Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2018

Open Access 01-12-2018 | Research article

A systematic review of the clinical application of data-driven population segmentation analysis

Authors: Shi Yan, Yu Heng Kwan, Chuen Seng Tan, Julian Thumboo, Lian Leng Low

Published in: BMC Medical Research Methodology | Issue 1/2018

Login to get access

Abstract

Background

Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis.

Methods

We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers.

Results

We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony.

Conclusions

Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research.
Appendix
Available only for authorised users
Literature
5.
go back to reference Beard JR, Officer AM, Cassels AK. The world report on ageing and health. Gerontologist. 2016. p. S163–6.CrossRef Beard JR, Officer AM, Cassels AK. The world report on ageing and health. Gerontologist. 2016. p. S163–6.CrossRef
7.
go back to reference van der Laan MR E, van MAG O, Broekhuis H, JPJ S. A person-centred segmentation study in elderly care: Towards efficient demand-driven care. Soc Sci Med. 2014;113:68–76.CrossRef van der Laan MR E, van MAG O, Broekhuis H, JPJ S. A person-centred segmentation study in elderly care: Towards efficient demand-driven care. Soc Sci Med. 2014;113:68–76.CrossRef
8.
go back to reference Vuik SI, Mayer EK, Darzi A. Patient segmentation analysis offers significant benefits for integrated care and support. Health Aff. 2016;35:769–75.CrossRef Vuik SI, Mayer EK, Darzi A. Patient segmentation analysis offers significant benefits for integrated care and support. Health Aff. 2016;35:769–75.CrossRef
14.
go back to reference 3M Health Information Systems 3M ™ Clinical Risk Groups: Frequently Asked Questions Q: What are the 3M Clinical Risk Groups (CRGs)?. Accessed 11 Nov 2017. 3M Health Information Systems 3M ™ Clinical Risk Groups: Frequently Asked Questions Q: What are the 3M Clinical Risk Groups (CRGs)?. Accessed 11 Nov 2017.
16.
go back to reference Pietrzak RH, El-Gabalawy R, Tsai J, Sareen J, Neumeister A, Southwick SM. Typologies of posttraumatic stress disorder in the U.S. adult population. J Affect Disord. 2014;162:102–6.CrossRef Pietrzak RH, El-Gabalawy R, Tsai J, Sareen J, Neumeister A, Southwick SM. Typologies of posttraumatic stress disorder in the U.S. adult population. J Affect Disord. 2014;162:102–6.CrossRef
17.
go back to reference Simons-Morton BG, Cheon K, Guo F, Albert P. Trajectories of kinematic risky driving among novice teenagers. Accid Anal Prev. 2013;51:27–32.CrossRef Simons-Morton BG, Cheon K, Guo F, Albert P. Trajectories of kinematic risky driving among novice teenagers. Accid Anal Prev. 2013;51:27–32.CrossRef
18.
go back to reference Reedy J, Wirfält E, Flood A, Mitrou PN, Krebs-Smith SM, Kipnis V, et al. Comparing 3 dietary pattern methods-cluster analysis, factor analysis, and index analysis-with colorectal cancer risk. Am J Epidemiol. 2010;171:479–87.CrossRef Reedy J, Wirfält E, Flood A, Mitrou PN, Krebs-Smith SM, Kipnis V, et al. Comparing 3 dietary pattern methods-cluster analysis, factor analysis, and index analysis-with colorectal cancer risk. Am J Epidemiol. 2010;171:479–87.CrossRef
19.
go back to reference Keel PK, Fichter M, Quadflieg N, Bulik CM, Baxter MG, Thornton L, et al. Application of a latent class analysis to empirically define eating disorder phenotypes. Arch Gen Psychiatry. 2004;61:192–200.CrossRef Keel PK, Fichter M, Quadflieg N, Bulik CM, Baxter MG, Thornton L, et al. Application of a latent class analysis to empirically define eating disorder phenotypes. Arch Gen Psychiatry. 2004;61:192–200.CrossRef
20.
