Skip to main content
Top
Published in: BMC Geriatrics 1/2021

Open Access 01-12-2021 | Obesity | Research article

High percent body fat mass predicts lower risk of cardiac events in patients with heart failure: an explanation of the obesity paradox

Authors: Katsuhiko Ohori, Toshiyuki Yano, Satoshi Katano, Hidemichi Kouzu, Suguru Honma, Kanako Shimomura, Takuya Inoue, Yuhei Takamura, Ryohei Nagaoka, Masayuki Koyama, Nobutaka Nagano, Takefumi Fujito, Ryo Nishikawa, Tomoyuki Ishigo, Ayako Watanabe, Akiyoshi Hashimoto, Tetsuji Miura

Published in: BMC Geriatrics | Issue 1/2021

Login to get access

Abstract

Background

Although high body mass index (BMI) is a risk factor of heart failure (HF), HF patients with a higher BMI had a lower mortality rate than that in HF patients with normal or lower BMI, a phenomenon that has been termed the “obesity paradox”. However, the relationship between body composition, i.e., fat or muscle mass, and clinical outcome in HF remains unclear.

Methods

We retrospectively analyzed data for 198 consecutive HF patients (76 years of age; males, 49%). Patients who were admitted to our institute for diagnosis and management of HF and received a dual-energy X-ray absorptiometry scan were included regardless of left ventricular ejection fraction (LVEF) categories. Muscle wasting was defined as appendicular skeletal muscle mass index < 7.0 kg/m2 in males and < 5.4 kg/m2 in females. Increased percent body fat mass (increased FM) was defined as percent body fat > 25% in males and > 30% in females.

Results

The median age of the patients was 76 years (interquartile range [IQR], 67–82 years) and 49% of them were male. The median LVEF was 47% (IQR, 33–63%) and 33% of the patients had heart failure with reduced ejection fraction. Increased FM and muscle wasting were observed in 58 and 67% of the enrolled patients, respectively. During a 180-day follow-up period, 32 patients (16%) had cardiac events defined as cardiac death or readmission by worsening HF or arrhythmia. Kaplan-Meier survival curves showed that patients with increased FM had a lower cardiac event rate than did patients without increased FM (11.4% vs. 22.6%, p = 0.03). Kaplan-Meier curves of cardiac event rates did not differ between patients with and those without muscle wasting (16.5% vs. 15.4%, p = 0.93). In multivariate Cox regression analyses, increased FM was independently associated with lower cardiac event rates (hazard ratio: 0.45, 95% confidence interval: 0.22–0.93) after adjustment for age, sex, diabetes, muscle wasting, and renal function.

