Skip to main content
Top
Published in: BMC Geriatrics 1/2020

Open Access 01-12-2020 | Research article

The kinematics and strategies of recovery steps during lateral losses of balance in standing at different perturbation magnitudes in older adults with varying history of falls

Authors: Shani Batcir, Guy Shani, Amir Shapiro, Neil Alexander, Itshak Melzer

Published in: BMC Geriatrics | Issue 1/2020

Login to get access

Abstract

Background

Step-recovery responses are critical in preventing falls when balance is lost unexpectedly. We investigated the kinematics and strategies of balance recovery in older adults with a varying history of falls.

Methods

In a laboratory study, 51 non-fallers (NFs), 20 one-time fallers (OFs), and 12 recurrent-fallers (RFs) were exposed to random right/left unannounced underfoot perturbations in standing of increasing magnitude. The stepping strategies and kinematics across an increasing magnitude of perturbations and the single- and multiple-step threshold trials, i.e., the lowest perturbation magnitude to evoke single step and multiple steps, respectively, were analyzed. Fall efficacy (FES) and self-reported lower-extremity function were also assessed.

Results

OFs had significantly lower single- and multiple-step threshold levels than NFs; the recovery-step kinematics were similar. Surprisingly, RFs did not differ from NFs in either threshold. The kinematics in the single-step threshold trial in RFs, however, showed a significant delay in step initiation duration, longer step duration, and larger center of mass (CoM) displacement compared with NFs and OFs. In the multiple-step threshold trial, the RFs exhibited larger CoM displacements and longer time to fully recover from balance loss. Interestingly, in the single-stepping trials, 45% of the step-recovery strategies used by RFs were the loaded-leg strategy, about two times more than OFs and NFs (22.5 and 24.2%, respectively). During the multiple-stepping trials, 27.3% of the first-step recovery strategies used by RFs were the loaded-leg strategy about two times more than OFs and NFs (11.9 and 16.4%, respectively), the crossover stepping strategy was the dominated response in all 3 groups (about 50%). In addition, RFs reported a lower low-extremity function compared with NFs, and higher FES in the OFs.

Conclusions

RFs had impaired kinematics during both single-step and multiple-step recovery responses which was associated with greater leg dysfunction. OFs and NFs had similar recovery-step kinematics, but OFs were more likely to step at lower perturbation magnitudes suggesting a more “responsive” over-reactive step response related from their higher fear of falling and not due to impaired balance abilities. These data provide insight into how a varying history of falls might affect balance recovery to a lateral postural perturbation.

