Skip to main content
Top
Published in: BMC Gastroenterology 1/2016

Open Access 01-12-2016 | Research article

Formula diet alters small intestine morphology, microbial abundance and reduces VE-cadherin and IL-10 expression in neonatal porcine model

Authors: Laxmi Yeruva, Nicole E. Spencer, Manish K. Saraf, Leah Hennings, Anne K. Bowlin, Mario A. Cleves, Kelly Mercer, Sree V. Chintapalli, Kartik Shankar, Roger G. Rank, Thomas M. Badger, Martin J. J. Ronis

Published in: BMC Gastroenterology | Issue 1/2016

Login to get access

Abstract

Background

Breastfeeding is associated with a variety of positive health outcomes in children and is recommended exclusively for the first 6 months of life; however, 50–70 % of infants in the US are formula-fed. To test the hypothesis that immune system development and function in neonates and infants are significantly influenced by diet, 2-day old piglets were fed soy or milk formula (n = 6/group/gender) until day 21 and compared to a sow-fed group (n = 6/gender).

Methods

Histomorphometric analyses of ileum, jejunum and Peyer’s patches were carried out, to determine the inflammation status, mRNA and protein expression of pro-inflammatory, anti-inflammatory and growth-related chemokines and cytokines.

Results

In formula-fed animals, increases in ileum and jejunum villus height and crypt depth were observed in comparison to sow-fed animals (jejunum, p < 0.01 villus height, p < 0.04 crypt depth; ileum p < 0.001 villus height, p < 0.002 crypt depth). In formula-fed the lymphoid follicle size (p < 0.01) and germinal centers (p < 0.01) with in the Peyer’s patch were significantly decreased in comparison to sow-fed, indicating less immune education. In ileum, formula diet induced significant up-regulation of AMCFII, IL-8, IL-15, VEGFA, LIF, FASL, CXCL11, CCL4, CCL25 and down-regulation of IL-6, IL-9, IL-10, IL-27, IFNA4, CSF3, LOC100152038, and LOC100736831 at the transcript level. We have confirmed some of the mRNA data by measuring protein, and significant down-regulation of anti-inflammatory molecule IL-10 in comparison to sow-fed piglets was observed. To further determine the membrane protein expression in the ileum, VE-cadherin, occludin, and claudin-3, Western blot analyses were conducted. Sow fed piglets showed significantly more VE-Cadherin, which associated with levels of calcium, and putrescine measured. It is possible that differences in GI tract and immune development are related to shifts in the microbiome; notably, there were 5-fold higher amounts of Lactobacillaceae spp and 3 fold higher Clostridia spp in the sow fed group in comparison to milk formula-fed piglets, whereas in milk formula-fed pigs Enterobacteriaceae spp was 5-fold higher.

