Skip to main content
Top
Published in: BMC Gastroenterology 1/2018

Open Access 01-12-2018 | Research article

Mitotic and apoptotic activity in colorectal neoplasia

Authors: Darina Kohoutova, Jaroslav Pejchal, Jan Bures

Published in: BMC Gastroenterology | Issue 1/2018

Login to get access

Abstract

Background

Colorectal cancer (CRC) is third most commonly diagnosed cancer worldwide. The aim of the prospective study was to evaluate mitosis and apoptosis of epithelial cells at each stage of colorectal neoplasia.

Methods

A total of 61 persons were enrolled into the study: 18 patients with non-advanced colorectal adenoma (non-a-A), 13 patients with advanced colorectal adenoma (a-A), 13 patients with CRC and 17 controls: individuals with normal findings on colonoscopy. Biopsy samples were taken from pathology (patients) and healthy mucosa (patients and healthy controls). Samples were formalin-fixed paraffin-embedded and stained with haematoxylin-eosin. Mitotic and apoptotic activity were evaluated in lower and upper part of the crypts and in the superficial compartment. Apoptotic activity was also assessed using detection of activated caspase-3.

Results

In controls, mitotic activity was present in lower part of crypts, accompanied with low apoptotic activity. Mitotic and apoptotic activity decreased (to almost zero) in upper part of crypts. In superficial compartment, increase in apoptotic activity was observed. Transformation of healthy mucosa into non-a-A was associated with significant increase of mitotic activity in lower and upper part of the crypts and with significant increase of apoptotic activity in all three compartments; p < 0.05. Transformation of non-a-A into a-A did not lead to any further significant increase in apoptotic activity, but was related to significant increase in mitotic activity in upper part of crypts and superficial compartment. A significant decrease in apoptotic activity was detected in all three comparments of CRC samples compared to a-A; p < 0.05. No differences in mitotic and apoptotic activity between biopsies in healthy controls and biopsy samples from healthy mucosa in patients with colorectal neoplasia were observed. Detection of activated caspase-3 confirmed the above findings in apoptotic activity.

