Skip to main content
Top
Published in: BMC Gastroenterology 1/2016

Open Access 01-12-2016 | Research article

Role of vitamin D3 combined to alginates in preventing acid and oxidative injury in cultured gastric epithelial cells

Authors: Francesca Uberti, Claudio Bardelli, Vera Morsanuto, Sabrina Ghirlanda, Claudio Molinari

Published in: BMC Gastroenterology | Issue 1/2016

Login to get access

Abstract

Background

Gastric diseases are a worldwide problem in modern society, as reported in the USA, in the range of 0.5–2 episodes/year/person and an incidence of 5–100 episodes/1000/week according to seasons and age. There is convincing evidence that oxidative stress is involved in the pathogenesis of acute gastric injury. Acid secreted from gastric parietal cells determines mucosal injuries which in turn cause inflammation and oxidative stress. Consequent inflammation produces free radicals by mitochondria thus causing lipid peroxidation, oxidative and acidic stress, which can lead to cell apoptosis. Vitamin D3, the active form of vitamin D, may counteract intracellular cell death and improve epithelial regeneration.

Methods

This study was planned to assess whether vitamin D3 is a protective factor against acid injury and oxidative stress in gastric epithelial cells. Primary epithelial cells and GTL-16 cells have been used to test the effects of Grisù® alone or in combination with vitamin D3 during oxidative stress or high acid exposition measuring cell viability, ROS production, cellular adhesion time along with apoptotic, autophagic and survival pathways. The combined effect of Grisù® and vitamin D3 was found more effective in counteracting the negative consequences of oxidative stress and acidity conditions than some other gastroprotective agents, such as Maalox® or Gaviscon®.

Results

In case of oxidative stress or acidity condition the stimulation with Grisù® alone caused an improvement of cell viability and a reduction of ROS production on epithelial gastric cells. In addition, the adhesion time of the cells was improved. All these effects were increased by the presence of vitamin D3. Similar data were also observed in primary gastric epithelial cells confirming the results obtained in GTL-16 cells.

