Skip to main content
Top
Published in: BMC Gastroenterology 1/2020

Open Access 01-12-2020 | Colectomy | Case report

Juvenile polyposis syndrome might be misdiagnosed as familial adenomatous polyposis: a case report and literature review

Authors: Xian Hua Gao, Juan Li, Zi Ye Zhao, Xiao Dong Xu, Yi Qi Du, Hong Li Yan, Lian Jie Liu, Chen Guang Bai, Wei Zhang

Published in: BMC Gastroenterology | Issue 1/2020

Login to get access

Abstract

Background

Juvenile polyposis syndrome (JPS) is a rare disorder characterized by the presence of multiple juvenile polyps in the gastrointestinal tract, and germline mutations in SMAD4 or BMPR1A. Due to its rarity and complex clinical manifestation, misdiagnosis often occurs in clinical practice.

Case presentation

A 42-year-old man with multiple pedunculated colorectal polyps and concomitant rectal adenocarcinoma was admitted to our hospital. His mother had died of colon cancer. He was diagnosed with familial adenomatous polyposis (FAP) and underwent total proctocolectomy and ileal pouch anal anastomosis. Two polyps were selected for pathological examination. One polyp had cystically dilated glands with slight dysplasia. The other polyp displayed severe dysplasia and was diagnosed as adenoma. Three years later, his 21-year-old son underwent a colonoscopy that revealed more than 50 pedunculated colorectal juvenile polyps. Both patients harbored a germline pathogenic mutation in BMPR1A. Endoscopic resection of all polyps was attempted but failed. Finally, the son received endoscopic resection of polyps in the rectum and sigmoid colon, and laparoscopic subtotal colectomy. Ten polyps were selected for pathological examination. All were revealed to be typical juvenile polyps, with cystically dilated glands filled with mucus. Thus, the diagnosis of JPS was confirmed in the son. A review of the literatures revealed that patients with JPS can sometimes have adenomatous change. Most polyps in patients with JPS are benign hamartomatous polyps with no dysplasia. A review of 767 colorectal JPS polyps demonstrated that 8.5% of the polyps contained mild to moderate dysplasia, and only 0.3% had severe dysplasia or cancer. It is difficult to differentiate juvenile polyps with dysplasia from adenoma, which could explain why juvenile polyps have been reported to have adenomatous changes in patients with JPS. Therefore, patients with JPS, especially those with concomitant dysplasia and adenocarcinoma, might be easily diagnosed as FAP in clinical practice.

