Skip to main content
Top
Published in: BMC Gastroenterology 1/2017

Open Access 01-12-2017 | Research article

Fast food diet-induced non-alcoholic fatty liver disease exerts early protective effect against acetaminophen intoxication in mice

Authors: Tae Hyung Kim, Dahee Choi, Joo Young Kim, Jeong Hyeon Lee, Seung-Hoi Koo

Published in: BMC Gastroenterology | Issue 1/2017

Login to get access

Abstract

Background

Acetaminophen (APAP) is a readily available and safe painkiller. However, its overdose is the most common cause of acute liver injury (ALI). Many predisposing factors contribute to susceptibility to APAP-induced ALI. Non-alcoholic fatty liver disease (NAFLD), the major cause of chronic liver disease, is considered an important predictor of APAP-induced ALI, although the exact mechanism controversial. In this study, we aimed to elucidate the effects of NAFLD on APAP-induced ALI.

Methods

Two groups of mice, normal chow (NC) diet-fed and fast food (FF) diet-fed mice for 14 weeks, were further divided into two subgroups: intraperitoneally injected with either saline (NC-S and FF-S groups) or APAP (NC-A and FF-A groups). Biochemical tests, histological analysis, quantitative PCR, and western blotting were conducted.

Results

Alanine aminotransferase (ALT) level (199.0 ± 39.0 vs. 63.8 ± 7.4 IU/L, p < 0.05) and NAFLD activity score (0 vs. 4.5 ± 0.22) were significantly higher in mice in FF-S group than those in NC-S group. ALI features such as ALT level (8447.8 ± 1185.3 vs. 836.6 ± 185.1 IU/L, p < 0.001) and centrizonal necrosis were prominent and mRNA levels of Trib3 (RR, 1.81) was high in mice in the NC-A group. Levels of CYP2E1 and anti-inflammatory molecules such as PPAR-γ, p62, and NRF2 were high in mice in the FF-A group.