Conclusions

Significant dysregulation of mitosis and apoptosis during the progression of colorectal neoplasia, corresponding with histology, was confirmed. In patients with sporadic colorectal neoplasia, healthy mucosa does not display different mitotic and apoptotic activity compared to mucosa in healthy controls and therefore adequate endoscopic/surgical removal of colorectal neoplasia is sufficient.
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMed Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMed
2.
go back to reference Arora H, Qureshi R, Rizvi MA, et al. Study of apoptosis-related interactions in colorectal cancer. Tumour Biol. 2016;37(11):14415–25.CrossRefPubMed Arora H, Qureshi R, Rizvi MA, et al. Study of apoptosis-related interactions in colorectal cancer. Tumour Biol. 2016;37(11):14415–25.CrossRefPubMed
3.
4.
go back to reference Maskens AP, Dujardin-Loits RM. Kinetics of tissue proliferation in colorectal mucosa during post-natal growth. Cell Tissue Kinet. 1981;14(5):467–77.PubMed Maskens AP, Dujardin-Loits RM. Kinetics of tissue proliferation in colorectal mucosa during post-natal growth. Cell Tissue Kinet. 1981;14(5):467–77.PubMed
5.
6.
go back to reference Zhao R, Michor F. Patterns of proliferative activity in the colonic crypt determine crypt stability and rates of somatic evolution. PLoS Comput Biol. 2013;9:e1003082.CrossRefPubMedPubMedCentral Zhao R, Michor F. Patterns of proliferative activity in the colonic crypt determine crypt stability and rates of somatic evolution. PLoS Comput Biol. 2013;9:e1003082.CrossRefPubMedPubMedCentral
7.
go back to reference Sträter J, Koretz K, Günthert AR, et al. In situ detection of enterocytic apoptosis in normal colonic mucosa and in familial adenomatous polyposis. Gut. 1995;37(6):819–25.CrossRefPubMedPubMedCentral Sträter J, Koretz K, Günthert AR, et al. In situ detection of enterocytic apoptosis in normal colonic mucosa and in familial adenomatous polyposis. Gut. 1995;37(6):819–25.CrossRefPubMedPubMedCentral
8.
go back to reference van der Wath RC, Gardiner BS, Burgess AW, et al. Cell organisation in the colonic crypt: a theoretical comparison of the pedigree and niche concepts. PLoS One. 2013;8(9):e73204.CrossRefPubMedPubMedCentral van der Wath RC, Gardiner BS, Burgess AW, et al. Cell organisation in the colonic crypt: a theoretical comparison of the pedigree and niche concepts. PLoS One. 2013;8(9):e73204.CrossRefPubMedPubMedCentral
9.
go back to reference Potten CS, Kellett M, Roberts SA, et al. Measurement of in vivo proliferation in human colorectal mucosa using bromodeoxyuridine. Gut. 1992;33(1):71–8.CrossRefPubMedPubMedCentral Potten CS, Kellett M, Roberts SA, et al. Measurement of in vivo proliferation in human colorectal mucosa using bromodeoxyuridine. Gut. 1992;33(1):71–8.CrossRefPubMedPubMedCentral
10.
go back to reference Karoui M, Tresallet C, Brouquet A, et al. Colorectal carcinogenesis. 1. Hereditary predisposition and colorectal cancer. J Chir (Paris). 2007;144(1):13–8.CrossRef Karoui M, Tresallet C, Brouquet A, et al. Colorectal carcinogenesis. 1. Hereditary predisposition and colorectal cancer. J Chir (Paris). 2007;144(1):13–8.CrossRef
11.
go back to reference Kohoutova D, Smajs D, Moravkova P, et al. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect Dis. 2014;14:733.CrossRefPubMedPubMedCentral Kohoutova D, Smajs D, Moravkova P, et al. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect Dis. 2014;14:733.CrossRefPubMedPubMedCentral
12.
go back to reference Pejchal J, Pejchal J, Novotný J, et al. Activation of p38 MAPK and expression of TGF-β1 in rat colon enterocytes after whole body γ-irradiation. Int J Radiat Biol. 2012;88(4):348–58.CrossRefPubMed Pejchal J, Pejchal J, Novotný J, et al. Activation of p38 MAPK and expression of TGF-β1 in rat colon enterocytes after whole body γ-irradiation. Int J Radiat Biol. 2012;88(4):348–58.CrossRefPubMed
13.
go back to reference Kohoutova D, Pejchal J, Cyrany J et al. Apoptosis in the development of colorectal neoplasia. Gastroenterol and Hepatol. 2016;70(4):313–318. [Article in Czech]. Kohoutova D, Pejchal J, Cyrany J et al. Apoptosis in the development of colorectal neoplasia. Gastroenterol and Hepatol. 2016;70(4):313–318. [Article in Czech].
14.
go back to reference Hassan M, Watari H, AbuAlmaaty A, et al. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.PubMedPubMedCentral Hassan M, Watari H, AbuAlmaaty A, et al. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.PubMedPubMedCentral
15.
go back to reference Leiszter K, Galamb O, Sipos F, et al. Sporadic colorectal cancer development shows rejuvenescence regarding epithelial proliferation and apoptosis. PLoS One. 2013;8(10):e74140.CrossRefPubMedPubMedCentral Leiszter K, Galamb O, Sipos F, et al. Sporadic colorectal cancer development shows rejuvenescence regarding epithelial proliferation and apoptosis. PLoS One. 2013;8(10):e74140.CrossRefPubMedPubMedCentral
16.
go back to reference Plati J, Bucur O, Khosravi-Far R. Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb). 2011;3(4):279–96.CrossRef Plati J, Bucur O, Khosravi-Far R. Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb). 2011;3(4):279–96.CrossRef
17.
go back to reference Koehler BC, Jäger D, Schulze-Bergkamen H. Targeting cell death signaling in colorectal cancer: current strategies and future perspectives. World J Gastroenterol. 2014;20(8):1923–34.CrossRefPubMedPubMedCentral Koehler BC, Jäger D, Schulze-Bergkamen H. Targeting cell death signaling in colorectal cancer: current strategies and future perspectives. World J Gastroenterol. 2014;20(8):1923–34.CrossRefPubMedPubMedCentral
18.