Trial registration

This study was registered prospectively on November 9th, 2011 at clinicaltrials.gov (NCT01439451).
Appendix
Available only for authorised users
Literature
1.
go back to reference Marks R, Allegrante JP, MacKenzie RC, Lane JM. Hip fractures among the elderly: causes, consequences and control. Ageing Res Rev. 2003;2(1):57–93 Review.CrossRef Marks R, Allegrante JP, MacKenzie RC, Lane JM. Hip fractures among the elderly: causes, consequences and control. Ageing Res Rev. 2003;2(1):57–93 Review.CrossRef
2.
go back to reference Stevens JA, Mahoney JE, Ehrenreich H. Circumstances and outcomes of falls among high risk community-dwelling older adults. Inj Epidemiol. 2014;1(1):5.CrossRef Stevens JA, Mahoney JE, Ehrenreich H. Circumstances and outcomes of falls among high risk community-dwelling older adults. Inj Epidemiol. 2014;1(1):5.CrossRef
4.
go back to reference Gholizadeh H, Hill A, Nantel J. Effect of arm motion on postural stability when recovering from a slip perturbation. J Biomechan. 2019;95:109269.CrossRef Gholizadeh H, Hill A, Nantel J. Effect of arm motion on postural stability when recovering from a slip perturbation. J Biomechan. 2019;95:109269.CrossRef
5.
go back to reference Müller J, Müller S, Engel T, Reschke A, Baur H, Mayer F. Stumbling reactions during perturbed walking: neuromuscular reflex activity and 3-D kinematics of the trunk–a pilot study. J Biomechan. 2016;49(6):933–8.CrossRef Müller J, Müller S, Engel T, Reschke A, Baur H, Mayer F. Stumbling reactions during perturbed walking: neuromuscular reflex activity and 3-D kinematics of the trunk–a pilot study. J Biomechan. 2016;49(6):933–8.CrossRef
6.
go back to reference Winter DA. Human balance and posture control during standing and walking. Gait Posture. 1995;3(4):193–214.CrossRef Winter DA. Human balance and posture control during standing and walking. Gait Posture. 1995;3(4):193–214.CrossRef
7.
go back to reference Reimann H, Fettrow T, Jeka JJ. Strategies for the control of balance during locomotion. Kinesiol Rev. 2018;7(1):18–25.CrossRef Reimann H, Fettrow T, Jeka JJ. Strategies for the control of balance during locomotion. Kinesiol Rev. 2018;7(1):18–25.CrossRef
8.
go back to reference Vlutters M, Van Asseldonk EH, Van der Kooij H. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking. J Exp Biol. 2016;219(10):1514–23.CrossRef Vlutters M, Van Asseldonk EH, Van der Kooij H. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking. J Exp Biol. 2016;219(10):1514–23.CrossRef
9.
go back to reference Reimann H, Fettrow TD, Thompson ED, Agada P, McFadyen BJ, Jeka JJ. Complementary mechanisms for upright balance during walking. PLoS One. 2017;12(2):e0172215.CrossRef Reimann H, Fettrow TD, Thompson ED, Agada P, McFadyen BJ, Jeka JJ. Complementary mechanisms for upright balance during walking. PLoS One. 2017;12(2):e0172215.CrossRef
10.
go back to reference McIlroy WE, Maki BE. Age-related changes in compensatory stepping in response to unpredictable perturbations. J Gerontol A Biol Sci Med Sci. 1996;51(6):M289–96.CrossRef McIlroy WE, Maki BE. Age-related changes in compensatory stepping in response to unpredictable perturbations. J Gerontol A Biol Sci Med Sci. 1996;51(6):M289–96.CrossRef
11.
go back to reference Mille ML, Johnson ME, Martinez KM, Rogers MW. Age-dependent differences in lateral balance recovery through protective stepping. Clin Biomech (Bristol, Avon). 2005;20(6):607–16.CrossRef Mille ML, Johnson ME, Martinez KM, Rogers MW. Age-dependent differences in lateral balance recovery through protective stepping. Clin Biomech (Bristol, Avon). 2005;20(6):607–16.CrossRef
12.
go back to reference Rogers MW, Mille ML. Lateral stability and falls in older people. Exerc Sport Sci Rev. 2003;31(4):182–7 Review.CrossRef Rogers MW, Mille ML. Lateral stability and falls in older people. Exerc Sport Sci Rev. 2003;31(4):182–7 Review.CrossRef
13.
go back to reference Carty CP, Cronin NJ, Nicholson D, et al. Reactive stepping behaviour in response to forward loss of balance predicts future falls in community-dwelling older adults. Age Ageing. 2015;44(1):109–15.CrossRef Carty CP, Cronin NJ, Nicholson D, et al. Reactive stepping behaviour in response to forward loss of balance predicts future falls in community-dwelling older adults. Age Ageing. 2015;44(1):109–15.CrossRef
