Skip to main content
Top
Published in: BMC Gastroenterology 1/2020

Open Access 01-12-2020 | Obesity | Research article

Effects of gastric sleeve surgery on the serum levels of GH, IGF-1 and IGF-binding protein 2 in healthy obese patients

Authors: Khalid Al-Regaiey, Suad Alshubrami, Ibrahim Al-Beeshi, Torki Alnasser, Abdulnasser Alwabel, Hassan Al-Beladi, Omar Al-Tujjar, Abdulrahman Alnasser, Assim A. Alfadda, Muhammad Iqbal

Published in: BMC Gastroenterology | Issue 1/2020

Login to get access

Abstract

Background

Bariatric surgery is an effective treatment for severe obesity. It also ameliorates diabetes independently of weight loss through mechanisms that are not fully understood. In this study, we investigated the levels of GH, IGF-1 and IGF-binding protein 2 (IGFBP-2) after gastric sleeve surgery in healthy obese individuals.

Method

This study was conducted in 33 obese (BMI > 38.3) healthy male subjects aged 25 to 50 years undergoing sleeve gastrectomy. GH, IGF-1 and IGFBP-2 levels were evaluated by ELISA at baseline and 6–12 months after surgery. Other parameters, such as glucose, BMI, insulin, HOMA-IR and lipid profile, were also investigated.

Results

Systemic GH (12.32 vs. 50.97 pg/mL, p < 0.001) and IGFBP-2 levels (51.86 vs. 68.81 pg/mL, p < 0.001) were elevated after bariatric surgery. There was no change in IGF-1 level from before to after surgery. BMI (52.18 vs. 40.11, p = 0.001), insulin (19.35 vs. 8.80 mIU/L, p < 0.001) and HOMA-IR index (6.48 to 2.52, p < 0.001) were reduced after surgery. Lipid profile analysis revealed that total cholesterol (4.26 vs. 5.12 mmol/L, p < 0.001) and high-density lipoprotein (HDL) (0.90 to 1.55 mmol/L, p < 0.001) were increased, while triglycerides were decreased, after surgery (1.62 vs. 1.05 mmol/L p < 0.001). GH, IGF-1, and IGFBP-2 were not correlated with insulin or lipid parameters.