Conclusions

High percent body fat mass is associated with lower risk of short-term cardiac events in HF patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347:305–13.PubMedCrossRef Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347:305–13.PubMedCrossRef
2.
go back to reference Carbone S, Lavie CJ, Arena R. Obesity and heart failure: focus on the obesity paradox. Mayo Clin Proc. 2017;92:266–79.PubMedCrossRef Carbone S, Lavie CJ, Arena R. Obesity and heart failure: focus on the obesity paradox. Mayo Clin Proc. 2017;92:266–79.PubMedCrossRef
3.
go back to reference Doehner W, Clark A, Anker SD. The obesity paradox: weighing the benefit. Eur Heart J. 2010;31:146–8.PubMedCrossRef Doehner W, Clark A, Anker SD. The obesity paradox: weighing the benefit. Eur Heart J. 2010;31:146–8.PubMedCrossRef
4.
go back to reference Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard-Barbash R, et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med. 2006;355:763–78.PubMedCrossRef Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard-Barbash R, et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med. 2006;355:763–78.PubMedCrossRef
5.
go back to reference Prospective Studies Collaboration, Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96.PubMedCentralCrossRef Prospective Studies Collaboration, Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96.PubMedCentralCrossRef
6.
go back to reference Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71–82.PubMedPubMedCentralCrossRef Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71–82.PubMedPubMedCentralCrossRef
9.
go back to reference Padwal R, McAlister FA, McMurray JJ, Cowie MR, Rich M, Pocock S, et al. The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: a meta-analysis of individual patient data. Int J Obes. 2014;38:1110–4.CrossRef Padwal R, McAlister FA, McMurray JJ, Cowie MR, Rich M, Pocock S, et al. The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: a meta-analysis of individual patient data. Int J Obes. 2014;38:1110–4.CrossRef
10.
go back to reference Kapoor JR, Heidenreich PA. Obesity and survival in patients with heart failure and preserved systolic function: a U-shaped relationship. Am Heart J. 2010;159:75–80.PubMedCrossRef Kapoor JR, Heidenreich PA. Obesity and survival in patients with heart failure and preserved systolic function: a U-shaped relationship. Am Heart J. 2010;159:75–80.PubMedCrossRef
11.
go back to reference von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol. 2017;14:323–41.CrossRef von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol. 2017;14:323–41.CrossRef
12.
go back to reference Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349:1050–3.PubMedCrossRef Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349:1050–3.PubMedCrossRef
13.
go back to reference Anker SD, Clark AL, Teixeira MM, Hellewell PG, Coats AJ. Loss of bone mineral in patients with cachexia due to chronic heart failure. Am J Cardiol. 1999;83:612–5 A10.PubMedCrossRef Anker SD, Clark AL, Teixeira MM, Hellewell PG, Coats AJ. Loss of bone mineral in patients with cachexia due to chronic heart failure. Am J Cardiol. 1999;83:612–5 A10.PubMedCrossRef
14.
go back to reference Buckinx F, Landi F, Cesari M, Fielding RA, Visser M, Engelke K, et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle. 2018;9:269–78.PubMedPubMedCentralCrossRef Buckinx F, Landi F, Cesari M, Fielding RA, Visser M, Engelke K, et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle. 2018;9:269–78.PubMedPubMedCentralCrossRef
15.
go back to reference Tsutsui H, Isobe M, Ito H, Ito H, Okumura K, Ono M, et al. JCS 2017/JHFS 2017 guideline on diagnosis and treatment of acute and chronic heart failure - digest version. Circ J. 2019;83:2084–184.PubMedCrossRef Tsutsui H, Isobe M, Ito H, Ito H, Okumura K, Ono M, et al. JCS 2017/JHFS 2017 guideline on diagnosis and treatment of acute and chronic heart failure - digest version. Circ J. 2019;83:2084–184.PubMedCrossRef
16.
go back to reference Katano S, Yano T, Ohori K, Nagano N, Honma S, Shimomura K, et al. Novel prediction equation for appendicular skeletal muscle mass estimation in patients with heart failure: potential application in daily clinical practice. Eur J Prev Cardiol. 2020; Online ahead of print. Katano S, Yano T, Ohori K, Nagano N, Honma S, Shimomura K, et al. Novel prediction equation for appendicular skeletal muscle mass estimation in patients with heart failure: potential application in daily clinical practice. Eur J Prev Cardiol. 2020; Online ahead of print.