Conclusions

These results suggest that Grisù® in combination with vitamin D3 may exert a gastroprotective effect to maintain or restore the integrity of gastric epithelium through an antioxidant pathway, inhibiting apoptosis and activating survival kinases. Moreover, the combination of Grisù® and vitamin D3 improves cell viability and decreases ROS production compared to other gastroprotective agents combined with vitamin D3. All these data were validated using primary cells isolated from gastric tissue.
Appendix
Available only for authorised users
Literature
2.
go back to reference Hu XT, Ding C, Zhou N, Xu C. Quercetin protects gastric epithelial cell from oxidative damage in vitro and in vivo. Eur J Pharmacol. 2015;754:115–24.CrossRefPubMed Hu XT, Ding C, Zhou N, Xu C. Quercetin protects gastric epithelial cell from oxidative damage in vitro and in vivo. Eur J Pharmacol. 2015;754:115–24.CrossRefPubMed
3.
go back to reference Payment P, Hunter PR. Endemic and epidemic infectious intestinal disease and its relationship to drinking water. Water Quality: Guidelines, Standards and Health. In: Lorna Fewtrell and Jamie Bartram. IWA Publishing, London: 2001. p. 61-88. Payment P, Hunter PR. Endemic and epidemic infectious intestinal disease and its relationship to drinking water. Water Quality: Guidelines, Standards and Health. In: Lorna Fewtrell and Jamie Bartram. IWA Publishing, London: 2001. p. 61-88.
4.
go back to reference Sun Z, Liu H, Yang Z, Shao D, Zhang W, Ren Y, et al. Intestinal trefoil factor activates the PI3K/Akt signaling pathway to protect gastric mucosal epithelium from damage. Int J Oncol. 2014;45:1123–32.PubMed Sun Z, Liu H, Yang Z, Shao D, Zhang W, Ren Y, et al. Intestinal trefoil factor activates the PI3K/Akt signaling pathway to protect gastric mucosal epithelium from damage. Int J Oncol. 2014;45:1123–32.PubMed
5.
go back to reference Podolsky DK. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am J Physiol. 1999;277:G495–9.PubMed Podolsky DK. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am J Physiol. 1999;277:G495–9.PubMed
6.
go back to reference Wright NA. Aspects of the biology of regeneration and repair in the human gastrointestinal tract. Philos Trans R Soc Lond B Biol Sci. 1998;353:925–33.CrossRefPubMedPubMedCentral Wright NA. Aspects of the biology of regeneration and repair in the human gastrointestinal tract. Philos Trans R Soc Lond B Biol Sci. 1998;353:925–33.CrossRefPubMedPubMedCentral
7.
go back to reference Podolsky DK. Healing the epithelium: solving the problem from two sides. J Gastroenterol. 1997;32:122–6.CrossRefPubMed Podolsky DK. Healing the epithelium: solving the problem from two sides. J Gastroenterol. 1997;32:122–6.CrossRefPubMed
8.
go back to reference Santos MF, McCormack SA, Guo Z, Okolicany J, Zheng Y, Johnson LR, et al. Rho proteins play a critical role in cell migration during the early phase of mucosal restitution. J Clin Invest. 1997;100:216–25.CrossRefPubMedPubMedCentral Santos MF, McCormack SA, Guo Z, Okolicany J, Zheng Y, Johnson LR, et al. Rho proteins play a critical role in cell migration during the early phase of mucosal restitution. J Clin Invest. 1997;100:216–25.CrossRefPubMedPubMedCentral
9.
go back to reference Dieckgraefe BK, Santoro SA, Alpers DH. Immunolocalization of alpha-integrin subunits and extracellular matrix components during human colonic organogenesis. Gastroenterology. 1996;110:58–71.CrossRefPubMed Dieckgraefe BK, Santoro SA, Alpers DH. Immunolocalization of alpha-integrin subunits and extracellular matrix components during human colonic organogenesis. Gastroenterology. 1996;110:58–71.CrossRefPubMed
10.