Conclusion

In conclusion, formula diet alters GI morphology, microbial abundance, intestinal barrier protein VE-cadherin and anti-inflammatory molecule IL-10 expression. Further characterization of formula effects could lead to modification of infant formula to improve immune function, reduce inflammation and prevent conditions such as allergies and infections.
Appendix
Available only for authorised users
Literature
1.
go back to reference NAPNAP. Position statement on Breastfeeding. J Pediatr Health Care. 2007;21:39A–40A.CrossRef NAPNAP. Position statement on Breastfeeding. J Pediatr Health Care. 2007;21:39A–40A.CrossRef
2.
go back to reference Neifert M, Bunik M. Overcoming clinical barriers to exclusive breastfeeding. Pediatr Clin North Am. 2013;60:115–45.CrossRefPubMed Neifert M, Bunik M. Overcoming clinical barriers to exclusive breastfeeding. Pediatr Clin North Am. 2013;60:115–45.CrossRefPubMed
3.
go back to reference Dewey KG, Heinig MJ, Nommsen-Rivers LA. Differences in morbidity between breast-fed and formula-fed infants. J Pediatr. 1995;126:696–702.CrossRefPubMed Dewey KG, Heinig MJ, Nommsen-Rivers LA. Differences in morbidity between breast-fed and formula-fed infants. J Pediatr. 1995;126:696–702.CrossRefPubMed
4.
go back to reference Pickering LK, Morrow AL. Factors in human milk that protect against diarrheal disease. Infection. 1993;21:355–7.CrossRefPubMed Pickering LK, Morrow AL. Factors in human milk that protect against diarrheal disease. Infection. 1993;21:355–7.CrossRefPubMed
5.
go back to reference Beaudry M, Dufour R, Marcoux S. Relation between infant feeding and infections during the first six months of life. J Pediatr. 1995;126:191–7.CrossRefPubMed Beaudry M, Dufour R, Marcoux S. Relation between infant feeding and infections during the first six months of life. J Pediatr. 1995;126:191–7.CrossRefPubMed
6.
go back to reference Beaudry M, Dufour R, Marcoux S. [Breast feeding and protection against infection in industrialized countries]. Arch Pediatr. 1996;3(3 Suppl 1):126s–7s.CrossRefPubMed Beaudry M, Dufour R, Marcoux S. [Breast feeding and protection against infection in industrialized countries]. Arch Pediatr. 1996;3(3 Suppl 1):126s–7s.CrossRefPubMed
7.
go back to reference Yeh KY, Yeh M. Use of pup in a cup model to study gastrointestinal development: interaction of nutrition and pituitary hormones. J Nutr. 1993;123:378–81.PubMed Yeh KY, Yeh M. Use of pup in a cup model to study gastrointestinal development: interaction of nutrition and pituitary hormones. J Nutr. 1993;123:378–81.PubMed
8.
go back to reference Dvorak B, McWilliam DL, Williams CS, Dominguez JA, Machen NW, McCuskey RS, et al. Artificial formula induces precocious maturation of the small intestine of artificially reared suckling rats. J Pediatr Gastroenterol Nutr. 2000;31:162–9.CrossRefPubMed Dvorak B, McWilliam DL, Williams CS, Dominguez JA, Machen NW, McCuskey RS, et al. Artificial formula induces precocious maturation of the small intestine of artificially reared suckling rats. J Pediatr Gastroenterol Nutr. 2000;31:162–9.CrossRefPubMed
9.
go back to reference Le Huerou-Luron I, Blat S, Boudry G. Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev. 2010;23:23–36.CrossRefPubMed Le Huerou-Luron I, Blat S, Boudry G. Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev. 2010;23:23–36.CrossRefPubMed
10.
go back to reference Thompson FM, Catto-Smith AG, Moore D, Davidson G, Cummins AG. Epithelial growth of the small intestine in human infants. J Pediatr Gastroenterol Nutr. 1998;26:506–12.CrossRefPubMed Thompson FM, Catto-Smith AG, Moore D, Davidson G, Cummins AG. Epithelial growth of the small intestine in human infants. J Pediatr Gastroenterol Nutr. 1998;26:506–12.CrossRefPubMed
11.
go back to reference Gronlund MM, Arvilommi H, Kero P, Lehtonen OP, Isolauri E. Importance of intestinal colonisation in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0–6 months. Arch Dis Child Fetal Neonatal Ed. 2000;83:F186–92.CrossRefPubMedPubMedCentral Gronlund MM, Arvilommi H, Kero P, Lehtonen OP, Isolauri E. Importance of intestinal colonisation in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0–6 months. Arch Dis Child Fetal Neonatal Ed. 2000;83:F186–92.CrossRefPubMedPubMedCentral