Conclusions

Juvenile polyp with dysplasia is often diagnosed as adenoma, which might lead to the misdiagnosis of JPS as FAP. The differential diagnosis of JPS versus FAP, should be based on comprehensive evaluation of clinical presentation, endoscopic appearance and genetic investigations; not on the presence or absence of adenoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference McColl I, Busxey HJ, Veale AM, Morson BC. Juvenile polyposis coli. Proc R Soc Med. 1964;57:896–7.PubMed McColl I, Busxey HJ, Veale AM, Morson BC. Juvenile polyposis coli. Proc R Soc Med. 1964;57:896–7.PubMed
2.
go back to reference Stoffel EM, Boland CR. Genetics and genetic testing in hereditary colorectal Cancer. Gastroenterology. 2015;149(5):1191–203 e2.PubMed Stoffel EM, Boland CR. Genetics and genetic testing in hereditary colorectal Cancer. Gastroenterology. 2015;149(5):1191–203 e2.PubMed
3.
go back to reference Macaron C, Leach BH, Burke CA. Hereditary colorectal cancer syndromes and genetic testing. J Surg Oncol. 2015;111(1):103–11.PubMed Macaron C, Leach BH, Burke CA. Hereditary colorectal cancer syndromes and genetic testing. J Surg Oncol. 2015;111(1):103–11.PubMed
4.
go back to reference Guillen-Ponce C, Serrano R, Sanchez-Heras AB, Teule A, Chirivella I, Martin T, et al. Clinical guideline seom: hereditary colorectal cancer. Clin Transl Oncol. 2015;17(12):962–71.PubMedPubMedCentral Guillen-Ponce C, Serrano R, Sanchez-Heras AB, Teule A, Chirivella I, Martin T, et al. Clinical guideline seom: hereditary colorectal cancer. Clin Transl Oncol. 2015;17(12):962–71.PubMedPubMedCentral
5.
go back to reference Vasen HF, Tomlinson I, Castells A. Clinical management of hereditary colorectal cancer syndromes. Nat Rev Gastroenterol Hepatol. 2015;12(2):88–97.PubMed Vasen HF, Tomlinson I, Castells A. Clinical management of hereditary colorectal cancer syndromes. Nat Rev Gastroenterol Hepatol. 2015;12(2):88–97.PubMed
6.
go back to reference Brandao C, Lage J. Management of patients with hereditary colorectal Cancer syndromes. GE Port J Gastroenterol. 2015;22(5):204–12.PubMedPubMedCentral Brandao C, Lage J. Management of patients with hereditary colorectal Cancer syndromes. GE Port J Gastroenterol. 2015;22(5):204–12.PubMedPubMedCentral
7.
go back to reference van Hattem WA, Brosens LA, de Leng WW, Morsink FH, Lens S, Carvalho R, et al. Large genomic deletions of SMAD4, BMPR1A and PTEN in juvenile polyposis. Gut. 2008;57(5):623–7.PubMed van Hattem WA, Brosens LA, de Leng WW, Morsink FH, Lens S, Carvalho R, et al. Large genomic deletions of SMAD4, BMPR1A and PTEN in juvenile polyposis. Gut. 2008;57(5):623–7.PubMed
8.
go back to reference Calva-Cerqueira D, Chinnathambi S, Pechman B, Bair J, Larsen-Haidle J, Howe JR. The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis. Clin Genet. 2009;75(1):79–85.PubMed Calva-Cerqueira D, Chinnathambi S, Pechman B, Bair J, Larsen-Haidle J, Howe JR. The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis. Clin Genet. 2009;75(1):79–85.PubMed
9.
go back to reference Aretz S, Stienen D, Uhlhaas S, Stolte M, Entius MM, Loff S, et al. High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet. 2007;44(11):702–9.PubMedPubMedCentral Aretz S, Stienen D, Uhlhaas S, Stolte M, Entius MM, Loff S, et al. High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet. 2007;44(11):702–9.PubMedPubMedCentral
10.
go back to reference Friedl W, Uhlhaas S, Schulmann K, Stolte M, Loff S, Back W, et al. Juvenile polyposis: massive gastric polyposis is more common in MADH4 mutation carriers than in BMPR1A mutation carriers. Hum Genet. 2002;111(1):108–11.PubMed Friedl W, Uhlhaas S, Schulmann K, Stolte M, Loff S, Back W, et al. Juvenile polyposis: massive gastric polyposis is more common in MADH4 mutation carriers than in BMPR1A mutation carriers. Hum Genet. 2002;111(1):108–11.PubMed
11.