17.
go back to reference Ohno M, Ikeda Y. “Chukonennihonjin ni okeru taishibouritu, BMI to yuubyoushisuu tono kanren” The association of percent body fat and BMI with prevalence rates in the middle-aged Japanese. J Japan Soc Stud Obesity. 1998;4:60 (in Japanese). Ohno M, Ikeda Y. “Chukonennihonjin ni okeru taishibouritu, BMI to yuubyoushisuu tono kanren” The association of percent body fat and BMI with prevalence rates in the middle-aged Japanese. J Japan Soc Stud Obesity. 1998;4:60 (in Japanese).
18.
go back to reference Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15:95–101.PubMedCrossRef Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15:95–101.PubMedCrossRef
19.
go back to reference Global BMI Mortality Collaboration, Di Angelantonio E, Bhupathiraju SN, Wormser D, Gao P, Kaptoge S, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388:776–86.PubMedCrossRef Global BMI Mortality Collaboration, Di Angelantonio E, Bhupathiraju SN, Wormser D, Gao P, Kaptoge S, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388:776–86.PubMedCrossRef
20.
go back to reference Nishikido T, Oyama JI, Nagatomo D, Node K. A reduction of BMI predicts the risk of rehospitalization and cardiac death in non-obese patients with heart failure. Int J Cardiol. 2019;276:166–70.PubMedCrossRef Nishikido T, Oyama JI, Nagatomo D, Node K. A reduction of BMI predicts the risk of rehospitalization and cardiac death in non-obese patients with heart failure. Int J Cardiol. 2019;276:166–70.PubMedCrossRef
21.
go back to reference Aimo A, Januzzi JL Jr, Vergaro G, Clerico A, Latini R, Meessen J, et al. Revisiting the obesity paradox in heart failure: per cent body fat as predictor of biomarkers and outcome. Eur J Prev Cardiol. 2019;26:1751–9.PubMedCrossRef Aimo A, Januzzi JL Jr, Vergaro G, Clerico A, Latini R, Meessen J, et al. Revisiting the obesity paradox in heart failure: per cent body fat as predictor of biomarkers and outcome. Eur J Prev Cardiol. 2019;26:1751–9.PubMedCrossRef
22.
go back to reference Thomas E, Gupta PP, Fonarow GC, Horwich TB. Bioelectrical impedance analysis of body composition and survival in patients with heart failure. Clin Cardiol. 2019;42:129–35.PubMedCrossRef Thomas E, Gupta PP, Fonarow GC, Horwich TB. Bioelectrical impedance analysis of body composition and survival in patients with heart failure. Clin Cardiol. 2019;42:129–35.PubMedCrossRef
23.
go back to reference Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne). 2016;7:30.CrossRef Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne). 2016;7:30.CrossRef
24.
go back to reference Birsoy K, Festuccia WT, Laplante M. A comparative perspective on lipid storage in animals. J Cell Sci. 2013;126:1541–52.PubMedCrossRef Birsoy K, Festuccia WT, Laplante M. A comparative perspective on lipid storage in animals. J Cell Sci. 2013;126:1541–52.PubMedCrossRef
25.
go back to reference Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, et al. Cachexia: a new definition. Clin Nutr. 2008;27:793–9.PubMedCrossRef Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, et al. Cachexia: a new definition. Clin Nutr. 2008;27:793–9.PubMedCrossRef
26.
go back to reference Frantz S, Falcao-Pires I, Balligand JL, Bauersachs J, Brutsaert D, Ciccarelli M, et al. The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the working group on myocardial function of the ESC. Eur J Heart Fail. 2018;20:445–59.PubMedCrossRef Frantz S, Falcao-Pires I, Balligand JL, Bauersachs J, Brutsaert D, Ciccarelli M, et al. The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the working group on myocardial function of the ESC. Eur J Heart Fail. 2018;20:445–59.PubMedCrossRef
28.
go back to reference Porporato PE. Understanding cachexia as a cancer metabolism syndrome. Nat Rev Cardiol. 2017;14:323–41. Porporato PE. Understanding cachexia as a cancer metabolism syndrome. Nat Rev Cardiol. 2017;14:323–41.
29.
go back to reference Agustsson T, Rydén M, Hoffstedt J, van Harmelen V, Dicker A, Laurencikiene J, et al. Mechanism of increased lipolysis in cancer cachexia. Cancer Res. 2007;67:5531–7.PubMedCrossRef Agustsson T, Rydén M, Hoffstedt J, van Harmelen V, Dicker A, Laurencikiene J, et al. Mechanism of increased lipolysis in cancer cachexia. Cancer Res. 2007;67:5531–7.PubMedCrossRef