go back to reference Verger P, Lions C, Ventelou B. Is depression associated with health risk-related behaviour clusters in adults. Eur J Pub Health. 2009;19:618–24.CrossRef Verger P, Lions C, Ventelou B. Is depression associated with health risk-related behaviour clusters in adults. Eur J Pub Health. 2009;19:618–24.CrossRef
21.
go back to reference Laska MN, Pasch KE, Lust K, Story M, Ehlinger E. Latent class analysis of lifestyle characteristics and health risk behaviors among college youth. Prev Sci. 2009;10:376–86.CrossRef Laska MN, Pasch KE, Lust K, Story M, Ehlinger E. Latent class analysis of lifestyle characteristics and health risk behaviors among college youth. Prev Sci. 2009;10:376–86.CrossRef
22.
go back to reference Boone-Heinonen J, Gordon-Larsen P, Adair LS. Obesogenic clusters: Multidimensional adolescent obesity-related behaviors in the U.S. Ann Behav Med. 2008;36:217–30.CrossRef Boone-Heinonen J, Gordon-Larsen P, Adair LS. Obesogenic clusters: Multidimensional adolescent obesity-related behaviors in the U.S. Ann Behav Med. 2008;36:217–30.CrossRef
23.
go back to reference Iannotti RJ, Wang J. Patterns of physical activity, sedentary behavior, and diet in U.S. adolescents. J Adolesc Health. 2013;53:280–6.CrossRef Iannotti RJ, Wang J. Patterns of physical activity, sedentary behavior, and diet in U.S. adolescents. J Adolesc Health. 2013;53:280–6.CrossRef
25.
go back to reference Adams MA, Sallis JF, Conway TL, Frank LD, Saelens BE, Kerr J, et al. Neighborhood environment profiles for physical activity among older adults. Am J Health Behav. 2012;36:757–69.CrossRef Adams MA, Sallis JF, Conway TL, Frank LD, Saelens BE, Kerr J, et al. Neighborhood environment profiles for physical activity among older adults. Am J Health Behav. 2012;36:757–69.CrossRef
26.
go back to reference Adams MA, Sallis JF, Kerr J, Conway TL, Saelens BE, Frank LD, et al. Neighborhood environment profiles related to physical activity and weight status: A latent profile analysis. Prev Med (Baltim). 2011;52:326–31.CrossRef Adams MA, Sallis JF, Kerr J, Conway TL, Saelens BE, Frank LD, et al. Neighborhood environment profiles related to physical activity and weight status: A latent profile analysis. Prev Med (Baltim). 2011;52:326–31.CrossRef
27.
go back to reference Adams MA, Todd M, Kurka J, Conway TL, Cain KL, Frank LD, et al. Patterns of walkability, transit, and recreation environment for physical activity. Am J Prev Med. 2015;49:878–87.CrossRef Adams MA, Todd M, Kurka J, Conway TL, Cain KL, Frank LD, et al. Patterns of walkability, transit, and recreation environment for physical activity. Am J Prev Med. 2015;49:878–87.CrossRef
28.
go back to reference Lo Siou G, Yasui Y, Csizmadi I, McGregor SE, Robson PJ. Exploring statistical approaches to diminish subjectivity of cluster analysis to derive dietary patterns. Am J Epidemiol. 2011;173:956–67.CrossRef Lo Siou G, Yasui Y, Csizmadi I, McGregor SE, Robson PJ. Exploring statistical approaches to diminish subjectivity of cluster analysis to derive dietary patterns. Am J Epidemiol. 2011;173:956–67.CrossRef
29.
go back to reference Wirfält E, Midthune D, Reedy J, Mitrou P, Flood A, Subar AF, et al. Associations between food patterns defined by cluster analysis and colorectal cancer incidence in the NIH–AARP diet and health study. Eur J Clin Nutr. 2009;63:707–17.CrossRef Wirfält E, Midthune D, Reedy J, Mitrou P, Flood A, Subar AF, et al. Associations between food patterns defined by cluster analysis and colorectal cancer incidence in the NIH–AARP diet and health study. Eur J Clin Nutr. 2009;63:707–17.CrossRef
30.
go back to reference Newby PK, Muller D, Tucker KL. Associations of empirically derived eating patterns with plasma lipid biomarkers: a comparison of factor and cluster analysis methods. Am J Clin Nutr. 2004;80:759–67.CrossRef Newby PK, Muller D, Tucker KL. Associations of empirically derived eating patterns with plasma lipid biomarkers: a comparison of factor and cluster analysis methods. Am J Clin Nutr. 2004;80:759–67.CrossRef