Conclusions

Our study suggests that improved circulating GH and IGFBP-2 levels may mediate the beneficial effects of gastric sleeve surgery in improving insulin sensitivity and reducing insulin demand.
Literature
1.
go back to reference Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98.CrossRef Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98.CrossRef
2.
go back to reference Møller N, Jørgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev. 2009;30(2):152–77.CrossRef Møller N, Jørgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev. 2009;30(2):152–77.CrossRef
3.
go back to reference Lichanska AM, Waters MJ. How growth hormone controls growth, obesity and sexual dimorphism. Trends Genet. 2008;24:41–7.CrossRef Lichanska AM, Waters MJ. How growth hormone controls growth, obesity and sexual dimorphism. Trends Genet. 2008;24:41–7.CrossRef
4.
go back to reference Rasmussen MH. Obesity, growth hormone and weight loss. Mol Cell Endocrinol. 2010;316:147–53.CrossRef Rasmussen MH. Obesity, growth hormone and weight loss. Mol Cell Endocrinol. 2010;316:147–53.CrossRef
5.
go back to reference Lewitt MS. The role of the growth hormone/insulin-like growth factor system in visceral adiposity. Biochem Insights. 2017;10:1–10.CrossRef Lewitt MS. The role of the growth hormone/insulin-like growth factor system in visceral adiposity. Biochem Insights. 2017;10:1–10.CrossRef
6.
go back to reference Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23:824–54.CrossRef Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23:824–54.CrossRef
7.
go back to reference Mittempergher F, Pata G, Crea N, Di Betta E, Vilardi A, Chiesa D, Nascimbeni R. Preoperative prediction of growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis modification and postoperative changes in candidates for bariatric surgery. Obes Surg. 2013;23:594–601.CrossRef Mittempergher F, Pata G, Crea N, Di Betta E, Vilardi A, Chiesa D, Nascimbeni R. Preoperative prediction of growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis modification and postoperative changes in candidates for bariatric surgery. Obes Surg. 2013;23:594–601.CrossRef
8.
go back to reference Hedbacker K, Birsoy K, Wysocki RW, Asilmaz E, Ahima RS, Farooqi IS, Friedman JM. Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab. 2010;11:11–22.CrossRef Hedbacker K, Birsoy K, Wysocki RW, Asilmaz E, Ahima RS, Farooqi IS, Friedman JM. Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab. 2010;11:11–22.CrossRef
9.
go back to reference Probst-Hensch NM, Steiner JH, Schraml P, Varga Z, Zürrer-Härdi U, Storz M, Korol D, Fehr MK, Fink D, Pestalozzi BC, Lütolf UM, Theurillat JP, Moch H. IGFBP2 and IGFBP3 protein expressions in human breast cancer: association with hormonal factors and obesity. Clin Cancer Res. 2010;16:1025–32.CrossRef Probst-Hensch NM, Steiner JH, Schraml P, Varga Z, Zürrer-Härdi U, Storz M, Korol D, Fehr MK, Fink D, Pestalozzi BC, Lütolf UM, Theurillat JP, Moch H. IGFBP2 and IGFBP3 protein expressions in human breast cancer: association with hormonal factors and obesity. Clin Cancer Res. 2010;16:1025–32.CrossRef
10.
go back to reference Ko JM, Park HK, Yang S, Kim EY, Chung SC, Hwang IT. Association between insulin-like growth factor binding protein-2 levels and cardiovascular risk factors in Korean children. Endocr J. 2012;59:335–43.CrossRef Ko JM, Park HK, Yang S, Kim EY, Chung SC, Hwang IT. Association between insulin-like growth factor binding protein-2 levels and cardiovascular risk factors in Korean children. Endocr J. 2012;59:335–43.CrossRef
11.
go back to reference Rajpathak SN, He M, Sun Q, Kaplan RC, Muzumdar R, Rohan TE, Gunter MJ, Pollak M, Kim M, Pessin JE, Beasley J, Wylie-Rosett J, Hu FB, Strickler HD. Insulin-like growth factor axis and risk of type 2 diabetes in women. Diabetes. 2012;61:2248–54.CrossRef Rajpathak SN, He M, Sun Q, Kaplan RC, Muzumdar R, Rohan TE, Gunter MJ, Pollak M, Kim M, Pessin JE, Beasley J, Wylie-Rosett J, Hu FB, Strickler HD. Insulin-like growth factor axis and risk of type 2 diabetes in women. Diabetes. 2012;61:2248–54.CrossRef
12.
go back to reference Ahmed RL, Thomas W, Schmitz KH. Interactions between insulin, body fat, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomark Prev. 2007;16:593–7.CrossRef Ahmed RL, Thomas W, Schmitz KH. Interactions between insulin, body fat, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomark Prev. 2007;16:593–7.CrossRef