30.
go back to reference Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol. 1996;28:964–71.PubMedCrossRef Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol. 1996;28:964–71.PubMedCrossRef
31.
go back to reference Nozaki N, Yamaguchi S, Shirakabe M, Nakamura H, Tomoike H. Soluble tumor necrosis factor receptors are elevated in relation to severity of congestive heart failure. Jpn Circ J. 1997;61:657–64.PubMedCrossRef Nozaki N, Yamaguchi S, Shirakabe M, Nakamura H, Tomoike H. Soluble tumor necrosis factor receptors are elevated in relation to severity of congestive heart failure. Jpn Circ J. 1997;61:657–64.PubMedCrossRef
32.
go back to reference Petretta M, Condorelli GL, Spinelli L, Scopacasa F, de Caterina M, Leosco D, et al. Circulating levels of cytokines and their site of production in patients with mild to severe chronic heart failure. Am Heart J. 2000;140:E28.PubMedCrossRef Petretta M, Condorelli GL, Spinelli L, Scopacasa F, de Caterina M, Leosco D, et al. Circulating levels of cytokines and their site of production in patients with mild to severe chronic heart failure. Am Heart J. 2000;140:E28.PubMedCrossRef
33.
go back to reference Anker SD, Coats AJ, Morley JE, Rosano G, Bernabei R, von Haehling S, et al. Muscle wasting disease: a proposal for a new disease classification. J Cachexia Sarcopenia Muscle. 2014;5:1–3.PubMedPubMedCentralCrossRef Anker SD, Coats AJ, Morley JE, Rosano G, Bernabei R, von Haehling S, et al. Muscle wasting disease: a proposal for a new disease classification. J Cachexia Sarcopenia Muscle. 2014;5:1–3.PubMedPubMedCentralCrossRef
34.
go back to reference Dudgeon D, Baracos VE. Physiological and functional failure in chronic obstructive pulmonary disease, congestive heart failure and cancer: a debilitating intersection of sarcopenia, cachexia and breathlessness. Curr Opin Support Palliat Care. 2016;10:236–41.PubMedCrossRef Dudgeon D, Baracos VE. Physiological and functional failure in chronic obstructive pulmonary disease, congestive heart failure and cancer: a debilitating intersection of sarcopenia, cachexia and breathlessness. Curr Opin Support Palliat Care. 2016;10:236–41.PubMedCrossRef
35.
go back to reference Fülster S, Tacke M, Sandek A, Ebner N, Tschöpe C, Doehner W, et al. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34:512–9.PubMedCrossRef Fülster S, Tacke M, Sandek A, Ebner N, Tschöpe C, Doehner W, et al. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34:512–9.PubMedCrossRef
36.
go back to reference Hajahmadi M, Shemshadi S, Khalilipur E, Amin A, Taghavi S, Maleki M, et al. Muscle wasting in young patients with dilated cardiomyopathy. J Cachexia Sarcopenia Muscle. 2017;8:542–8.PubMedPubMedCentralCrossRef Hajahmadi M, Shemshadi S, Khalilipur E, Amin A, Taghavi S, Maleki M, et al. Muscle wasting in young patients with dilated cardiomyopathy. J Cachexia Sarcopenia Muscle. 2017;8:542–8.PubMedPubMedCentralCrossRef
37.
go back to reference Abete I, Konieczna J, Zulet MA, Galmés-Panades AM, Ibero-Baraibar I, Babio N, et al. Association of lifestyle factors and inflammation with sarcopenic obesity: data from the PREDIMED-plus trial. J Cachexia Sarcopenia Muscle. 2019;10:974–84.PubMedPubMedCentralCrossRef Abete I, Konieczna J, Zulet MA, Galmés-Panades AM, Ibero-Baraibar I, Babio N, et al. Association of lifestyle factors and inflammation with sarcopenic obesity: data from the PREDIMED-plus trial. J Cachexia Sarcopenia Muscle. 2019;10:974–84.PubMedPubMedCentralCrossRef
38.
go back to reference Upadhya B, Haykowsky MJ, Eggebeen J, Kitzman DW. Sarcopenic obesity and the pathogenesis of exercise intolerance in heart failure with preserved ejection fraction. Curr Heart Fail Rep. 2015;12:205–14.PubMedPubMedCentralCrossRef Upadhya B, Haykowsky MJ, Eggebeen J, Kitzman DW. Sarcopenic obesity and the pathogenesis of exercise intolerance in heart failure with preserved ejection fraction. Curr Heart Fail Rep. 2015;12:205–14.PubMedPubMedCentralCrossRef
39.
40.
go back to reference Tsujimoto T, Kajio H. Abdominal obesity is associated with an increased risk of all-cause mortality in patients with HFpEF. J Am Coll Cardiol. 2017;70:2739–49.PubMedCrossRef Tsujimoto T, Kajio H. Abdominal obesity is associated with an increased risk of all-cause mortality in patients with HFpEF. J Am Coll Cardiol. 2017;70:2739–49.PubMedCrossRef