go back to reference Wang H, Sun X, Li M. Apoptosis-induction is a novel therapeutic strategy for gastrointestinal and liver cancers. Curr Gene Ther. 2015;15(2):193–200.CrossRefPubMed Wang H, Sun X, Li M. Apoptosis-induction is a novel therapeutic strategy for gastrointestinal and liver cancers. Curr Gene Ther. 2015;15(2):193–200.CrossRefPubMed
19.
go back to reference Lockshin RA, Williams CM. Programmed cell death - II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Ins Physiol. 1964;10:643–9.CrossRef Lockshin RA, Williams CM. Programmed cell death - II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Ins Physiol. 1964;10:643–9.CrossRef
20.
go back to reference Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.CrossRefPubMedPubMedCentral Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.CrossRefPubMedPubMedCentral
21.
go back to reference Harfouche G, Martin MT. Response of normal stem cells to ionizing radiation: a balance between homeostasis and genomic stability. Mutat Res. 2010;704:167–74.CrossRefPubMed Harfouche G, Martin MT. Response of normal stem cells to ionizing radiation: a balance between homeostasis and genomic stability. Mutat Res. 2010;704:167–74.CrossRefPubMed
23.
go back to reference Dhawan P, Ahmad R, Srivastava AS, et al. Cancer stem cells and colorectal cancer: an overview. Curr Top Med Chem. 2011;11(13):1592–8.CrossRefPubMed Dhawan P, Ahmad R, Srivastava AS, et al. Cancer stem cells and colorectal cancer: an overview. Curr Top Med Chem. 2011;11(13):1592–8.CrossRefPubMed
27.
go back to reference Søreide K, Gudlaugsson E, Skaland I, et al. Metachronous cancer development in patients with sporadic colorectal adenomas-multivariate risk model with independent and combined value of hTERT and survivin. Int J Color Dis. 2008;23(4):389–400.CrossRef Søreide K, Gudlaugsson E, Skaland I, et al. Metachronous cancer development in patients with sporadic colorectal adenomas-multivariate risk model with independent and combined value of hTERT and survivin. Int J Color Dis. 2008;23(4):389–400.CrossRef
28.
go back to reference Hernandez JM, Farma JM, Coppola D, et al. Expression of the antiapoptotic protein survivin in colon cancer. Clin Colorectal Cancer. 2011;10(3):188–93.CrossRefPubMedPubMedCentral Hernandez JM, Farma JM, Coppola D, et al. Expression of the antiapoptotic protein survivin in colon cancer. Clin Colorectal Cancer. 2011;10(3):188–93.CrossRefPubMedPubMedCentral
29.
go back to reference Konturek PC, Rembiasz K, Burnat G, et al. Effects of cyclooxygenase-2 inhibition on serum and tumor gastrins and expression of apoptosis-related proteins in colorectal cancer. Dig Dis Sci. 2006;51(4):779–87.CrossRefPubMed Konturek PC, Rembiasz K, Burnat G, et al. Effects of cyclooxygenase-2 inhibition on serum and tumor gastrins and expression of apoptosis-related proteins in colorectal cancer. Dig Dis Sci. 2006;51(4):779–87.CrossRefPubMed
30.
go back to reference Cai Y, Ma W, Huang X, et al. Effect of survivin on tumor growth of colorectal cancer in vivo. Int J Clin Exp Pathol. 2015;8(10):13267–72.PubMedPubMedCentral Cai Y, Ma W, Huang X, et al. Effect of survivin on tumor growth of colorectal cancer in vivo. Int J Clin Exp Pathol. 2015;8(10):13267–72.PubMedPubMedCentral
31.
go back to reference Pennati M, Folini M, Zaffaroni N. Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis. 2007;28(6):1133–9.CrossRefPubMed Pennati M, Folini M, Zaffaroni N. Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis. 2007;28(6):1133–9.CrossRefPubMed
32.
go back to reference Bordonaro M, Drago E, Atamna W, et al. Comprehensive suppression of all apoptosis-induced proliferation pathways as a proposed approach to colorectal cancer prevention and therapy. PLoS One. 2014;9(12):e115068.CrossRefPubMedPubMedCentral Bordonaro M, Drago E, Atamna W, et al. Comprehensive suppression of all apoptosis-induced proliferation pathways as a proposed approach to colorectal cancer prevention and therapy. PLoS One. 2014;9(12):e115068.CrossRefPubMedPubMedCentral
33.
go back to reference Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133(7 Suppl):2485S–93S.CrossRefPubMed Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133(7 Suppl):2485S–93S.CrossRefPubMed
34.
go back to reference Candido EP, Reeves R, Davie JR. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell. 1978;14(1):105–13.CrossRefPubMed Candido EP, Reeves R, Davie JR. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell. 1978;14(1):105–13.CrossRefPubMed
35.
36.
go back to reference Bultman SJ. Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin Cancer Res. 2014;20(4):799–803.CrossRefPubMed Bultman SJ. Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin Cancer Res. 2014;20(4):799–803.CrossRefPubMed
37.
go back to reference Kikuchi Y, Dinjens WN, Bosman FT. Proliferation and apoptosis in proliferative lesions of the colon and rectum. Virchows Arch. 1997;431:111–7.CrossRefPubMed Kikuchi Y, Dinjens WN, Bosman FT. Proliferation and apoptosis in proliferative lesions of the colon and rectum. Virchows Arch. 1997;431:111–7.CrossRefPubMed
38.
go back to reference Hong MY, Turner ND, Murphy ME, et al. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats. Cancer Prev Res (Phila). 2015;8(11):1076–83.CrossRef Hong MY, Turner ND, Murphy ME, et al. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats. Cancer Prev Res (Phila). 2015;8(11):1076–83.CrossRef
39.
Metadata
Title
Mitotic and apoptotic activity in colorectal neoplasia
Authors
Darina Kohoutova
Jaroslav Pejchal
Jan Bures
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2018
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-018-0786-y

Other articles of this Issue 1/2018

BMC Gastroenterology 1/2018 Go to the issue