12.
go back to reference Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69:1035S–45S.PubMed Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69:1035S–45S.PubMed
13.
go back to reference Ogra PL, Welliver Sr RC. Effects of early environment on mucosal immunologic homeostasis, subsequent immune responses and disease outcome. Nestle Nutr Workshop Ser Pediatr Program. 2008;61:145–81.CrossRefPubMed Ogra PL, Welliver Sr RC. Effects of early environment on mucosal immunologic homeostasis, subsequent immune responses and disease outcome. Nestle Nutr Workshop Ser Pediatr Program. 2008;61:145–81.CrossRefPubMed
14.
15.
go back to reference Ardeshir A, Narayan NR, Mendez-Lagares G, Lu D, Rauch M, Huang Y, et al. Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems. Sci Transl Med. 2014;6:252ra120.CrossRefPubMedPubMedCentral Ardeshir A, Narayan NR, Mendez-Lagares G, Lu D, Rauch M, Huang Y, et al. Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems. Sci Transl Med. 2014;6:252ra120.CrossRefPubMedPubMedCentral
16.
go back to reference Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe. 2011;17:478–82.CrossRefPubMed Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe. 2011;17:478–82.CrossRefPubMed
17.
go back to reference Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl. 2003;91:48–55.PubMed Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl. 2003;91:48–55.PubMed
18.
go back to reference Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000;30:61–7.CrossRefPubMed Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000;30:61–7.CrossRefPubMed
19.
go back to reference Hascoet JM, Hubert C, Rochat F, Legagneur H, Gaga S, Emady-Azar S, et al. Effect of formula composition on the development of infant gut microbiota. J Pediatr Gastroenterol Nutr. 2011;52:756–62.CrossRefPubMed Hascoet JM, Hubert C, Rochat F, Legagneur H, Gaga S, Emady-Azar S, et al. Effect of formula composition on the development of infant gut microbiota. J Pediatr Gastroenterol Nutr. 2011;52:756–62.CrossRefPubMed
20.
go back to reference Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118:511–21.CrossRefPubMed Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118:511–21.CrossRefPubMed
21.
go back to reference Catassi C, Bonucci A, Coppa GV, Carlucci A, Giorgi PL. Intestinal permeability changes during the first month: effect of natural versus artificial feeding. J Pediatr Gastroenterol Nutr. 1995;21:383–6.CrossRefPubMed Catassi C, Bonucci A, Coppa GV, Carlucci A, Giorgi PL. Intestinal permeability changes during the first month: effect of natural versus artificial feeding. J Pediatr Gastroenterol Nutr. 1995;21:383–6.CrossRefPubMed
22.
go back to reference Teichberg S, Isolauri E, Wapnir RA, Roberts B, Lifshitz F. Development of the neonatal rat small intestinal barrier to nonspecific macromolecular absorption: effect of early weaning to artificial diets. Pediatr Res. 1990;28:31–7.CrossRefPubMed Teichberg S, Isolauri E, Wapnir RA, Roberts B, Lifshitz F. Development of the neonatal rat small intestinal barrier to nonspecific macromolecular absorption: effect of early weaning to artificial diets. Pediatr Res. 1990;28:31–7.CrossRefPubMed
23.
go back to reference Udall JN, Colony P, Fritze L, Pang K, Trier JS, Walker WA. Development of gastrointestinal mucosal barrier. II. The effect of natural versus artificial feeding on intestinal permeability to macromolecules. Pediatr Res. 1981;15:245–9.CrossRefPubMed Udall JN, Colony P, Fritze L, Pang K, Trier JS, Walker WA. Development of gastrointestinal mucosal barrier. II. The effect of natural versus artificial feeding on intestinal permeability to macromolecules. Pediatr Res. 1981;15:245–9.CrossRefPubMed
24.