go back to reference Miyazaki Y, Shinomura Y, Tsutsui S, Yasunaga Y, Zushi S, Higashiyama S, et al. Oxidative stress increases gene expression of heparin-binding EGF-like growth factor and amphiregulin in cultured rat gastric epithelial cells. Biochem Biophys Res Commun. 1996;226:542–6.CrossRefPubMed Miyazaki Y, Shinomura Y, Tsutsui S, Yasunaga Y, Zushi S, Higashiyama S, et al. Oxidative stress increases gene expression of heparin-binding EGF-like growth factor and amphiregulin in cultured rat gastric epithelial cells. Biochem Biophys Res Commun. 1996;226:542–6.CrossRefPubMed
11.
go back to reference Wang JY, Johnson LR. Induction of gastric and duodenal mucosal ornithine decarboxylase during stress. Am J Physiol. 1989;257:G259–65.PubMed Wang JY, Johnson LR. Induction of gastric and duodenal mucosal ornithine decarboxylase during stress. Am J Physiol. 1989;257:G259–65.PubMed
12.
go back to reference Matsui H, Nagano Y, Shimokawa O, Kaneko T, Rai K, Udo J, et al. Gastric acid induces mitochondrial superoxide production and lipid peroxidation in gastric epithelial cells. J Gastroenterol. 2011;46:1167–76.CrossRefPubMed Matsui H, Nagano Y, Shimokawa O, Kaneko T, Rai K, Udo J, et al. Gastric acid induces mitochondrial superoxide production and lipid peroxidation in gastric epithelial cells. J Gastroenterol. 2011;46:1167–76.CrossRefPubMed
13.
go back to reference Davidson G, Kritas S, Butler R. Stressed mucosa. Nestle Nutr Workshop Ser Pediatr Program. 2007;59:133–42.PubMed Davidson G, Kritas S, Butler R. Stressed mucosa. Nestle Nutr Workshop Ser Pediatr Program. 2007;59:133–42.PubMed
14.
go back to reference Boeckxstaens GE. Neuroimmune interaction in the gut: from bench to bedside. Verh K Acad Geneeskd Belg. 2006;68:329–35.PubMed Boeckxstaens GE. Neuroimmune interaction in the gut: from bench to bedside. Verh K Acad Geneeskd Belg. 2006;68:329–35.PubMed
15.
go back to reference Iezzi A, Ferri C, Mezzetti A, Cipollone F. COX-2: friend or foe? Curr Pharm Des. 2007;13:1715–21.CrossRefPubMed Iezzi A, Ferri C, Mezzetti A, Cipollone F. COX-2: friend or foe? Curr Pharm Des. 2007;13:1715–21.CrossRefPubMed
16.
17.
go back to reference Brzozowski T, Konturek PC, Konturek SJ, Drozdowicz D, Kwiecieñ S, Pajdo R, et al. Role of gastric acid secretion in progression of acute gastric erosions induced by ischemia–reperfusion into gastric ulcers. Eur J Pharmacol. 2000;398:147–58.CrossRefPubMed Brzozowski T, Konturek PC, Konturek SJ, Drozdowicz D, Kwiecieñ S, Pajdo R, et al. Role of gastric acid secretion in progression of acute gastric erosions induced by ischemia–reperfusion into gastric ulcers. Eur J Pharmacol. 2000;398:147–58.CrossRefPubMed
18.
go back to reference Murphy MP, Smith RA. Drug delivery to mitochondria: the key to mitochondrial medicine. Adv Drug Deliv Rev. 2000;41:235–50.CrossRefPubMed Murphy MP, Smith RA. Drug delivery to mitochondria: the key to mitochondrial medicine. Adv Drug Deliv Rev. 2000;41:235–50.CrossRefPubMed
19.
go back to reference Nagano Y, Matsui H, Muramatsu M, Shimokawa O, Shibahara T, Yanaka A, et al. Rebamipide significantly inhibits indomethacin induced mitochondrial damage, lipid peroxidation, and apoptosis in gastric epithelial RGM-1 cells. Dig Dis Sci. 2005;50:S76–83.CrossRefPubMed Nagano Y, Matsui H, Muramatsu M, Shimokawa O, Shibahara T, Yanaka A, et al. Rebamipide significantly inhibits indomethacin induced mitochondrial damage, lipid peroxidation, and apoptosis in gastric epithelial RGM-1 cells. Dig Dis Sci. 2005;50:S76–83.CrossRefPubMed
20.
go back to reference Brand MD, Buckingham JA, Esteves TC, Green K, Lambert AJ, Miwa S, et al. Mitochondrial superoxide and aging: uncoupling protein activity and superoxide production. Biochem Soc Symp. 2004;71:203–13.CrossRef Brand MD, Buckingham JA, Esteves TC, Green K, Lambert AJ, Miwa S, et al. Mitochondrial superoxide and aging: uncoupling protein activity and superoxide production. Biochem Soc Symp. 2004;71:203–13.CrossRef
21.
go back to reference Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94:329–54.CrossRefPubMedPubMedCentral Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94:329–54.CrossRefPubMedPubMedCentral
22.