13.
go back to reference Carter S, Li Z, Lemieux I, et al. Circulating IGFBP-2 levels are incrementally linked to correlates of the metabolic syndrome and independently associated with VLDL triglycerides. Atherosclerosis. 2014;237(2):645–51.CrossRef Carter S, Li Z, Lemieux I, et al. Circulating IGFBP-2 levels are incrementally linked to correlates of the metabolic syndrome and independently associated with VLDL triglycerides. Atherosclerosis. 2014;237(2):645–51.CrossRef
14.
go back to reference Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, Castagneto M, Bornstein S, Rubino F. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-Centre, randomised controlled trial. Lancet. 2015;386:964–73.CrossRef Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, Castagneto M, Bornstein S, Rubino F. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-Centre, randomised controlled trial. Lancet. 2015;386:964–73.CrossRef
15.
go back to reference Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, Lamonte MJ, Stroup AM, Hunt SC. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357:753–61.CrossRef Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, Lamonte MJ, Stroup AM, Hunt SC. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357:753–61.CrossRef
16.
go back to reference Holst JJ, Madsbad S, Bojsen-Møller KN, Svane MS, Jørgensen NB, Dirksen C, Martinussen C. Mechanisms in bariatric surgery: gut hormones, diabetes resolution, and weight loss. Surg Obes Relat Dis. 2018;14:708–14.CrossRef Holst JJ, Madsbad S, Bojsen-Møller KN, Svane MS, Jørgensen NB, Dirksen C, Martinussen C. Mechanisms in bariatric surgery: gut hormones, diabetes resolution, and weight loss. Surg Obes Relat Dis. 2018;14:708–14.CrossRef
17.
go back to reference Dimitriadis GK, Randeva MS, Miras AD. Potential hormone mechanisms of bariatric surgery. Curr Obes Rep. 2017;6:253–65.CrossRef Dimitriadis GK, Randeva MS, Miras AD. Potential hormone mechanisms of bariatric surgery. Curr Obes Rep. 2017;6:253–65.CrossRef
18.
go back to reference Kizy S, Jahansouz C, Wirth K, Ikramuddin S, Leslie D. Bariatric surgery: a perspective for primary care. Diabetes Spectr. 2017;30:265–76.CrossRef Kizy S, Jahansouz C, Wirth K, Ikramuddin S, Leslie D. Bariatric surgery: a perspective for primary care. Diabetes Spectr. 2017;30:265–76.CrossRef
19.
go back to reference Maccario M, Grottoli S, Procopio M, Oleandri SE, Rossetto R, Gauna C, Arvat E, Ghigo E. The GH/IGF-I axis in obesity: influence of neuro-endocrine and metabolic factors. Int J Obes Relat Metab Disord. 2000;24:S96–9.CrossRef Maccario M, Grottoli S, Procopio M, Oleandri SE, Rossetto R, Gauna C, Arvat E, Ghigo E. The GH/IGF-I axis in obesity: influence of neuro-endocrine and metabolic factors. Int J Obes Relat Metab Disord. 2000;24:S96–9.CrossRef
20.
go back to reference Frystyk J. Free insulin-like growth factors—measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Horm and IGF Res. 2004;14:337–75.CrossRef Frystyk J. Free insulin-like growth factors—measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Horm and IGF Res. 2004;14:337–75.CrossRef
21.
go back to reference Kreitschmann-Andermahr I, Suarez P, Jennings R, Evers N, Brabant G. GH/IGF-I regulation in obesity--mechanisms and practical consequences in children and adults. Horm Res Paediatr. 2010;73:153–60.CrossRef Kreitschmann-Andermahr I, Suarez P, Jennings R, Evers N, Brabant G. GH/IGF-I regulation in obesity--mechanisms and practical consequences in children and adults. Horm Res Paediatr. 2010;73:153–60.CrossRef
22.
go back to reference Yakar S, Adamo ML. Insulin-like growth factor 1 physiology: lessons from mouse models. Endocrinol Metab Clin N Am. 2012;41(2):231–47.CrossRef Yakar S, Adamo ML. Insulin-like growth factor 1 physiology: lessons from mouse models. Endocrinol Metab Clin N Am. 2012;41(2):231–47.CrossRef
23.
go back to reference Brynskov T, Laugesen SC, Floyd AK, Frystyk J, Sørensen TL. The IGF-Axis and diabetic retinopathy before and after gastric bypass surgery. Obes Surg. 2017;27:408–15.CrossRef Brynskov T, Laugesen SC, Floyd AK, Frystyk J, Sørensen TL. The IGF-Axis and diabetic retinopathy before and after gastric bypass surgery. Obes Surg. 2017;27:408–15.CrossRef