32.
go back to reference Bailey RL, Gutschall MD, Mitchell DC, Miller CK, Lawrence FR, Smiciklas-Wright H. Comparative strategies for using cluster analysis to assess dietary patterns. J Am Diet Assoc. 2006;106:1194–200.CrossRef Bailey RL, Gutschall MD, Mitchell DC, Miller CK, Lawrence FR, Smiciklas-Wright H. Comparative strategies for using cluster analysis to assess dietary patterns. J Am Diet Assoc. 2006;106:1194–200.CrossRef
36.
go back to reference Héroux M, Janssen I, Lee D c, Sui X, Hebert JR, Blair SN. Clustering of unhealthy behaviors in the aerobics center longitudinal study. Prev Sci. 2012;13:183–95.CrossRef Héroux M, Janssen I, Lee D c, Sui X, Hebert JR, Blair SN. Clustering of unhealthy behaviors in the aerobics center longitudinal study. Prev Sci. 2012;13:183–95.CrossRef
38.
go back to reference Norman GJ, Velicer WF. Developing an empirical typology for regular exercise. Prev Med (Baltim). 2003;37(6):635–45.CrossRef Norman GJ, Velicer WF. Developing an empirical typology for regular exercise. Prev Med (Baltim). 2003;37(6):635–45.CrossRef
39.
go back to reference Gjelsvik A, Rogers ML, Clark MA, Ombao HC, Rakowski W. Continuum of mammography use among US women: classification tree analysis. Am J Health Behav. 2014;38:492–500.CrossRef Gjelsvik A, Rogers ML, Clark MA, Ombao HC, Rakowski W. Continuum of mammography use among US women: classification tree analysis. Am J Health Behav. 2014;38:492–500.CrossRef
40.
go back to reference Miller KA, Huh J, Unger JB, Richardson JL, Allen MW, Peng DH, et al. Patterns of sun protective behaviors among Hispanic children in a skin cancer prevention intervention. Prev Med (Baltim). 2015;81:81.CrossRef Miller KA, Huh J, Unger JB, Richardson JL, Allen MW, Peng DH, et al. Patterns of sun protective behaviors among Hispanic children in a skin cancer prevention intervention. Prev Med (Baltim). 2015;81:81.CrossRef
41.
go back to reference Penrod JD, Litke A, Hawkes WG, Magaziner J, Koval KJ, Doucette JT, et al. Heterogeneity in hip fracture patients: age, functional status, and comorbidity. J Am Geriatr Soc. 2007;55:407–13.CrossRef Penrod JD, Litke A, Hawkes WG, Magaziner J, Koval KJ, Doucette JT, et al. Heterogeneity in hip fracture patients: age, functional status, and comorbidity. J Am Geriatr Soc. 2007;55:407–13.CrossRef
42.
go back to reference Love BC. Comparing supervised and unsupervised category learning. Psychon Bull Rev. 2002;9:829–35.CrossRef Love BC. Comparing supervised and unsupervised category learning. Psychon Bull Rev. 2002;9:829–35.CrossRef
44.
go back to reference Ledere BS, Bégin C, Cadieux É, Goulet L, Allaire JF, Meloche J, et al. A classification and regression tree for predicting recurrent falling among community-dwelling seniors using home-care services. Can J Public Heal. 2009;100:263–7. Ledere BS, Bégin C, Cadieux É, Goulet L, Allaire JF, Meloche J, et al. A classification and regression tree for predicting recurrent falling among community-dwelling seniors using home-care services. Can J Public Heal. 2009;100:263–7.
45.
go back to reference Croezen S, Haveman-Nies A, Alvarado VJ, Van’t Veer P, De Groot CPGM. Characterization of different groups of elderly according to social engagement activity patterns. J Nutr Heal Aging. 2009;13:776–81.CrossRef Croezen S, Haveman-Nies A, Alvarado VJ, Van’t Veer P, De Groot CPGM. Characterization of different groups of elderly according to social engagement activity patterns. J Nutr Heal Aging. 2009;13:776–81.CrossRef
46.
go back to reference Milligan GW. In: Max M, editor. Clustering validation: results and implications for applied analyses. Columbus: Fisher College of Business, Ohio State University; 1996. Milligan GW. In: Max M, editor. Clustering validation: results and implications for applied analyses. Columbus: Fisher College of Business, Ohio State University; 1996.