go back to reference Weaver LT, Laker MF, Nelson R, Lucas A. Milk feeding and changes in intestinal permeability and morphology in the newborn. J Pediatr Gastroenterol Nutr. 1987;6:351–8.CrossRefPubMed Weaver LT, Laker MF, Nelson R, Lucas A. Milk feeding and changes in intestinal permeability and morphology in the newborn. J Pediatr Gastroenterol Nutr. 1987;6:351–8.CrossRefPubMed
25.
go back to reference O'Sullivan A, He X, McNiven EM, Haggarty NW, Lonnerdal B, Slupsky CM. Early diet impacts infant rhesus gut microbiome, immunity, and metabolism. J Proteome Res. 2013;12:2833–45.CrossRefPubMed O'Sullivan A, He X, McNiven EM, Haggarty NW, Lonnerdal B, Slupsky CM. Early diet impacts infant rhesus gut microbiome, immunity, and metabolism. J Proteome Res. 2013;12:2833–45.CrossRefPubMed
26.
go back to reference Guo X, Rao JN, Liu L, Zou TT, Turner DJ, Bass BL, et al. Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines. Am J Physiol Cell Physiol. 2003;285:C1174–87.CrossRefPubMed Guo X, Rao JN, Liu L, Zou TT, Turner DJ, Bass BL, et al. Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines. Am J Physiol Cell Physiol. 2003;285:C1174–87.CrossRefPubMed
27.
go back to reference Penrose HM, Marchelletta RR, Krishnan M, McCole DF. Spermidine stimulates T cell protein-tyrosine phosphatase-mediated protection of intestinal epithelial barrier function. J Biol Chem. 2013;288:32651–62.CrossRefPubMedPubMedCentral Penrose HM, Marchelletta RR, Krishnan M, McCole DF. Spermidine stimulates T cell protein-tyrosine phosphatase-mediated protection of intestinal epithelial barrier function. J Biol Chem. 2013;288:32651–62.CrossRefPubMedPubMedCentral
28.
go back to reference ter Steege JC, Forget PP, Buurman WA. Oral spermine administration inhibits nitric oxide-mediated intestinal damage and levels of systemic inflammatory mediators in a mouse endotoxin model. Shock. 1999;11:115–9.CrossRefPubMed ter Steege JC, Forget PP, Buurman WA. Oral spermine administration inhibits nitric oxide-mediated intestinal damage and levels of systemic inflammatory mediators in a mouse endotoxin model. Shock. 1999;11:115–9.CrossRefPubMed
29.
go back to reference Buts JP, De KN, De RL, Collette E, Sokal EM. Polyamine profiles in human milk, infant artificial formulas, and semi-elemental diets. J Pediatr Gastroenterol Nutr. 1995;21:44–9.CrossRefPubMed Buts JP, De KN, De RL, Collette E, Sokal EM. Polyamine profiles in human milk, infant artificial formulas, and semi-elemental diets. J Pediatr Gastroenterol Nutr. 1995;21:44–9.CrossRefPubMed
30.
go back to reference Romain N, Dandrifosse G, Jeusette F, Forget P. Polyamine concentration in rat milk and food, human milk, and infant formulas. Pediatr Res. 1992;32:58–63.CrossRefPubMed Romain N, Dandrifosse G, Jeusette F, Forget P. Polyamine concentration in rat milk and food, human milk, and infant formulas. Pediatr Res. 1992;32:58–63.CrossRefPubMed
31.
32.
go back to reference Darragh AJ, Moughan PJ. The three-week-old piglet as a model animal for studying protein digestion in human infants. J Pediatr Gastroenterol Nutr. 1995;21:387–93.CrossRefPubMed Darragh AJ, Moughan PJ. The three-week-old piglet as a model animal for studying protein digestion in human infants. J Pediatr Gastroenterol Nutr. 1995;21:387–93.CrossRefPubMed
33.
go back to reference Moughan PJ, Birtles MJ, Cranwell PD, Smith WC, Pedraza M. The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. World Rev Nutr Diet. 1992;67:40–113.CrossRefPubMed Moughan PJ, Birtles MJ, Cranwell PD, Smith WC, Pedraza M. The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. World Rev Nutr Diet. 1992;67:40–113.CrossRefPubMed
34.
go back to reference Moughan PJ, Birtles MJ, Cranwell PD, Smith WC, Pedraza M. The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. World Rev Nutr Diet. 1992;67:40–113.CrossRefPubMed Moughan PJ, Birtles MJ, Cranwell PD, Smith WC, Pedraza M. The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. World Rev Nutr Diet. 1992;67:40–113.CrossRefPubMed
35.