24.
go back to reference Vilarrasa N, Gómez JM, Elio I, et al. Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg. 2009;19:860–6.CrossRef Vilarrasa N, Gómez JM, Elio I, et al. Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg. 2009;19:860–6.CrossRef
25.
go back to reference Pardina E, Ferrer R, Baena-Fustegueras JA, et al. The relationships between IGF-1 and CRP, NO, leptin, and adiponectin during weight loss in the morbidly obese. Obes Surg. 2010;20:623–32.CrossRef Pardina E, Ferrer R, Baena-Fustegueras JA, et al. The relationships between IGF-1 and CRP, NO, leptin, and adiponectin during weight loss in the morbidly obese. Obes Surg. 2010;20:623–32.CrossRef
26.
go back to reference Itariu BK, Zeyda M, Prager G, et al. Insulin-like growth factor 1 predicts post-load hypoglycemia following bariatric surgery: a prospective cohort study. PLoS One. 2014;9:e94613–9.CrossRef Itariu BK, Zeyda M, Prager G, et al. Insulin-like growth factor 1 predicts post-load hypoglycemia following bariatric surgery: a prospective cohort study. PLoS One. 2014;9:e94613–9.CrossRef
27.
go back to reference Bogazzi F, Ultimieri F, Raggi F, Russo D, Vanacore R, Guida C, Viacava P, Cecchetti D, Acerbi G, Brogioni S, Cosci C, Gasperi M, Bartalena L, Martino E. PPARgamma inhibits GH synthesis and secretion and increases apoptosis of pituitary GH-secreting adenomas. Eur J Endocrinol. 2004;150:863–75.CrossRef Bogazzi F, Ultimieri F, Raggi F, Russo D, Vanacore R, Guida C, Viacava P, Cecchetti D, Acerbi G, Brogioni S, Cosci C, Gasperi M, Bartalena L, Martino E. PPARgamma inhibits GH synthesis and secretion and increases apoptosis of pituitary GH-secreting adenomas. Eur J Endocrinol. 2004;150:863–75.CrossRef
28.
go back to reference Vijayakumar A, Novosyadlyy R, Wu Y, Yakar S, LeRoith D. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Hormon IGF Res. 2010;20(1):1–7.CrossRef Vijayakumar A, Novosyadlyy R, Wu Y, Yakar S, LeRoith D. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Hormon IGF Res. 2010;20(1):1–7.CrossRef
29.
go back to reference Fang F, Shi X, Brown MS, Goldstein JL, Liang G. Growth hormone acts on liver to stimulate autophagy, support glucose production, and preserve blood glucose in chronically starved mice. Proc Natl Acad Sci U S A. 2019;116(15):7449–54.CrossRef Fang F, Shi X, Brown MS, Goldstein JL, Liang G. Growth hormone acts on liver to stimulate autophagy, support glucose production, and preserve blood glucose in chronically starved mice. Proc Natl Acad Sci U S A. 2019;116(15):7449–54.CrossRef
30.
go back to reference Fan Y, Menon RK, Cohen P, Hwang D, Clemens T, DiGirolamo DJ, Kopchick JJ, Le Roith D, Trucco M, Sperling MA. Liver-specific deletion of the growth hormone receptor reveals essential role of growth hormone signaling in hepatic lipid metabolism. J Bio Chem. 2009;284(30):19937–44.CrossRef Fan Y, Menon RK, Cohen P, Hwang D, Clemens T, DiGirolamo DJ, Kopchick JJ, Le Roith D, Trucco M, Sperling MA. Liver-specific deletion of the growth hormone receptor reveals essential role of growth hormone signaling in hepatic lipid metabolism. J Bio Chem. 2009;284(30):19937–44.CrossRef
31.
go back to reference Assefa B, Mahmoud AM, Pfeiffer AFH, Birkenfeld AL, Spranger J, Arafat AM. Insulin-like growth factor (IGF) binding Protein-2, independently of IGF-1, induces GLUT-4 translocation and glucose uptake in 3T3-L1 adipocytes. Oxidative Med Cell Longev. 2017;2017:3035184.CrossRef Assefa B, Mahmoud AM, Pfeiffer AFH, Birkenfeld AL, Spranger J, Arafat AM. Insulin-like growth factor (IGF) binding Protein-2, independently of IGF-1, induces GLUT-4 translocation and glucose uptake in 3T3-L1 adipocytes. Oxidative Med Cell Longev. 2017;2017:3035184.CrossRef
32.
go back to reference Xi G, Solum MA, Wai C, Maile LA, Rosen CJ, Clemmons DR. The heparin-binding domains of IGFBP-2 mediate its inhibitory effect on preadipocyte differentiation and fat development in male mice. Endocrinology. 2013;154:4146–57.CrossRef Xi G, Solum MA, Wai C, Maile LA, Rosen CJ, Clemmons DR. The heparin-binding domains of IGFBP-2 mediate its inhibitory effect on preadipocyte differentiation and fat development in male mice. Endocrinology. 2013;154:4146–57.CrossRef