48.
go back to reference Jadczaková V. Review of segmentation process in consumer markets. Acta Univ Agric Silvic Mendelianae Brun. 2013;61(4):1215–24.CrossRef Jadczaková V. Review of segmentation process in consumer markets. Acta Univ Agric Silvic Mendelianae Brun. 2013;61(4):1215–24.CrossRef
50.
go back to reference Freeman K, Bonuck K. Snoring, mouth-breathing, and apnea trajectories in a population-based cohort followed from infancy to 81 months: a cluster analysis. Int J Pediatr Otorhinolaryngol. 2012;76:122–30.CrossRef Freeman K, Bonuck K. Snoring, mouth-breathing, and apnea trajectories in a population-based cohort followed from infancy to 81 months: a cluster analysis. Int J Pediatr Otorhinolaryngol. 2012;76:122–30.CrossRef
51.
go back to reference Nelson MC, Gordon-Larsen P, Adair LS, Popkin BM. Adolescent physical activity and sedentary behavior: patterning and long-term maintenance. Am J Prev Med. 2005;28:259–66.CrossRef Nelson MC, Gordon-Larsen P, Adair LS, Popkin BM. Adolescent physical activity and sedentary behavior: patterning and long-term maintenance. Am J Prev Med. 2005;28:259–66.CrossRef
52.
go back to reference Griffin B, Sherman KA, Jones M, Bayl-Smith P. The clustering of health Behaviours in older Australians and its association with physical and psychological status, and sociodemographic indicators. Ann Behav Med. 2014;48:205–14.CrossRef Griffin B, Sherman KA, Jones M, Bayl-Smith P. The clustering of health Behaviours in older Australians and its association with physical and psychological status, and sociodemographic indicators. Ann Behav Med. 2014;48:205–14.CrossRef
53.
go back to reference Newby PK, Muller D, Hallfrisch J, Qiao N, Andres R, Tucker KL. Dietary patterns and changes in body mass index and waist circumference in adults. Am J Clin Nutr. 2003;77:1417–25.CrossRef Newby PK, Muller D, Hallfrisch J, Qiao N, Andres R, Tucker KL. Dietary patterns and changes in body mass index and waist circumference in adults. Am J Clin Nutr. 2003;77:1417–25.CrossRef
56.
go back to reference Erlich Z, Gelbard R, Spiegler I. Evaluating a positive attribute clustering model for data mining. J Comput Inf Syst. 2003;43:100–8. Erlich Z, Gelbard R, Spiegler I. Evaluating a positive attribute clustering model for data mining. J Comput Inf Syst. 2003;43:100–8.
60.
go back to reference Hofstetter H, Dusseldorp E, van Empelen P, Paulussen TWGM. A primer on the use of cluster analysis or factor analysis to assess co-occurrence of risk behaviors. Prev Med (Baltim). 2014;67:141–6.CrossRef Hofstetter H, Dusseldorp E, van Empelen P, Paulussen TWGM. A primer on the use of cluster analysis or factor analysis to assess co-occurrence of risk behaviors. Prev Med (Baltim). 2014;67:141–6.CrossRef
63.
go back to reference Newby PK, Tucker KL. Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev. 2004;62:177–203.CrossRef Newby PK, Tucker KL. Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev. 2004;62:177–203.CrossRef
64.
go back to reference Pryer JA, Cook A, Shetty P. Identification of groups who report similar patterns of diet among a representative national sample of British adults aged 65 years of age or more. Public Health Nutr. 2001;4:787–95.CrossRef Pryer JA, Cook A, Shetty P. Identification of groups who report similar patterns of diet among a representative national sample of British adults aged 65 years of age or more. Public Health Nutr. 2001;4:787–95.CrossRef
66.
go back to reference Low LL, Yan S, Kwan YH, Tan CS, Thumboo J. Assessing the validity of a data driven segmentation approach: A 4 year longitudinal study of healthcare utilization and mortality. PloS one. 2018;13(4):e0195243.CrossRef Low LL, Yan S, Kwan YH, Tan CS, Thumboo J. Assessing the validity of a data driven segmentation approach: A 4 year longitudinal study of healthcare utilization and mortality. PloS one. 2018;13(4):e0195243.CrossRef
