical tests for classification and prediction. New York: Oxford University Press; 2003.
18.
go back to reference Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? a practical guide for medical statisticians. Stat Med. 2000;19:1141–64.CrossRefPubMed Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? a practical guide for medical statisticians. Stat Med. 2000;19:1141–64.CrossRefPubMed
19.
go back to reference Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011. doi:10.1186/1471-2105-12-77. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011. doi:10.​1186/​1471-2105-12-77.
20.
go back to reference Gumbo T et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51:3781–8.CrossRefPubMedPubMedCentral Gumbo T et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51:3781–8.CrossRefPubMedPubMedCentral
22.
go back to reference van Cleeff MR, Kivihya-Ndugga LE, Meme H, Odhiambo JA, Klatser PR. The role and performance of chest X-ray for the diagnosis of tuberculosis: a cost-effectiveness analysis in Nairobi. Kenya BMC Infect Dis. 2005;5:111.CrossRefPubMed van Cleeff MR, Kivihya-Ndugga LE, Meme H, Odhiambo JA, Klatser PR. The role and performance of chest X-ray for the diagnosis of tuberculosis: a cost-effectiveness analysis in Nairobi. Kenya BMC Infect Dis. 2005;5:111.CrossRefPubMed
24.
go back to reference Chae JW, Seo JW, Mahat BM, Yun HY, Baek IH, Lee BY, et al. A simple pharmacokinetic model of alendronate developed using plasma concentration and urine excretion data from healthy men. Drug Dev Ind Pharm. 2014;40:1325–9.CrossRefPubMed Chae JW, Seo JW, Mahat BM, Yun HY, Baek IH, Lee BY, et al. A simple pharmacokinetic model of alendronate developed using plasma concentration and urine excretion data from healthy men. Drug Dev Ind Pharm. 2014;40:1325–9.CrossRefPubMed
25.
go back to reference Weiner M, Peloquin C, Burman W, Luo CC, Engle M, Prihoda TJ, et al. Effects of tuberculosis, race, and human gene SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother. 2010;54:4192–200.CrossRefPubMedPubMedCentral Weiner M, Peloquin C, Burman W, Luo CC, Engle M, Prihoda TJ, et al. Effects of tuberculosis, race, and human gene SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother. 2010;54:4192–200.CrossRefPubMedPubMedCentral
26.
go back to reference Thanassi W, Noda A, Hernandez B, et al. Delineating a retesting zone using receiver operating characteristic analysis on serial QuantiFERON tuberculosis test results in US healthcare workers. Pulm Med. 2012;2012:291294.CrossRefPubMedPubMedCentral Thanassi W, Noda A, Hernandez B, et al. Delineating a retesting zone using receiver operating characteristic analysis on serial QuantiFERON tuberculosis test results in US healthcare workers. Pulm Med. 2012;2012:291294.CrossRefPubMedPubMedCentral
27.
go back to reference Boeree MJ, Diacon AH, Dawson R, Newell J, Terpeluk P, Marder D, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191:1058–65.CrossRefPubMed Boeree MJ, Diacon AH, Dawson R, Newell J, Terpeluk P, Marder D, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191:1058–65.CrossRefPubMed
Metadata
Title
Urine colorimetry to detect Low rifampin exposure during tuberculosis therapy: a proof-of-concept study
Authors
Isaac Zentner
Hans P. Schlecht
Lorna Khensouvann
Neo Tamuhla
Michele Kutzler
Vijay Ivaturi
Jotam G. Pasipanodya
Tawanda Gumbo
Charles A. Peloquin
Gregory P. Bisson
Christopher Vinnard
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2016
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-016-1576-1

Other articles of this Issue 1/2016

BMC Infectious Diseases 1/2016 Go to the issue