14.
go back to reference Hilliard MJ, Martinez KM, Janssen I, et al. Lateral balance factors predict future falls in community-living older adults. Arch Phys Med Rehabil. 2008;89(9):1708–13.CrossRef Hilliard MJ, Martinez KM, Janssen I, et al. Lateral balance factors predict future falls in community-living older adults. Arch Phys Med Rehabil. 2008;89(9):1708–13.CrossRef
15.
go back to reference Yang F, Pai YC. Can sacral marker approximate center of mass during gait and slip-fall recovery among community-dwelling older adults? J Biomechan. 2014;47(16):3807–12. Yang F, Pai YC. Can sacral marker approximate center of mass during gait and slip-fall recovery among community-dwelling older adults? J Biomechan. 2014;47(16):3807–12.
16.
go back to reference Maki BE, McIlroy WE. Control of rapid limb movements for balance recovery: age-related changes and implications for fall prevention. Age Ageing. 2006;35(Suppl 2):ii12–8 Review.CrossRef Maki BE, McIlroy WE. Control of rapid limb movements for balance recovery: age-related changes and implications for fall prevention. Age Ageing. 2006;35(Suppl 2):ii12–8 Review.CrossRef
17.
go back to reference Mille ML, Johnson-Hilliard M, Martinez KM, Zhang Y, Edwards BJ, Rogers MW. One step, two steps, three steps more ... Directional vulnerability to falls in community-dwelling older people. J Gerontol A Biol Sci Med Sci. 2013;68(12):1540–8.CrossRef Mille ML, Johnson-Hilliard M, Martinez KM, Zhang Y, Edwards BJ, Rogers MW. One step, two steps, three steps more ... Directional vulnerability to falls in community-dwelling older people. J Gerontol A Biol Sci Med Sci. 2013;68(12):1540–8.CrossRef
18.
go back to reference Patton JL, Hilliard MJ, Martinez K, Mille ML, Rogers MW. A simple model of- stability limits applied to sidestepping in young, elderly and elderly fallers. Conf Proc IEEE Eng Med Biol Soc. 2006;1:3305–8.CrossRef Patton JL, Hilliard MJ, Martinez K, Mille ML, Rogers MW. A simple model of- stability limits applied to sidestepping in young, elderly and elderly fallers. Conf Proc IEEE Eng Med Biol Soc. 2006;1:3305–8.CrossRef
19.
go back to reference Kurz I, Gimmon Y, Shapiro A, Debi R, Snir Y, Melzer I. Unexpected perturbations training improves balance control and voluntary stepping times in older adults - a double blind randomized control trial. BMC Geriatr. 2016;16:58.CrossRef Kurz I, Gimmon Y, Shapiro A, Debi R, Snir Y, Melzer I. Unexpected perturbations training improves balance control and voluntary stepping times in older adults - a double blind randomized control trial. BMC Geriatr. 2016;16:58.CrossRef
20.
go back to reference Gimmon Y, Riemer R, Kurz I, Shapiro A, Debbi R, Melzer I. Perturbation exercises during treadmill walking improve pelvic and trunk motion in older adults-a randomized control trial. Arch Gerontol Geriatr. 2018;75:132–8.CrossRef Gimmon Y, Riemer R, Kurz I, Shapiro A, Debbi R, Melzer I. Perturbation exercises during treadmill walking improve pelvic and trunk motion in older adults-a randomized control trial. Arch Gerontol Geriatr. 2018;75:132–8.CrossRef
23.
go back to reference Klein PJ, DeHaven JJ. Accuracy of three-dimensional linear and angular estimates obtained with the Ariel performance analysis system. Arch Phys Med Rehabil. 1995;76(2):183–9.CrossRef Klein PJ, DeHaven JJ. Accuracy of three-dimensional linear and angular estimates obtained with the Ariel performance analysis system. Arch Phys Med Rehabil. 1995;76(2):183–9.CrossRef
24.
go back to reference Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988;319(26):1701–7.CrossRef Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988;319(26):1701–7.CrossRef
25.
go back to reference Folstein MF, Folstein SE, McHugh PR. "mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.CrossRef Folstein MF, Folstein SE, McHugh PR. "mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.CrossRef
26.
go back to reference Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C. Development and initial validation of the falls efficacy scale-international (FES-I). Age Ageing. 2005;34(6):614–9.CrossRef Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C. Development and initial validation of the falls efficacy scale-international (FES-I). Age Ageing. 2005;34(6):614–9.CrossRef