go back to reference Halliwell B, Clement MV, Ramalingam J, Long LH. Hydrogen peroxide. Ubiquitous in cell culture and in vivo? IUBMB Life. 2000;50:251–7.CrossRefPubMed Halliwell B, Clement MV, Ramalingam J, Long LH. Hydrogen peroxide. Ubiquitous in cell culture and in vivo? IUBMB Life. 2000;50:251–7.CrossRefPubMed
23.
go back to reference Hiraishi H, Terano A, Sugimoto T, Harada T, Razandi M, Ivey KJ. Protective role of intracellular superoxide-dismutase against extracellular oxidants in cultured rat gastric cells. J Clin Investig. 1994;93:331–8.CrossRefPubMedPubMedCentral Hiraishi H, Terano A, Sugimoto T, Harada T, Razandi M, Ivey KJ. Protective role of intracellular superoxide-dismutase against extracellular oxidants in cultured rat gastric cells. J Clin Investig. 1994;93:331–8.CrossRefPubMedPubMedCentral
24.
go back to reference Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.CrossRefPubMed Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.CrossRefPubMed
25.
26.
go back to reference Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523:123–33.CrossRefPubMed Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523:123–33.CrossRefPubMed
27.
go back to reference Kurose T, Seino Y, Ishida H, Tsuji K, Fukumoto H, Koh G, et al. Effect of vitamin D on gastrin and gastric somatostatin secretion from isolated perfused rat stomach. Life Sci. 1988;42:1995–2001.CrossRefPubMed Kurose T, Seino Y, Ishida H, Tsuji K, Fukumoto H, Koh G, et al. Effect of vitamin D on gastrin and gastric somatostatin secretion from isolated perfused rat stomach. Life Sci. 1988;42:1995–2001.CrossRefPubMed
28.
go back to reference Menezes RJ, Cheney RT, Husain A, Tretiakova M, Loewen G, Johnson CS, et al. Vitamin D receptor expression in normal, premalignant, and malignant human lung tissue. Cancer Epidemiol Biomarkers Prev. 2008;17:1104–10.CrossRefPubMedPubMedCentral Menezes RJ, Cheney RT, Husain A, Tretiakova M, Loewen G, Johnson CS, et al. Vitamin D receptor expression in normal, premalignant, and malignant human lung tissue. Cancer Epidemiol Biomarkers Prev. 2008;17:1104–10.CrossRefPubMedPubMedCentral
29.
go back to reference Stumpf WE, Sar M, Reid FA, Tanaka Y, DeLuca HF. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–90.CrossRefPubMed Stumpf WE, Sar M, Reid FA, Tanaka Y, DeLuca HF. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–90.CrossRefPubMed
30.
go back to reference Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev. 1998;78:1193–231.PubMed Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev. 1998;78:1193–231.PubMed
31.
go back to reference Uberti F, Lattuada D, Morsanuto V, Nava U, Bolis G, Vacca G, et al. Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J Clin Endocrinol Metab. 2014;99:1367–74.CrossRefPubMed Uberti F, Lattuada D, Morsanuto V, Nava U, Bolis G, Vacca G, et al. Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J Clin Endocrinol Metab. 2014;99:1367–74.CrossRefPubMed
32.
go back to reference Sun J. VDR/vitamin D receptor regulates autophagic activity through ATG16L1. Autophagy. 2016;12:1057–8.CrossRefPubMed Sun J. VDR/vitamin D receptor regulates autophagic activity through ATG16L1. Autophagy. 2016;12:1057–8.CrossRefPubMed
33.
go back to reference Giordano S, Di Renzo MF, Ferracini R, Chiadò-Piat L, Comoglio PM. p145, a protein with associated tyrosine kinase activity in a human gastric carcinoma cell line. Mol Cell Biol. 1988;8:3510–7.CrossRefPubMedPubMedCentral Giordano S, Di Renzo MF, Ferracini R, Chiadò-Piat L, Comoglio PM. p145, a protein with associated tyrosine kinase activity in a human gastric carcinoma cell line. Mol Cell Biol. 1988;8:3510–7.CrossRefPubMedPubMedCentral
35.
go back to reference Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, et al. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol. 2005;288:H1900–8.CrossRefPubMed Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, et al. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol. 2005;288:H1900–8.CrossRefPubMed