41.
go back to reference Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol. 2018;71:2360–72.PubMedCrossRef Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol. 2018;71:2360–72.PubMedCrossRef
42.
go back to reference Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.CrossRef Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.CrossRef
43.
go back to reference Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539–53.PubMedCrossRef Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539–53.PubMedCrossRef
44.
go back to reference Wu CK, Tsai HY, Su MM, Wu YF, Hwang JJ, Lin JL, et al. Evolutional change in epicardial fat and its correlation with myocardial diffuse fibrosis in heart failure patients. J Clin Lipidol. 2017;11:1421–31.PubMedCrossRef Wu CK, Tsai HY, Su MM, Wu YF, Hwang JJ, Lin JL, et al. Evolutional change in epicardial fat and its correlation with myocardial diffuse fibrosis in heart failure patients. J Clin Lipidol. 2017;11:1421–31.PubMedCrossRef
45.
go back to reference Patel VB, Mori J, McLean BA, Basu R, Das SK, Ramprasath T, et al. ACE2 deficiency worsens Epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. Diabetes. 2016;65:85–95.PubMedCrossRef Patel VB, Mori J, McLean BA, Basu R, Das SK, Ramprasath T, et al. ACE2 deficiency worsens Epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. Diabetes. 2016;65:85–95.PubMedCrossRef
46.
go back to reference Silver MA, Maisel A, Yancy CW, McCullough PA, Burnett JC Jr, Francis GS, et al. BNP consensus panel 2004: a clinical approach for the diagnostic, prognostic, screening, treatment monitoring, and therapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail. 2004;10:1–30.PubMedCrossRef Silver MA, Maisel A, Yancy CW, McCullough PA, Burnett JC Jr, Francis GS, et al. BNP consensus panel 2004: a clinical approach for the diagnostic, prognostic, screening, treatment monitoring, and therapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail. 2004;10:1–30.PubMedCrossRef
47.
go back to reference Francis GS, Felker GM, Tang WH. A test in context: critical evaluation of natriuretic peptide testing in heart failure. J Am Coll Cardiol. 2016;67:330–7.PubMedPubMedCentralCrossRef Francis GS, Felker GM, Tang WH. A test in context: critical evaluation of natriuretic peptide testing in heart failure. J Am Coll Cardiol. 2016;67:330–7.PubMedPubMedCentralCrossRef
48.
go back to reference Colbert G, Jain N, de Lemos JA, Hedayati SS. Utility of traditional circulating and imaging-based cardiac biomarkers in patients with predialysis CKD. Clin J Am Soc Nephrol. 2015;10:515–29.PubMedCrossRef Colbert G, Jain N, de Lemos JA, Hedayati SS. Utility of traditional circulating and imaging-based cardiac biomarkers in patients with predialysis CKD. Clin J Am Soc Nephrol. 2015;10:515–29.PubMedCrossRef
49.
go back to reference Trevisan R, Fioretto P, Semplicini A, Opocher G, Mantero F, Rocco S, et al. Role of insulin and atrial natriuretic peptide in sodium retention in insulin-treated IDDM patients during isotonic volume expansion. Diabetes. 1990;39:289–98.PubMedCrossRef Trevisan R, Fioretto P, Semplicini A, Opocher G, Mantero F, Rocco S, et al. Role of insulin and atrial natriuretic peptide in sodium retention in insulin-treated IDDM patients during isotonic volume expansion. Diabetes. 1990;39:289–98.PubMedCrossRef
50.
go back to reference Abouchacra S, Baines AD, Zinman B, Skorecki KL, Logan AG. Insulin blunts the natriuretic action of atrial natriuretic peptide in hypertension. Hypertension. 1994;23:1054–8.PubMedCrossRef Abouchacra S, Baines AD, Zinman B, Skorecki KL, Logan AG. Insulin blunts the natriuretic action of atrial natriuretic peptide in hypertension. Hypertension. 1994;23:1054–8.PubMedCrossRef
51.
go back to reference Ma KK, Ogawa T, de Bold AJ. Selective upregulation of cardiac brain natriuretic peptide at the transcriptional and translational levels by pro-inflammatory cytokines and by conditioned medium derived from mixed lymphocyte reactions via p38 MAP kinase. J Mol Cell Cardiol. 2004;36:505–13.PubMedCrossRef Ma KK, Ogawa T, de Bold AJ. Selective upregulation of cardiac brain natriuretic peptide at the transcriptional and translational levels by pro-inflammatory cytokines and by conditioned medium derived from mixed lymphocyte reactions via p38 MAP kinase. J Mol Cell Cardiol. 2004;36:505–13.PubMedCrossRef