27.
go back to reference Haley SM, Jette AM, Coster WJ, et al. Late life function and disability instrument: II. Development and evaluation of the function component. J Gerontol A Biol Sci Med Sci. 2002;57(4):M217–22.CrossRef Haley SM, Jette AM, Coster WJ, et al. Late life function and disability instrument: II. Development and evaluation of the function component. J Gerontol A Biol Sci Med Sci. 2002;57(4):M217–22.CrossRef
28.
go back to reference Handelzalts S, Steinberg-Henn F, Levy S, Shani G, Soroker N, Melzer I. Insufficient balance recovery following unannounced external perturbations in persons with stroke. Neurorehabil Neural Repair. 2019;33(9):730–9.CrossRef Handelzalts S, Steinberg-Henn F, Levy S, Shani G, Soroker N, Melzer I. Insufficient balance recovery following unannounced external perturbations in persons with stroke. Neurorehabil Neural Repair. 2019;33(9):730–9.CrossRef
30.
go back to reference Sibley KM, Carpenter MG, Perry JC, Frank JS. Effects of postural anxiety on the soleus H-reflex. Hum. Mov. Sci. 2007;26:103–12.CrossRef Sibley KM, Carpenter MG, Perry JC, Frank JS. Effects of postural anxiety on the soleus H-reflex. Hum. Mov. Sci. 2007;26:103–12.CrossRef
31.
go back to reference Maki BE, McIlroy WE. The role of limb movements in maintaining upright stance: the "change-in-support" strategy. Phys Ther. 1997;77(5):488–507 Review.CrossRef Maki BE, McIlroy WE. The role of limb movements in maintaining upright stance: the "change-in-support" strategy. Phys Ther. 1997;77(5):488–507 Review.CrossRef
32.
go back to reference Fujimoto M, Bair WN, Rogers MW. Center of pressure control for balance maintenance during lateral waist-pull perturbations in older adults. J Biomech. 2015;48(6):963–8.CrossRef Fujimoto M, Bair WN, Rogers MW. Center of pressure control for balance maintenance during lateral waist-pull perturbations in older adults. J Biomech. 2015;48(6):963–8.CrossRef
33.
go back to reference Luchies CW, Alexander NB, Schultz AB, Ashton-Miller J. Stepping responses of young and old adults to postural disturbances: kinematics. J Am Geriatr Soc. 1994;42(5):506–12.CrossRef Luchies CW, Alexander NB, Schultz AB, Ashton-Miller J. Stepping responses of young and old adults to postural disturbances: kinematics. J Am Geriatr Soc. 1994;42(5):506–12.CrossRef
34.
go back to reference Maki BE, Edmondstone MA, McIlroy WE. Age-related differences in laterally directed compensatory stepping behavior. J Gerontol A Biol Sci Med Sci. 2000;55(5):M270–7.CrossRef Maki BE, Edmondstone MA, McIlroy WE. Age-related differences in laterally directed compensatory stepping behavior. J Gerontol A Biol Sci Med Sci. 2000;55(5):M270–7.CrossRef
35.
go back to reference Fujimoto M, Bair WN, Rogers MW. Single and multiple step balance recovery responses can be different at first step lift-off following lateral waist-pull perturbations in older adults. J Biomech. 2017;55:41–7.CrossRef Fujimoto M, Bair WN, Rogers MW. Single and multiple step balance recovery responses can be different at first step lift-off following lateral waist-pull perturbations in older adults. J Biomech. 2017;55:41–7.CrossRef
36.
go back to reference Pai YC, Patton J. Center of mass velocity-position predictions for balance control. J Biomechan. 1997;30(4):347–54.CrossRef Pai YC, Patton J. Center of mass velocity-position predictions for balance control. J Biomechan. 1997;30(4):347–54.CrossRef
37.
go back to reference Pai YC, Rogers MW, Patton J, Cain TD, Hanke TA. Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults. J Biomechan. 1998;31(12):1111–8.CrossRef Pai YC, Rogers MW, Patton J, Cain TD, Hanke TA. Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults. J Biomechan. 1998;31(12):1111–8.CrossRef
Metadata
Title
The kinematics and strategies of recovery steps during lateral losses of balance in standing at different perturbation magnitudes in older adults with varying history of falls
Authors
Shani Batcir
Guy Shani
Amir Shapiro
Neil Alexander
Itshak Melzer
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Geriatrics / Issue 1/2020
Electronic ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-020-01650-4

Other articles of this Issue 1/2020

BMC Geriatrics 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.