33.
go back to reference Wheatcroft SB, Kearney MT, Shah AM, Ezzat VA, Miell JR, Modo M, , Williams SC, Cawthorn WP, Medina-Gomez G, Vidal-Puig A, Sethi JK, Crossey PA. IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes. 2007;56:285–294.CrossRef Wheatcroft SB, Kearney MT, Shah AM, Ezzat VA, Miell JR, Modo M, , Williams SC, Cawthorn WP, Medina-Gomez G, Vidal-Puig A, Sethi JK, Crossey PA. IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes. 2007;56:285–294.CrossRef
34.
go back to reference van den Beld AW, Carlson OD, Doyle ME, Rizopoulos D, Ferrucci L, van der Lely AJ, Egan JM. IGFBP-2 and aging: a 20-year longitudinal study on IGFBP-2, IGF-I, BMI, insulin sensitivity and mortality in an aging population. Eur J Endocrinol. 2019;180:109–16.CrossRef van den Beld AW, Carlson OD, Doyle ME, Rizopoulos D, Ferrucci L, van der Lely AJ, Egan JM. IGFBP-2 and aging: a 20-year longitudinal study on IGFBP-2, IGF-I, BMI, insulin sensitivity and mortality in an aging population. Eur J Endocrinol. 2019;180:109–16.CrossRef
35.
go back to reference Yau SW, Harcourt BE, Kao KT, Alexander EJ, Russo VC, Werther GA, Sabin MA. Serum IGFBP-2 levels are associated with reduced insulin sensitivity in obese children. Clin Obes. 2018;8:184–90.CrossRef Yau SW, Harcourt BE, Kao KT, Alexander EJ, Russo VC, Werther GA, Sabin MA. Serum IGFBP-2 levels are associated with reduced insulin sensitivity in obese children. Clin Obes. 2018;8:184–90.CrossRef
36.
go back to reference Kang HS, Cho HC, Lee JH, Oh GT, Koo SH, Park BH, Lee IK, Choi HS, Song DK, Im SS. Metformin stimulates IGFBP-2 gene expression through PPARalpha in diabetic states. Sci Rep. 2016;6:23665.CrossRef Kang HS, Cho HC, Lee JH, Oh GT, Koo SH, Park BH, Lee IK, Choi HS, Song DK, Im SS. Metformin stimulates IGFBP-2 gene expression through PPARalpha in diabetic states. Sci Rep. 2016;6:23665.CrossRef
37.
go back to reference Li Z, Martin J, Poirier P, Caron-Cantin SM, Hould FS, Marceau S, Marceau P, Picard F. Upregulation of plasma insulin-like growth factor binding protein 2 levels after Biliopancreatic diversion in humans. Obesity. 2012;20(7):1469–73.CrossRef Li Z, Martin J, Poirier P, Caron-Cantin SM, Hould FS, Marceau S, Marceau P, Picard F. Upregulation of plasma insulin-like growth factor binding protein 2 levels after Biliopancreatic diversion in humans. Obesity. 2012;20(7):1469–73.CrossRef
38.
go back to reference Ceccarini G, Pelosini C, Ferrari F, Magno S, Vitti J, Salvetti G, Moretto C, Marioni A, Piero Buccianti P, Piaggi P, Maffei M, Santini F. Serum IGF-binding protein 2 (IGFBP-2) concentrations change early after gastric bypass bariatric surgery revealing a possible marker of leptin sensitivity in obese subjects. Endocrine. 2019;65:86–93.CrossRef Ceccarini G, Pelosini C, Ferrari F, Magno S, Vitti J, Salvetti G, Moretto C, Marioni A, Piero Buccianti P, Piaggi P, Maffei M, Santini F. Serum IGF-binding protein 2 (IGFBP-2) concentrations change early after gastric bypass bariatric surgery revealing a possible marker of leptin sensitivity in obese subjects. Endocrine. 2019;65:86–93.CrossRef
39.
go back to reference Shah RV, Hwang SJ, Yeri A, Tanriverdi K, Pico AR, Yao C, Murthy V, Ho J, Vitseva O, Demarco D, Shah S, Iafrati MD, Levy D, Freedman JE. Proteins altered by surgical weight loss highlight biomarkers of insulin resistance in the community. Arteriosclerosis Thromb Vasc Biol. 2019;39(1):107–15.CrossRef Shah RV, Hwang SJ, Yeri A, Tanriverdi K, Pico AR, Yao C, Murthy V, Ho J, Vitseva O, Demarco D, Shah S, Iafrati MD, Levy D, Freedman JE. Proteins altered by surgical weight loss highlight biomarkers of insulin resistance in the community. Arteriosclerosis Thromb Vasc Biol. 2019;39(1):107–15.CrossRef
Metadata
Title
Effects of gastric sleeve surgery on the serum levels of GH, IGF-1 and IGF-binding protein 2 in healthy obese patients
Authors
Khalid Al-Regaiey
Suad Alshubrami
Ibrahim Al-Beeshi
Torki Alnasser
Abdulnasser Alwabel
Hassan Al-Beladi
Omar Al-Tujjar
Abdulrahman Alnasser
Assim A. Alfadda
Muhammad Iqbal
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2020
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-020-01309-9

Other articles of this Issue 1/2020

BMC Gastroenterology 1/2020 Go to the issue