go back to reference Gammon A, Jasperson K, Kohlmann W, Burt RW. Hamartomatous polyposis syndromes. Best Pract Res Clin Gastroenterol. 2009;23(2):219–31.PubMedPubMedCentral Gammon A, Jasperson K, Kohlmann W, Burt RW. Hamartomatous polyposis syndromes. Best Pract Res Clin Gastroenterol. 2009;23(2):219–31.PubMedPubMedCentral
12.
go back to reference Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004;363(9412):852–9.PubMed Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004;363(9412):852–9.PubMed
13.
go back to reference Schwenter F, Faughnan ME, Gradinger AB, Berk T, Gryfe R, Pollett A, et al. Juvenile polyposis, hereditary hemorrhagic telangiectasia, and early onset colorectal cancer in patients with SMAD4 mutation. J Gastroenterol. 2012;47(7):795–804.PubMed Schwenter F, Faughnan ME, Gradinger AB, Berk T, Gryfe R, Pollett A, et al. Juvenile polyposis, hereditary hemorrhagic telangiectasia, and early onset colorectal cancer in patients with SMAD4 mutation. J Gastroenterol. 2012;47(7):795–804.PubMed
15.
go back to reference Erlandsson J, Holm T, Pettersson D, Berglund A, Cedermark B, Radu C, et al. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm III): a multicentre, randomised, non-blinded, phase 3, non-inferiority trial. Lancet Oncol. 2017;18(3):336–46.PubMed Erlandsson J, Holm T, Pettersson D, Berglund A, Cedermark B, Radu C, et al. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm III): a multicentre, randomised, non-blinded, phase 3, non-inferiority trial. Lancet Oncol. 2017;18(3):336–46.PubMed
16.
go back to reference Elitsur Y, Teitelbaum JE, Rewalt M, Nowicki M. Clinical and endoscopic data in juvenile polyposis syndrome in preadolescent children: a multicenter experience from the United States. J Clin Gastroenterol. 2009;43(8):734–6.PubMed Elitsur Y, Teitelbaum JE, Rewalt M, Nowicki M. Clinical and endoscopic data in juvenile polyposis syndrome in preadolescent children: a multicenter experience from the United States. J Clin Gastroenterol. 2009;43(8):734–6.PubMed
17.
go back to reference Perzin KH, Bridge MF. Adenomatous and carcinomatous changes in hamartomatous polyps of the small intestine (Peutz-Jeghers syndrome): report of a case and review of the literature. Cancer. 1982;49(5):971–83.PubMed Perzin KH, Bridge MF. Adenomatous and carcinomatous changes in hamartomatous polyps of the small intestine (Peutz-Jeghers syndrome): report of a case and review of the literature. Cancer. 1982;49(5):971–83.PubMed
18.
go back to reference Shaco-Levy R, Jasperson KW, Martin K, Samadder NJ, Burt RW, Ying J, et al. Morphologic characterization of hamartomatous gastrointestinal polyps in Cowden syndrome, Peutz-Jeghers syndrome, and juvenile polyposis syndrome. Hum Pathol. 2016;49:39–48.PubMed Shaco-Levy R, Jasperson KW, Martin K, Samadder NJ, Burt RW, Ying J, et al. Morphologic characterization of hamartomatous gastrointestinal polyps in Cowden syndrome, Peutz-Jeghers syndrome, and juvenile polyposis syndrome. Hum Pathol. 2016;49:39–48.PubMed
19.
go back to reference Rohlin A, Rambech E, Kvist A, Torngren T, Eiengard F, Lundstam U, et al. Expanding the genotype-phenotype spectrum in hereditary colorectal cancer by gene panel testing. Familial Cancer. 2017;16(2):195–203.PubMed Rohlin A, Rambech E, Kvist A, Torngren T, Eiengard F, Lundstam U, et al. Expanding the genotype-phenotype spectrum in hereditary colorectal cancer by gene panel testing. Familial Cancer. 2017;16(2):195–203.PubMed
20.
go back to reference Cragun D, Radford C, Dolinsky JS, Caldwell M, Chao E, Pal T. Panel-based testing for inherited colorectal cancer: a descriptive study of clinical testing performed by a US laboratory. Clin Genet. 2014;86(6):510–20.PubMedPubMedCentral Cragun D, Radford C, Dolinsky JS, Caldwell M, Chao E, Pal T. Panel-based testing for inherited colorectal cancer: a descriptive study of clinical testing performed by a US laboratory. Clin Genet. 2014;86(6):510–20.PubMedPubMedCentral
21.