Conclusions

Our results showed that while the FF diet clearly induced non-alcoholic steatohepatitis and metabolic syndrome, NAFLD also attenuates APAP-induced ALI by inducing anti-inflammatory molecules such as PPAR-γ.
Appendix
Available only for authorised users
Literature
1.
go back to reference Clark L, Taubman S. Acetaminophen overdoses, active component, US armed forces, 2006-2015. MSMR. 2016;23(11):16.PubMed Clark L, Taubman S. Acetaminophen overdoses, active component, US armed forces, 2006-2015. MSMR. 2016;23(11):16.PubMed
2.
go back to reference Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, et al. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology. 2005;42(6):1364–72.CrossRefPubMed Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, et al. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology. 2005;42(6):1364–72.CrossRefPubMed
3.
go back to reference Lee WM. Acetaminophen and the US acute liver failure study group: lowering the risks of hepatic failure. Hepatology. 2004;40(1):6–9.CrossRefPubMed Lee WM. Acetaminophen and the US acute liver failure study group: lowering the risks of hepatic failure. Hepatology. 2004;40(1):6–9.CrossRefPubMed
4.
go back to reference Michaut A, Moreau C, Robin MA, Fromenty B. Acetaminophen-induced liver injury in obesity and nonalcoholic fatty liver disease. Liver Int. 2014;34(7):e171–9.CrossRefPubMed Michaut A, Moreau C, Robin MA, Fromenty B. Acetaminophen-induced liver injury in obesity and nonalcoholic fatty liver disease. Liver Int. 2014;34(7):e171–9.CrossRefPubMed
5.
go back to reference Ramachandran R, Kakar S. Histological patterns in drug-induced liver disease. J Clin Pathol. 2009;62(6):481–92.CrossRefPubMed Ramachandran R, Kakar S. Histological patterns in drug-induced liver disease. J Clin Pathol. 2009;62(6):481–92.CrossRefPubMed
7.
go back to reference Nguyen GC, Sam J, Thuluvath PJ, Hepatitis C. Is a predictor of acute liver injury among hospitalizations for acetaminophen overdose in the United States: a nationwide analysis. Hepatology. 2008;48(4):1336–41.CrossRefPubMed Nguyen GC, Sam J, Thuluvath PJ, Hepatitis C. Is a predictor of acute liver injury among hospitalizations for acetaminophen overdose in the United States: a nationwide analysis. Hepatology. 2008;48(4):1336–41.CrossRefPubMed
8.
go back to reference Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 2015;1:15080.CrossRefPubMed Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 2015;1:15080.CrossRefPubMed
9.
go back to reference Marchesini G, Petta S, Dalle Grave R. Diet, weight loss, and liver health in nonalcoholic fatty liver disease: Pathophysiology, evidence, and practice. Hepatology. 2016;63(6):2032–43.CrossRefPubMed Marchesini G, Petta S, Dalle Grave R. Diet, weight loss, and liver health in nonalcoholic fatty liver disease: Pathophysiology, evidence, and practice. Hepatology. 2016;63(6):2032–43.CrossRefPubMed
10.
go back to reference Whalley S, Puvanachandra P, Desai A, Kennedy H. Hepatology outpatient service provision in secondary care: a study of liver disease incidence and resource costs. Clin Med (London, England). 2007;7(2):119–24.CrossRef Whalley S, Puvanachandra P, Desai A, Kennedy H. Hepatology outpatient service provision in secondary care: a study of liver disease incidence and resource costs. Clin Med (London, England). 2007;7(2):119–24.CrossRef
11.
go back to reference Aubert J, Begriche K, Delannoy M, Morel I, Pajaud J, Ribault C, et al. Differences in early acetaminophen hepatotoxicity between obese ob/ob and db/db mice. J Pharmacol Exp Ther. 2012;342(3):676–87.CrossRefPubMed Aubert J, Begriche K, Delannoy M, Morel I, Pajaud J, Ribault C, et al. Differences in early acetaminophen hepatotoxicity between obese ob/ob and db/db mice. J Pharmacol Exp Ther. 2012;342(3):676–87.CrossRefPubMed
12.
