Skip to main content
Top
Published in: BMC Infectious Diseases 1/2016

Open Access 01-12-2016 | Research article

Do piperacillin/tazobactam and other antibiotics with inhibitory activity against Clostridium difficile reduce the risk for acquisition of C. difficile colonization?

Authors: Sirisha Kundrapu, Venkata C. K. Sunkesula, Lucy A. Jury, Jennifer L. Cadnum, Michelle M. Nerandzic, Jackson S. Musuuza, Ajay K. Sethi, Curtis J. Donskey

Published in: BMC Infectious Diseases | Issue 1/2016

Login to get access

Abstract

Background

Systemic antibiotics vary widely in in vitro activity against Clostridium difficile. Some agents with activity against C. difficile (e.g., piperacillin/tazobactam) inhibit establishment of colonization in mice. We tested the hypothesis that piperacillin/tazobactam and other agents with activity against C. difficile achieve sufficient concentrations in the intestinal tract to inhibit colonization in patients.

Methods

Point-prevalence culture surveys were conducted to compare the frequency of asymptomatic rectal carriage of toxigenic C. difficile among patients receiving piperacillin/tazobactam or other inhibitory antibiotics (e.g. ampicillin, linezolid, carbapenems) versus antibiotics lacking activity against C. difficile (e.g., cephalosporins, ciprofloxacin). For a subset of patients, in vitro inhibition of C. difficile (defined as a reduction in concentration after inoculation of vegetative C. difficile into fresh stool suspensions) was compared among antibiotic treatment groups.

Results

Of 250 patients, 32 (13 %) were asymptomatic carriers of C. difficile. In comparison to patients receiving non-inhibitory antibiotics or prior antibiotics within 90 days, patients currently receiving piperacillin/tazobactam were less likely to be asymptomatic carriers (1/36, 3 versus 7/36, 19 and 15/69, 22 %, respectively; P = 0.024) and more likely to have fecal suspensions with in vitro inhibitory activity against C. difficile (20/28, 71 versus 3/11, 27 and 4/26, 15 %; P = 0.03). Patients receiving other inhibitory antibiotics were not less likely to be asymptomatic carriers than those receiving non-inhibitory antibiotics.