go back to reference Chew MH, Tan WS, Liu Y, Cheah PY, Loi CT, Tang CL. Genomics of hereditary colorectal Cancer: lessons learnt from 25 years of the Singapore polyposis registry. Ann Acad Med Singap. 2015;44(8):290–6.PubMed Chew MH, Tan WS, Liu Y, Cheah PY, Loi CT, Tang CL. Genomics of hereditary colorectal Cancer: lessons learnt from 25 years of the Singapore polyposis registry. Ann Acad Med Singap. 2015;44(8):290–6.PubMed
22.
go back to reference O'Riordan JM, O'Donoghue D, Green A, Keegan D, Hawkes LA, Payne SJ, et al. Hereditary mixed polyposis syndrome due to a BMPR1A mutation. Color Dis. 2010;12(6):570–3. O'Riordan JM, O'Donoghue D, Green A, Keegan D, Hawkes LA, Payne SJ, et al. Hereditary mixed polyposis syndrome due to a BMPR1A mutation. Color Dis. 2010;12(6):570–3.
23.
go back to reference Cao X, Eu KW, Kumarasinghe MP, Li HH, Loi C, Cheah PY. Mapping of hereditary mixed polyposis syndrome (HMPS) to chromosome 10q23 by genomewide high-density single nucleotide polymorphism (SNP) scan and identification of BMPR1A loss of function. J Med Genet. 2006;43(3):e13.PubMedPubMedCentral Cao X, Eu KW, Kumarasinghe MP, Li HH, Loi C, Cheah PY. Mapping of hereditary mixed polyposis syndrome (HMPS) to chromosome 10q23 by genomewide high-density single nucleotide polymorphism (SNP) scan and identification of BMPR1A loss of function. J Med Genet. 2006;43(3):e13.PubMedPubMedCentral
25.
go back to reference Latchford AR, Neale K, Phillips RK, Clark SK. Juvenile polyposis syndrome: a study of genotype, phenotype, and long-term outcome. Dis Colon Rectum. 2012;55(10):1038–43.PubMed Latchford AR, Neale K, Phillips RK, Clark SK. Juvenile polyposis syndrome: a study of genotype, phenotype, and long-term outcome. Dis Colon Rectum. 2012;55(10):1038–43.PubMed
26.
go back to reference Honda Y, Sato Y, Yokoyama J, Kobayashi M, Narisawa R, Kawauchi Y, et al. Familial juvenile polyposis syndrome with a novel SMAD4 germline mutation. Clin J Gastroenterol. 2013;6(5):361–7.PubMed Honda Y, Sato Y, Yokoyama J, Kobayashi M, Narisawa R, Kawauchi Y, et al. Familial juvenile polyposis syndrome with a novel SMAD4 germline mutation. Clin J Gastroenterol. 2013;6(5):361–7.PubMed
27.
go back to reference Pashankar D, Murphy JJ, Ostry A, Schreiber RA. Life-threatening gastrointestinal hemorrhage due to juvenile polyposis. Am J Gastroenterol. 2000;95(2):543–5.PubMed Pashankar D, Murphy JJ, Ostry A, Schreiber RA. Life-threatening gastrointestinal hemorrhage due to juvenile polyposis. Am J Gastroenterol. 2000;95(2):543–5.PubMed
28.
go back to reference Aytac E, Sulu B, Heald B, O'Malley M, LaGuardia L, Remzi FH, et al. Genotype-defined cancer risk in juvenile polyposis syndrome. Br J Surg. 2015;102(1):114–8.PubMed Aytac E, Sulu B, Heald B, O'Malley M, LaGuardia L, Remzi FH, et al. Genotype-defined cancer risk in juvenile polyposis syndrome. Br J Surg. 2015;102(1):114–8.PubMed
29.
go back to reference Ishida H, Ishibashi K, Iwama T. Malignant tumors associated with juvenile polyposis syndrome in Japan. Surg Today. 2018;48(3):253–63.PubMed Ishida H, Ishibashi K, Iwama T. Malignant tumors associated with juvenile polyposis syndrome in Japan. Surg Today. 2018;48(3):253–63.PubMed
30.
go back to reference Postgate AJ, Will OC, Fraser CH, Fitzpatrick A, Phillips RK, Clark SK. Capsule endoscopy for the small bowel in juvenile polyposis syndrome: a case series. Endoscopy. 2009;41(11):1001–4.PubMed Postgate AJ, Will OC, Fraser CH, Fitzpatrick A, Phillips RK, Clark SK. Capsule endoscopy for the small bowel in juvenile polyposis syndrome: a case series. Endoscopy. 2009;41(11):1001–4.PubMed
Metadata
Title
Juvenile polyposis syndrome might be misdiagnosed as familial adenomatous polyposis: a case report and literature review
Authors
Xian Hua Gao
Juan Li
Zi Ye Zhao
Xiao Dong Xu
Yi Qi Du
Hong Li Yan
Lian Jie Liu
Chen Guang Bai
Wei Zhang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2020
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-020-01238-7

Other articles of this Issue 1/2020

BMC Gastroenterology 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.