go back to reference Kon K, Ikejima K, Okumura K, Arai K, Aoyama T, Watanabe S. Diabetic KK-A(y) mice are highly susceptible to oxidative hepatocellular damage induced by acetaminophen. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):G329–37.CrossRefPubMed Kon K, Ikejima K, Okumura K, Arai K, Aoyama T, Watanabe S. Diabetic KK-A(y) mice are highly susceptible to oxidative hepatocellular damage induced by acetaminophen. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):G329–37.CrossRefPubMed
13.
go back to reference Kucera O, Rousar T, Stankova P, Hanackova L, Lotkova H, Podhola M, et al. Susceptibility of rat non-alcoholic fatty liver to the acute toxic effect of acetaminophen. J Gastroenterol Hepatol. 2012;27(2):323–30.CrossRefPubMed Kucera O, Rousar T, Stankova P, Hanackova L, Lotkova H, Podhola M, et al. Susceptibility of rat non-alcoholic fatty liver to the acute toxic effect of acetaminophen. J Gastroenterol Hepatol. 2012;27(2):323–30.CrossRefPubMed
14.
go back to reference Ito Y, Abril ER, Bethea NW, McCuskey MK, McCuskey RS. Dietary steatotic liver attenuates acetaminophen hepatotoxicity in mice. Microcirculation. 2006;13(1):19–27.CrossRefPubMed Ito Y, Abril ER, Bethea NW, McCuskey MK, McCuskey RS. Dietary steatotic liver attenuates acetaminophen hepatotoxicity in mice. Microcirculation. 2006;13(1):19–27.CrossRefPubMed
15.
go back to reference Sawant SP, Dnyanmote AV, Mitra MS, Chilakapati J, Warbritton A, Latendresse JR, et al. Protective effect of type 2 diabetes on acetaminophen-induced hepatotoxicity in male Swiss-Webster mice. J Pharmacol Exp Ther. 2006;316(2):507–19.CrossRefPubMed Sawant SP, Dnyanmote AV, Mitra MS, Chilakapati J, Warbritton A, Latendresse JR, et al. Protective effect of type 2 diabetes on acetaminophen-induced hepatotoxicity in male Swiss-Webster mice. J Pharmacol Exp Ther. 2006;316(2):507–19.CrossRefPubMed
16.
go back to reference Donthamsetty S, Bhave VS, Mitra MS, Latendresse JR, Mehendale HM. Nonalcoholic steatohepatitic (NASH) mice are protected from higher hepatotoxicity of acetaminophen upon induction of PPARalpha with clofibrate. Toxicol Appl Pharmacol. 2008;230(3):327–37.CrossRefPubMed Donthamsetty S, Bhave VS, Mitra MS, Latendresse JR, Mehendale HM. Nonalcoholic steatohepatitic (NASH) mice are protected from higher hepatotoxicity of acetaminophen upon induction of PPARalpha with clofibrate. Toxicol Appl Pharmacol. 2008;230(3):327–37.CrossRefPubMed
17.
go back to reference Charlton M, Krishnan A, Viker K, Sanderson S, Cazanave S, McConico A, et al. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol. 2011;301(5):G825–34.CrossRefPubMedPubMedCentral Charlton M, Krishnan A, Viker K, Sanderson S, Cazanave S, McConico A, et al. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol. 2011;301(5):G825–34.CrossRefPubMedPubMedCentral
18.
go back to reference Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metabol. 2016;13:15.CrossRef Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metabol. 2016;13:15.CrossRef
19.
go back to reference Donthamsetty S, Bhave VS, Mitra MS, Latendresse JR, Mehendale HM. Nonalcoholic fatty liver sensitizes rats to carbon tetrachloride hepatotoxicity. Hepatology. 2007;45(2):391–403.CrossRefPubMed Donthamsetty S, Bhave VS, Mitra MS, Latendresse JR, Mehendale HM. Nonalcoholic fatty liver sensitizes rats to carbon tetrachloride hepatotoxicity. Hepatology. 2007;45(2):391–403.CrossRefPubMed
20.
go back to reference Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci. 2002;67(2):322–8.CrossRefPubMed Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci. 2002;67(2):322–8.CrossRefPubMed
21.
go back to reference Gao W, Mizukawa Y, Nakatsu N, Minowa Y, Yamada H, Ohno Y, et al. Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats. Toxicol Appl Pharmacol. 2010;247(3):211–21.CrossRefPubMed Gao W, Mizukawa Y, Nakatsu N, Minowa Y, Yamada H, Ohno Y, et al. Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats. Toxicol Appl Pharmacol. 2010;247(3):211–21.CrossRefPubMed
23.