go back to reference Heinritz SN, Mosenthin R, Weiss E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev. 2013;26:191–209.CrossRefPubMed Heinritz SN, Mosenthin R, Weiss E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev. 2013;26:191–209.CrossRefPubMed
36.
go back to reference Puiman P, Stoll B. Animal models to study neonatal nutrition in humans. Curr Opin Clin Nutr Metab Care. 2008;11:601–6.CrossRefPubMed Puiman P, Stoll B. Animal models to study neonatal nutrition in humans. Curr Opin Clin Nutr Metab Care. 2008;11:601–6.CrossRefPubMed
37.
go back to reference Ronis MJ, Chen Y, Shankar K, Gomez-Acevedo H, Cleves MA, Badeaux J, et al. Formula feeding alters hepatic gene expression signature, iron and cholesterol homeostasis in the neonatal pig. Physiol Genomics. 2011;43:1281–93.CrossRefPubMed Ronis MJ, Chen Y, Shankar K, Gomez-Acevedo H, Cleves MA, Badeaux J, et al. Formula feeding alters hepatic gene expression signature, iron and cholesterol homeostasis in the neonatal pig. Physiol Genomics. 2011;43:1281–93.CrossRefPubMed
38.
go back to reference Helm RM, Golden C, McMahon M, Thampi P, Badger TM, Nagarajan S. Diet regulates the development of gut-associated lymphoid tissue in neonatal piglets. Neonatology. 2007;91:248–55.CrossRefPubMed Helm RM, Golden C, McMahon M, Thampi P, Badger TM, Nagarajan S. Diet regulates the development of gut-associated lymphoid tissue in neonatal piglets. Neonatology. 2007;91:248–55.CrossRefPubMed
39.
go back to reference Morris S, Simmer K, van Barneveld R, Gibson RA. A simplified method to study the effect of intravenous fat infusion in neonatal piglets. In: Yung-Sheng Huang AJS, ed. Lipids in Infant Nutrition. 1998. p. 100–7. Morris S, Simmer K, van Barneveld R, Gibson RA. A simplified method to study the effect of intravenous fat infusion in neonatal piglets. In: Yung-Sheng Huang AJS, ed. Lipids in Infant Nutrition. 1998. p. 100–7.
40.
go back to reference Beacom SE, Bowland JP. The essential amino acid (except tryptophan) content of colostrum and milk of the sow. J Nutr. 1951;45:419–29.PubMed Beacom SE, Bowland JP. The essential amino acid (except tryptophan) content of colostrum and milk of the sow. J Nutr. 1951;45:419–29.PubMed
41.
go back to reference Barnhart CE, Catron D, Culbertson CC. The effects of rations on selected vitamin content of sow's milk. J Anim Sci. 1954;13:375–82.CrossRef Barnhart CE, Catron D, Culbertson CC. The effects of rations on selected vitamin content of sow's milk. J Anim Sci. 1954;13:375–82.CrossRef
42.
go back to reference Liu R, Li Q, Ma R, Lin X, Xu H, Bi K. Determination of polyamine metabolome in plasma and urine by ultrahigh performance liquid chromatography-tandem mass spectrometry method: application to identify potential markers for human hepatic cancer. Anal Chim Acta. 2013;791:36–45.CrossRefPubMed Liu R, Li Q, Ma R, Lin X, Xu H, Bi K. Determination of polyamine metabolome in plasma and urine by ultrahigh performance liquid chromatography-tandem mass spectrometry method: application to identify potential markers for human hepatic cancer. Anal Chim Acta. 2013;791:36–45.CrossRefPubMed
43.
go back to reference Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.CrossRefPubMedPubMedCentral Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.CrossRefPubMedPubMedCentral
44.
go back to reference Baintner K. Intestinal absorption of macromolecules and immune transmission from mother to young. Boca Raton: CRC Press; 1986:137–41. Baintner K. Intestinal absorption of macromolecules and immune transmission from mother to young. Boca Raton: CRC Press; 1986:137–41.
45.
go back to reference Biernat M, Zabielski R, Yao G, Marion J, Le Huerou-Leiron I, Le Dividich J. Effect of formula vs sow's milk feeding on the gut morphology in neonatal piglets. In Digestive Physiology in pigs. 2011. p. 43–5. Biernat M, Zabielski R, Yao G, Marion J, Le Huerou-Leiron I, Le Dividich J. Effect of formula vs sow's milk feeding on the gut morphology in neonatal piglets. In Digestive Physiology in pigs. 2011. p. 43–5.
46.