52.
go back to reference Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessì-Fulgheri P, Zhang C, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122:1022–36.PubMedPubMedCentralCrossRef Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessì-Fulgheri P, Zhang C, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122:1022–36.PubMedPubMedCentralCrossRef
54.
go back to reference von Haehling S, Garfias Macedo T, Valentova M, Anker MS, Ebner N, Bekfani T, et al. Muscle wasting as an independent predictor of survival in patients with chronic heart failure. J Cachexia Sarcopenia Muscle. 2020;11:1242–9.CrossRef von Haehling S, Garfias Macedo T, Valentova M, Anker MS, Ebner N, Bekfani T, et al. Muscle wasting as an independent predictor of survival in patients with chronic heart failure. J Cachexia Sarcopenia Muscle. 2020;11:1242–9.CrossRef
55.
go back to reference Katano S, Yano T, Kouzu H, Ohori K, Shimomura K, Honma S, et al. Energy intake during hospital stay predicts all-cause mortality after discharge independently of nutritional status in elderly heart failure patients. Clin Res Cardiol. 2020; in press. Katano S, Yano T, Kouzu H, Ohori K, Shimomura K, Honma S, et al. Energy intake during hospital stay predicts all-cause mortality after discharge independently of nutritional status in elderly heart failure patients. Clin Res Cardiol. 2020; in press.
56.
go back to reference Kirkman DL, Bohmke N, Billingsley HE, Carbone S. Sarcopenic obesity in heart failure with preserved ejection fraction. Front Endocrinol (Lausanne). 2020;11:558271.CrossRef Kirkman DL, Bohmke N, Billingsley HE, Carbone S. Sarcopenic obesity in heart failure with preserved ejection fraction. Front Endocrinol (Lausanne). 2020;11:558271.CrossRef
57.
go back to reference Carbone S, Billingsley HE, Rodriguez-Miguelez P, Kirkman DL, Garten R, Franco RL, et al. Lean mass abnormalities in heart failure: the role of sarcopenia, Sarcopenic obesity, and Cachexia. Curr Probl Cardiol. 2020;45:100417.PubMedCrossRef Carbone S, Billingsley HE, Rodriguez-Miguelez P, Kirkman DL, Garten R, Franco RL, et al. Lean mass abnormalities in heart failure: the role of sarcopenia, Sarcopenic obesity, and Cachexia. Curr Probl Cardiol. 2020;45:100417.PubMedCrossRef
58.
go back to reference Carbone S, Kirkman DL, Garten RS, Rodriguez-Miguelez P, Artero EG, Lee DC, et al. Muscular strength and cardiovascular disease: AN UPDATED STATE-OF-THE-ART NARRATIVE REVIEW. J Cardiopulm Rehabil Prev. 2020;40:302–9.PubMedCrossRef Carbone S, Kirkman DL, Garten RS, Rodriguez-Miguelez P, Artero EG, Lee DC, et al. Muscular strength and cardiovascular disease: AN UPDATED STATE-OF-THE-ART NARRATIVE REVIEW. J Cardiopulm Rehabil Prev. 2020;40:302–9.PubMedCrossRef
59.
go back to reference Gerace L, Aliprantis A, Russell M, Allison DB, Buhl KM, Wang J, et al. Skeletal differences between black and white men and their relevance to body composition estimates. Am J Hum Biol. 1994;6:255–62.PubMedCrossRef Gerace L, Aliprantis A, Russell M, Allison DB, Buhl KM, Wang J, et al. Skeletal differences between black and white men and their relevance to body composition estimates. Am J Hum Biol. 1994;6:255–62.PubMedCrossRef
60.
go back to reference Ortiz O, Russell M, Daley TL, Baumgartner RN, Waki M, Lichtman S, et al. Differences in skeletal muscle and bone mineral mass between black and white females and their relevance to estimates of body composition. Am J Clin Nutr. 1992;55:8–13.PubMedCrossRef Ortiz O, Russell M, Daley TL, Baumgartner RN, Waki M, Lichtman S, et al. Differences in skeletal muscle and bone mineral mass between black and white females and their relevance to estimates of body composition. Am J Clin Nutr. 1992;55:8–13.PubMedCrossRef
Metadata
Title
High percent body fat mass predicts lower risk of cardiac events in patients with heart failure: an explanation of the obesity paradox
Authors
Katsuhiko Ohori
Toshiyuki Yano
Satoshi Katano
Hidemichi Kouzu
Suguru Honma
Kanako Shimomura
Takuya Inoue
Yuhei Takamura
Ryohei Nagaoka
Masayuki Koyama
Nobutaka Nagano
Takefumi Fujito
Ryo Nishikawa
Tomoyuki Ishigo
Ayako Watanabe
Akiyoshi Hashimoto
Tetsuji Miura
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Geriatrics / Issue 1/2021
Electronic ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-020-01950-9

Other articles of this Issue 1/2021

BMC Geriatrics 1/2021 Go to the issue