go back to reference Liu J, Wu KC, Lu Y-F, Ekuase E, Klaassen CD. Nrf2 protection against liver injury produced by various hepatotoxicants. Oxid Med Cell Longev. 2013;2013:305861. Liu J, Wu KC, Lu Y-F, Ekuase E, Klaassen CD. Nrf2 protection against liver injury produced by various hepatotoxicants. Oxid Med Cell Longev. 2013;2013:305861.
24.
go back to reference Ni HM, Boggess N, McGill MR, Lebofsky M, Borude P, Apte U, et al. Liver-specific loss of Atg5 causes persistent activation of Nrf2 and protects against acetaminophen-induced liver injury. Toxicol Sci. 2012;127(2):438–50.CrossRefPubMedPubMedCentral Ni HM, Boggess N, McGill MR, Lebofsky M, Borude P, Apte U, et al. Liver-specific loss of Atg5 causes persistent activation of Nrf2 and protects against acetaminophen-induced liver injury. Toxicol Sci. 2012;127(2):438–50.CrossRefPubMedPubMedCentral
25.
go back to reference Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013;51(5):618–31.CrossRefPubMed Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013;51(5):618–31.CrossRefPubMed
26.
go back to reference Mahmoud AM, Germoush MO, Alotaibi MF, Hussein OE. Possible involvement of Nrf2 and PPARgamma up-regulation in the protective effect of umbelliferone against cyclophosphamide-induced hepatotoxicity. Biomed Pharmacother. 2017;86:297–306.CrossRefPubMed Mahmoud AM, Germoush MO, Alotaibi MF, Hussein OE. Possible involvement of Nrf2 and PPARgamma up-regulation in the protective effect of umbelliferone against cyclophosphamide-induced hepatotoxicity. Biomed Pharmacother. 2017;86:297–306.CrossRefPubMed
27.
go back to reference Cho H-Y, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006;8(1–2):76–87.CrossRefPubMed Cho H-Y, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006;8(1–2):76–87.CrossRefPubMed
28.
go back to reference Martin H. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat Res. 2009;669(1–2):1–7.CrossRefPubMed Martin H. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat Res. 2009;669(1–2):1–7.CrossRefPubMed
29.
go back to reference Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19(5):557–66.CrossRefPubMed Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19(5):557–66.CrossRefPubMed
30.
go back to reference Pettinelli P, Videla LA. Up-regulation of PPAR-gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metab. 2011;96(5):1424–30.CrossRefPubMed Pettinelli P, Videla LA. Up-regulation of PPAR-gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metab. 2011;96(5):1424–30.CrossRefPubMed
31.
go back to reference Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S, Campbell M, et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet. 2007;3(4):e64.CrossRefPubMedPubMedCentral Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S, Campbell M, et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet. 2007;3(4):e64.CrossRefPubMedPubMedCentral
32.
go back to reference Gupta G, Krishna G, Chellappan DK, Gubbiyappa KS, Candasamy M, Dua K. Protective effect of pioglitazone, a PPARgamma agonist against acetaminophen-induced hepatotoxicity in rats. Mol Cell Biochem. 2014;393(1–2):223–8.CrossRefPubMed Gupta G, Krishna G, Chellappan DK, Gubbiyappa KS, Candasamy M, Dua K. Protective effect of pioglitazone, a PPARgamma agonist against acetaminophen-induced hepatotoxicity in rats. Mol Cell Biochem. 2014;393(1–2):223–8.CrossRefPubMed
33.
go back to reference Wang JX, Zhang C, Fu L, Zhang DG, Wang BW, Zhang ZH, et al. Protective effect of rosiglitazone against acetaminophen-induced acute liver injury is associated with down-regulation of hepatic NADPH oxidases. Toxicol Lett. 2017;265:38–46.CrossRefPubMed Wang JX, Zhang C, Fu L, Zhang DG, Wang BW, Zhang ZH, et al. Protective effect of rosiglitazone against acetaminophen-induced acute liver injury is associated with down-regulation of hepatic NADPH oxidases. Toxicol Lett. 2017;265:38–46.CrossRefPubMed
34.