Conclusions

Our findings suggest that piperacillin/tazobactam achieves sufficient concentrations in the intestinal tract to inhibit C. difficile colonization during therapy.
Literature
1.
go back to reference Owens Jr RC, Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis. 2008;46:19–31.CrossRef Owens Jr RC, Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis. 2008;46:19–31.CrossRef
2.
go back to reference Settle CD, Wilcox MH, Fawley WN, Corrado OJ, Hawkey PM. Prospective study of the risk of Clostridium difficile diarrhea in elderly patients following treatment with cefotaxime or piperacillin-tazobactam. Aliment Pharmacol Ther. 1998;12:1217–23.CrossRefPubMed Settle CD, Wilcox MH, Fawley WN, Corrado OJ, Hawkey PM. Prospective study of the risk of Clostridium difficile diarrhea in elderly patients following treatment with cefotaxime or piperacillin-tazobactam. Aliment Pharmacol Ther. 1998;12:1217–23.CrossRefPubMed
3.
go back to reference Wilcox MH, Freeman J, Fawley W, MacKinlay S, Brown A, Donaldson K, et al. Long-term surveillance of cefotaxime and piperacillin-tazobactam prescribing and incidence of Clostridium difficile diarrhea. J Antimicrob Chemother. 2004;54:168–72.CrossRefPubMed Wilcox MH, Freeman J, Fawley W, MacKinlay S, Brown A, Donaldson K, et al. Long-term surveillance of cefotaxime and piperacillin-tazobactam prescribing and incidence of Clostridium difficile diarrhea. J Antimicrob Chemother. 2004;54:168–72.CrossRefPubMed
4.
go back to reference Valerio M, Pedromingo M, Muñoz P, Alcalá L, Marin M, Peláez T, et al. Potential protective role of linezolid against Clostridium difficile infection. Int J Antimicrob Agents. 2012;39:441–9.CrossRef Valerio M, Pedromingo M, Muñoz P, Alcalá L, Marin M, Peláez T, et al. Potential protective role of linezolid against Clostridium difficile infection. Int J Antimicrob Agents. 2012;39:441–9.CrossRef
5.
go back to reference Doernberg SB, Winston LG, Deck DH, Chambers HF. Does doxycycline protect against development of Clostridium difficile infection? Clin Infect Dis. 2012;55:615–20.CrossRefPubMedPubMedCentral Doernberg SB, Winston LG, Deck DH, Chambers HF. Does doxycycline protect against development of Clostridium difficile infection? Clin Infect Dis. 2012;55:615–20.CrossRefPubMedPubMedCentral
6.
go back to reference Wilcox MH. Evidence for low risk of Clostridium difficile infection associated with tigecycline. Clin Microbiol Infect. 2007;13:949–52.CrossRefPubMed Wilcox MH. Evidence for low risk of Clostridium difficile infection associated with tigecycline. Clin Microbiol Infect. 2007;13:949–52.CrossRefPubMed
7.
go back to reference Dubberke ER, Reske KA, Seiler S, Hink T, Kwon JH, Burnham CA. Risk factors for acquisition and loss of Clostridium difficile colonization in hospitalized patients. Antimicrob Agents Chemother. 2015;59:4533–43.CrossRefPubMedPubMedCentral Dubberke ER, Reske KA, Seiler S, Hink T, Kwon JH, Burnham CA. Risk factors for acquisition and loss of Clostridium difficile colonization in hospitalized patients. Antimicrob Agents Chemother. 2015;59:4533–43.CrossRefPubMedPubMedCentral
8.
go back to reference Quale J, Landman D, Saurina G, Atwood E, DiTore V, Patel K. Manipulation of a hospital antimicrobial formulary to control an outbreak of vancomycin-resistant enterococci. Clin Infect Dis. 1996;23:1020–25.CrossRefPubMed Quale J, Landman D, Saurina G, Atwood E, DiTore V, Patel K. Manipulation of a hospital antimicrobial formulary to control an outbreak of vancomycin-resistant enterococci. Clin Infect Dis. 1996;23:1020–25.CrossRefPubMed
9.
go back to reference Rice LB, Eckstein EC, DeVente J, Shlaes DM. Ceftazidime-resistant Klebsiella pneumoniae isolates recovered at the Cleveland Department of Veterans Affairs Medical Center. Clin Infect Dis. 1996;23:118–24.CrossRefPubMed Rice LB, Eckstein EC, DeVente J, Shlaes DM. Ceftazidime-resistant Klebsiella pneumoniae isolates recovered at the Cleveland Department of Veterans Affairs Medical Center. Clin Infect Dis. 1996;23:118–24.CrossRefPubMed
10.
go back to reference Adams DA, Riggs M, Donskey CJ. Effect of fluoroquinolone treatment on growth of and toxin production by epidemic and non-epidemic Clostridium difficile in the cecal contents of mice. Antimicrob Agents Chemother. 2007;51:2674–8.CrossRefPubMedPubMedCentral Adams DA, Riggs M, Donskey CJ. Effect of fluoroquinolone treatment on growth of and toxin production by epidemic and non-epidemic Clostridium difficile in the cecal contents of mice. Antimicrob Agents Chemother. 2007;51:2674–8.CrossRefPubMedPubMedCentral
11.
go back to reference Jump RL, Li Y, Pultz MJ, Kypriotakis G, Donskey CJ. Tigecycline exhibits inhibitory activity against Clostridium difficile in the colon of mice and does not promote growth or toxin production. Antimicrob Agents Chemother. 2011;55:546–9.CrossRefPubMedPubMedCentral Jump RL, Li Y, Pultz MJ, Kypriotakis G, Donskey CJ. Tigecycline exhibits inhibitory activity against Clostridium difficile in the colon of mice and does not promote growth or toxin production. Antimicrob Agents Chemother. 2011;55:546–9.CrossRefPubMedPubMedCentral
12.