36.
go back to reference Lattuada D, Uberti F, Colciaghi B, Morsanuto V, Maldi E, Squarzanti DF, et al. Fimbrial cells exposure to catalytic iron mimics carcinogenic changes. Int J Gynecol Cancer. 2015;25:389–98.CrossRefPubMed Lattuada D, Uberti F, Colciaghi B, Morsanuto V, Maldi E, Squarzanti DF, et al. Fimbrial cells exposure to catalytic iron mimics carcinogenic changes. Int J Gynecol Cancer. 2015;25:389–98.CrossRefPubMed
37.
go back to reference Lee SH, Lee SJ, Chung JY, Jung YS, Choi SY, Hwang SH, et al. p53, secreted by K-Ras-Snail pathway, is endocytosed by K-ras-mutated cells; implication of target-specific drug delivery and early diagnostic marker. Oncogene. 2009;28:2005–14.CrossRefPubMed Lee SH, Lee SJ, Chung JY, Jung YS, Choi SY, Hwang SH, et al. p53, secreted by K-Ras-Snail pathway, is endocytosed by K-ras-mutated cells; implication of target-specific drug delivery and early diagnostic marker. Oncogene. 2009;28:2005–14.CrossRefPubMed
38.
go back to reference Wright NA, Hoffmann W, Otto WR, Rio MC, Thim L. Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration and cancer. FEBS Lett. 1997;408:121–3.CrossRefPubMed Wright NA, Hoffmann W, Otto WR, Rio MC, Thim L. Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration and cancer. FEBS Lett. 1997;408:121–3.CrossRefPubMed
39.
go back to reference Pignatelli M. Modulation of cell adhesion during epithelial restitution in the gastrointestinal tract. Yale J Biol Med. 1996;69:131–5.PubMedPubMedCentral Pignatelli M. Modulation of cell adhesion during epithelial restitution in the gastrointestinal tract. Yale J Biol Med. 1996;69:131–5.PubMedPubMedCentral
40.
go back to reference Thomas E, Wade A, Crawford G, Jenner B, Levinson N, Wilkinson J. Randomised clinical trial: relief of upper gastrointestinal symptoms by an acid pocket-targeting alginate-antacid (Gaviscon Double Action)- a double-blind, placebo-controlled, pilot study in gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2014;39(6):595–602.CrossRefPubMed Thomas E, Wade A, Crawford G, Jenner B, Levinson N, Wilkinson J. Randomised clinical trial: relief of upper gastrointestinal symptoms by an acid pocket-targeting alginate-antacid (Gaviscon Double Action)- a double-blind, placebo-controlled, pilot study in gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2014;39(6):595–602.CrossRefPubMed
41.
go back to reference Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol. 2008;294:G208–216.CrossRefPubMed Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol. 2008;294:G208–216.CrossRefPubMed
42.
go back to reference Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. Gastroenterology. 1981;81:22–9.PubMed Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. Gastroenterology. 1981;81:22–9.PubMed
43.
go back to reference Itoh M, Guth PH. Role of oxygen-derived free radicals in hemorrhagic shock-induced gastric lesions in the rat. Gastroenterology. 1985;88:1162–7.CrossRefPubMed Itoh M, Guth PH. Role of oxygen-derived free radicals in hemorrhagic shock-induced gastric lesions in the rat. Gastroenterology. 1985;88:1162–7.CrossRefPubMed
44.
go back to reference Hirota M, Inoue M, Ando Y, Hirayama K, Morino Y, Sakamoto K, et al. Inhibition of stress-induced gastric injury in the rat by glutathione. Gastroenterology. 1989;97:853–9.CrossRefPubMed Hirota M, Inoue M, Ando Y, Hirayama K, Morino Y, Sakamoto K, et al. Inhibition of stress-induced gastric injury in the rat by glutathione. Gastroenterology. 1989;97:853–9.CrossRefPubMed
Metadata
Title
Role of vitamin D3 combined to alginates in preventing acid and oxidative injury in cultured gastric epithelial cells
Authors
Francesca Uberti
Claudio Bardelli
Vera Morsanuto
Sabrina Ghirlanda
Claudio Molinari
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2016
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-016-0543-z

Other articles of this Issue 1/2016

BMC Gastroenterology 1/2016 Go to the issue