go back to reference Zhang X, Rodriguez-Galan MC, Subleski JJ, Ortaldo JR, Hodge DL, Wang JM, et al. Peroxisome proliferator-activated receptor-gamma and its ligands attenuate biologic functions of human natural killer cells. Blood. 2004;104(10):3276–84.CrossRefPubMed Zhang X, Rodriguez-Galan MC, Subleski JJ, Ortaldo JR, Hodge DL, Wang JM, et al. Peroxisome proliferator-activated receptor-gamma and its ligands attenuate biologic functions of human natural killer cells. Blood. 2004;104(10):3276–84.CrossRefPubMed
35.
go back to reference Cunard R, Eto Y, Muljadi JT, Glass CK, Kelly CJ, Ricote M. Repression of IFN- expression by peroxisome proliferator-activated receptor. J Immunol. 2004;172(12):7530–6.CrossRefPubMed Cunard R, Eto Y, Muljadi JT, Glass CK, Kelly CJ, Ricote M. Repression of IFN- expression by peroxisome proliferator-activated receptor. J Immunol. 2004;172(12):7530–6.CrossRefPubMed
36.
go back to reference Jaeschke H, Williams CD, Ramachandran A, Bajt ML. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int. 2012;32(1):8–20.CrossRefPubMed Jaeschke H, Williams CD, Ramachandran A, Bajt ML. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int. 2012;32(1):8–20.CrossRefPubMed
37.
go back to reference Krenkel O, Mossanen JC, Tacke F. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg Nutr. 2014;3(6):331–43.PubMedPubMedCentral Krenkel O, Mossanen JC, Tacke F. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg Nutr. 2014;3(6):331–43.PubMedPubMedCentral
38.
go back to reference Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell. 2013;155(2):369–83.CrossRefPubMedPubMedCentral Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell. 2013;155(2):369–83.CrossRefPubMedPubMedCentral
39.
go back to reference Karise I, Ornellas F, Barbosa-da-Silva S, Matsuura C, del Sol M, Aguila MB, et al. Liver and Metformin: lessons of a fructose diet in mice. Biochimie Open. 2017;4:19–30.CrossRef Karise I, Ornellas F, Barbosa-da-Silva S, Matsuura C, del Sol M, Aguila MB, et al. Liver and Metformin: lessons of a fructose diet in mice. Biochimie Open. 2017;4:19–30.CrossRef
40.
go back to reference Lee KK, Imaizumi N, Chamberland SR, Alder NN, Boelsterli UA. Targeting mitochondria with methylene blue protects mice against acetaminophen-induced liver injury. Hepatology. 2015;61(1):326–36.CrossRefPubMed Lee KK, Imaizumi N, Chamberland SR, Alder NN, Boelsterli UA. Targeting mitochondria with methylene blue protects mice against acetaminophen-induced liver injury. Hepatology. 2015;61(1):326–36.CrossRefPubMed
41.
go back to reference Ramachandran A, Lebofsky M, Weinman SA, Jaeschke H. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol. 2011;251(3):226–33.CrossRefPubMedPubMedCentral Ramachandran A, Lebofsky M, Weinman SA, Jaeschke H. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol. 2011;251(3):226–33.CrossRefPubMedPubMedCentral
42.
go back to reference Ito Y, Bethea NW, Abril ER, McCuskey RS. Early hepatic microvascular injury in response to acetaminophen toxicity. Microcirculation. 2003;10(5):391–400.CrossRefPubMed Ito Y, Bethea NW, Abril ER, McCuskey RS. Early hepatic microvascular injury in response to acetaminophen toxicity. Microcirculation. 2003;10(5):391–400.CrossRefPubMed
43.
go back to reference Fujimoto K, Kumagai K, Ito K, Arakawa S, Ando Y, Oda S, et al. Sensitivity of liver injury in heterozygous Sod2 knockout mice treated with troglitazone or acetaminophen. Toxicol Pathol. 2009;37(2):193–200.CrossRefPubMed Fujimoto K, Kumagai K, Ito K, Arakawa S, Ando Y, Oda S, et al. Sensitivity of liver injury in heterozygous Sod2 knockout mice treated with troglitazone or acetaminophen. Toxicol Pathol. 2009;37(2):193–200.CrossRefPubMed
Metadata
Title
Fast food diet-induced non-alcoholic fatty liver disease exerts early protective effect against acetaminophen intoxication in mice
Authors
Tae Hyung Kim
Dahee Choi
Joo Young Kim
Jeong Hyeon Lee
Seung-Hoi Koo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2017
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-017-0680-z

Other articles of this Issue 1/2017

BMC Gastroenterology 1/2017 Go to the issue