go back to reference Jensen AR, Elnif J, Burrin DG, Sangild PT. Development of intestinal immunoglobulin absorption and enzyme activities in neonatal pigs is diet dependent. J Nutr. 2001;131:3259–65.PubMed Jensen AR, Elnif J, Burrin DG, Sangild PT. Development of intestinal immunoglobulin absorption and enzyme activities in neonatal pigs is diet dependent. J Nutr. 2001;131:3259–65.PubMed
47.
go back to reference Thymann T, Burrin DG, Tappenden KA, Bjornvad CR, Jensen SK, Sangild PT. Formula-feeding reduces lactose digestive capacity in neonatal pigs. Br J Nutr. 2006;95:1075–81.CrossRefPubMed Thymann T, Burrin DG, Tappenden KA, Bjornvad CR, Jensen SK, Sangild PT. Formula-feeding reduces lactose digestive capacity in neonatal pigs. Br J Nutr. 2006;95:1075–81.CrossRefPubMed
48.
go back to reference De VM, Huygelen V, Van RG, Willemen S, Fransen E, Van Ostade X, et al. Supplementing formula-fed piglets with a low molecular weight fraction of bovine colostrum whey results in an improved intestinal barrier. J Anim Sci. 2014;92:3491–501.CrossRef De VM, Huygelen V, Van RG, Willemen S, Fransen E, Van Ostade X, et al. Supplementing formula-fed piglets with a low molecular weight fraction of bovine colostrum whey results in an improved intestinal barrier. J Anim Sci. 2014;92:3491–501.CrossRef
49.
go back to reference Sugiharto S, Poulsen AS, Canibe N, Lauridsen C. Effect of bovine colostrum feeding in comparison with milk replacer and natural feeding on the immune responses and colonisation of enterotoxigenic Escherichia coli in the intestinal tissue of piglets. Br J Nutr. 2015;113:923–34.CrossRefPubMedPubMedCentral Sugiharto S, Poulsen AS, Canibe N, Lauridsen C. Effect of bovine colostrum feeding in comparison with milk replacer and natural feeding on the immune responses and colonisation of enterotoxigenic Escherichia coli in the intestinal tissue of piglets. Br J Nutr. 2015;113:923–34.CrossRefPubMedPubMedCentral
50.
go back to reference Matsumoto M, Ohishi H, Benno Y. Impact of LKM512 yogurt on improvement of intestinal environment of the elderly. FEMS Immunol Med Microbiol. 2001;31:181–6.CrossRefPubMed Matsumoto M, Ohishi H, Benno Y. Impact of LKM512 yogurt on improvement of intestinal environment of the elderly. FEMS Immunol Med Microbiol. 2001;31:181–6.CrossRefPubMed
51.
go back to reference Schwartz S, Friedberg I, Ivanov IV, Davidson LA, Goldsby JS, Dahl DB, et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol. 2012;13:r32.CrossRefPubMedPubMedCentral Schwartz S, Friedberg I, Ivanov IV, Davidson LA, Goldsby JS, Dahl DB, et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol. 2012;13:r32.CrossRefPubMedPubMedCentral
52.
go back to reference Caicedo RA, Li N, Des RC, Scumpia PO, Hubsher CP, Wasserfall CH, et al. Neonatal formula feeding leads to immunological alterations in an animal model of type 1 diabetes. Pediatr Res. 2008;63:303–7.CrossRefPubMed Caicedo RA, Li N, Des RC, Scumpia PO, Hubsher CP, Wasserfall CH, et al. Neonatal formula feeding leads to immunological alterations in an animal model of type 1 diabetes. Pediatr Res. 2008;63:303–7.CrossRefPubMed
53.
go back to reference Vidal K, van den Broek P, Lorget F, Donnet-Hughes A. Osteoprotegerin in human milk: a potential role in the regulation of bone metabolism and immune development. Pediatr Res. 2004;55:1001–8.CrossRefPubMed Vidal K, van den Broek P, Lorget F, Donnet-Hughes A. Osteoprotegerin in human milk: a potential role in the regulation of bone metabolism and immune development. Pediatr Res. 2004;55:1001–8.CrossRefPubMed
Metadata
Title
Formula diet alters small intestine morphology, microbial abundance and reduces VE-cadherin and IL-10 expression in neonatal porcine model
Authors
Laxmi Yeruva
Nicole E. Spencer
Manish K. Saraf
Leah Hennings
Anne K. Bowlin
Mario A. Cleves
Kelly Mercer
Sree V. Chintapalli
Kartik Shankar
Roger G. Rank
Thomas M. Badger
Martin J. J. Ronis
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2016
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-016-0456-x

Other articles of this Issue 1/2016

BMC Gastroenterology 1/2016 Go to the issue