go back to reference Wilcox MH, Brown A, Freeman J. Faecal concentrations of piperacillin and tazobactam in elderly patients. J Antimicrob Chemother. 2001;48:141–56.CrossRef Wilcox MH, Brown A, Freeman J. Faecal concentrations of piperacillin and tazobactam in elderly patients. J Antimicrob Chemother. 2001;48:141–56.CrossRef
13.
go back to reference Nord CE, Brismar B, Kasholm-Tengve B, Tunevall G. Effect of piperacillin/tazobactam treatment on human bowel microflora. Antimicrob Chemother. 1993;31:61–5.CrossRef Nord CE, Brismar B, Kasholm-Tengve B, Tunevall G. Effect of piperacillin/tazobactam treatment on human bowel microflora. Antimicrob Chemother. 1993;31:61–5.CrossRef
14.
go back to reference Currie BP, Lemos-Filho L. Evidence for biliary excretion of vancomycin into stool during intravenous therapy: potential implications for rectal colonization with vancomycin-resistant enterococci. Antimicrob Agents Chemother. 2004;48:4427–9.CrossRefPubMedPubMedCentral Currie BP, Lemos-Filho L. Evidence for biliary excretion of vancomycin into stool during intravenous therapy: potential implications for rectal colonization with vancomycin-resistant enterococci. Antimicrob Agents Chemother. 2004;48:4427–9.CrossRefPubMedPubMedCentral
15.
go back to reference Jump RL, Riggs MM, Sethi AK, Pultz MJ, Ellis-Reid T, Riebel W, et al. Multi-hospital outbreak of Clostridium difficile-associated disease, Cleveland, Ohio, USA. Emerg Infect Dis. 2010;16:827–9.CrossRefPubMedPubMedCentral Jump RL, Riggs MM, Sethi AK, Pultz MJ, Ellis-Reid T, Riebel W, et al. Multi-hospital outbreak of Clostridium difficile-associated disease, Cleveland, Ohio, USA. Emerg Infect Dis. 2010;16:827–9.CrossRefPubMedPubMedCentral
16.
go back to reference Nerandzic MM, Donskey CJ. An effective and reduced cost modified selective medium for isolation of Clostridium difficile. J Clin Microbiol. 2009;47:397–400.CrossRefPubMedPubMedCentral Nerandzic MM, Donskey CJ. An effective and reduced cost modified selective medium for isolation of Clostridium difficile. J Clin Microbiol. 2009;47:397–400.CrossRefPubMedPubMedCentral
17.
go back to reference Borriello SP, Barclay FE. An in-vitro model of colonisation resistance to Clostridium difficile infection. J Med Microbiol. 1986;21:299–309.CrossRefPubMed Borriello SP, Barclay FE. An in-vitro model of colonisation resistance to Clostridium difficile infection. J Med Microbiol. 1986;21:299–309.CrossRefPubMed
18.
go back to reference Zou G. A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159:702–6.CrossRefPubMed Zou G. A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159:702–6.CrossRefPubMed
19.
go back to reference Baines SD, Freeman J, Wilcox MH. Effects of piperacillin/tazobactam on Clostridium difficile growth and toxin production in a human gut model. J Antimicrob Chemother. 2005;55:974–82.CrossRefPubMed Baines SD, Freeman J, Wilcox MH. Effects of piperacillin/tazobactam on Clostridium difficile growth and toxin production in a human gut model. J Antimicrob Chemother. 2005;55:974–82.CrossRefPubMed
20.
go back to reference Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis. 2001;1:101–14.CrossRefPubMed Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis. 2001;1:101–14.CrossRefPubMed
21.
go back to reference Stiefel U, Pultz NJ, Harmoinen J, Koski P, Lindevall K, Helfand MS, et al. Oral administration of beta-lactamase preserves colonization resistance of piperacillin-treated mice. J Infect Dis. 2003;188:1605–9.CrossRefPubMed Stiefel U, Pultz NJ, Harmoinen J, Koski P, Lindevall K, Helfand MS, et al. Oral administration of beta-lactamase preserves colonization resistance of piperacillin-treated mice. J Infect Dis. 2003;188:1605–9.CrossRefPubMed
22.
go back to reference Abujamel T, Cadnum JL, Jury LA, Sunkesula VC, Kundrapu S, Jump RL, et al. Defining the vulnerable period for re-establishment of Clostridium difficile colonization after treatment of C. difficile infection with oral vancomycin or metronidazole. PLoS One. 2013;8(10):e76269.CrossRefPubMedPubMedCentral Abujamel T, Cadnum JL, Jury LA, Sunkesula VC, Kundrapu S, Jump RL, et al. Defining the vulnerable period for re-establishment of Clostridium difficile colonization after treatment of C. difficile infection with oral vancomycin or metronidazole. PLoS One. 2013;8(10):e76269.CrossRefPubMedPubMedCentral
23.
go back to reference Hensgens MPM, Goorhuis A, Dekkers OM, Kuijper EJ. Time interval of increased risk for Clostridium difficile infection after exposure to antibiotics. J Antimicrob Chemother. 2012;67:742–8.CrossRefPubMed Hensgens MPM, Goorhuis A, Dekkers OM, Kuijper EJ. Time interval of increased risk for Clostridium difficile infection after exposure to antibiotics. J Antimicrob Chemother. 2012;67:742–8.CrossRefPubMed
Metadata
Title
Do piperacillin/tazobactam and other antibiotics with inhibitory activity against Clostridium difficile reduce the risk for acquisition of C. difficile colonization?
Authors
Sirisha Kundrapu
Venkata C. K. Sunkesula
Lucy A. Jury
Jennifer L. Cadnum
Michelle M. Nerandzic
Jackson S. Musuuza
Ajay K. Sethi
Curtis J. Donskey
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2016
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-016-1514-2

Other articles of this Issue 1/2016

BMC Infectious Diseases 1/2016 Go to the issue