67.
go back to reference Walsh D, Rybicki L. Symptom clustering in advanced cancer. Support Care Cancer. 2006;14:831–6.CrossRef Walsh D, Rybicki L. Symptom clustering in advanced cancer. Support Care Cancer. 2006;14:831–6.CrossRef
68.
go back to reference Fitzpatrick AM, Teague WG, Meyers DA, Peters SP, Li X, Li H, et al. Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute severe asthma research program. J Allergy Clin Immunol. 2011;127:382–89. Fitzpatrick AM, Teague WG, Meyers DA, Peters SP, Li X, Li H, et al. Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute severe asthma research program. J Allergy Clin Immunol. 2011;127:382–89.
70.
go back to reference Peretti-Watel P, Spire B, Lert F, Obadia Y. Drug use patterns and adherence to treatment among HIV-positive patients: evidence from a large sample of French outpatients (ANRS-EN12-VESPA 2003). Drug Alcohol Depend. 2006;82:S71–79.CrossRef Peretti-Watel P, Spire B, Lert F, Obadia Y. Drug use patterns and adherence to treatment among HIV-positive patients: evidence from a large sample of French outpatients (ANRS-EN12-VESPA 2003). Drug Alcohol Depend. 2006;82:S71–79.CrossRef
73.
go back to reference Engeset D, Alsaker E, Ciampi A, Lund E. Dietary patterns and lifestyle factors in the Norwegian EPIC cohort: the Norwegian women and Cancer (NOWAC) study. Eur J Clin Nutr. 2005;59:675–84.CrossRef Engeset D, Alsaker E, Ciampi A, Lund E. Dietary patterns and lifestyle factors in the Norwegian EPIC cohort: the Norwegian women and Cancer (NOWAC) study. Eur J Clin Nutr. 2005;59:675–84.CrossRef
74.
go back to reference Weatherall M, Travers J, Shirtcliffe PM, Marsh SE, Williams MV, Nowitz MR, et al. Distinct clinical phenotypes of airways disease defined by cluster analysis. Eur Respir J. 2009;34:812–8.CrossRef Weatherall M, Travers J, Shirtcliffe PM, Marsh SE, Williams MV, Nowitz MR, et al. Distinct clinical phenotypes of airways disease defined by cluster analysis. Eur Respir J. 2009;34:812–8.CrossRef
76.
go back to reference Magidson J, Vermunt JK. Latent class models for clustering: a comparison with K-means. Can J Mark Res. 2002;20:37–44. Magidson J, Vermunt JK. Latent class models for clustering: a comparison with K-means. Can J Mark Res. 2002;20:37–44.
77.
go back to reference Hickendorff M, Edelsbrunner PA, McMullen J, Schneider M, Trezise K. Informative tools for characterizing individual differences in learning: latent class, latent profile, and latent transition analysis. Learn Individ Differ. 2017;4–15. Hickendorff M, Edelsbrunner PA, McMullen J, Schneider M, Trezise K. Informative tools for characterizing individual differences in learning: latent class, latent profile, and latent transition analysis. Learn Individ Differ. 2017;4–15.
79.
go back to reference Bittmann RM, Gelbard RM. Decision-making method using a visual approach for cluster analysis problems; indicative classification algorithms and grouping scope. Expert Syst. 2007;24:171–87.CrossRef Bittmann RM, Gelbard RM. Decision-making method using a visual approach for cluster analysis problems; indicative classification algorithms and grouping scope. Expert Syst. 2007;24:171–87.CrossRef
80.
go back to reference Gelbard R, Goldman O, Spiegler I. Investigating diversity of clustering methods: an empirical comparison. Data Knowl Eng. 2007;63:155–66.CrossRef Gelbard R, Goldman O, Spiegler I. Investigating diversity of clustering methods: an empirical comparison. Data Knowl Eng. 2007;63:155–66.CrossRef
81.
go back to reference Huang A. Similarity Measures for Text Document Clustering. New Zeal Comput Sci Res Student Conf. 2008:49–56. Huang A. Similarity Measures for Text Document Clustering. New Zeal Comput Sci Res Student Conf. 2008:49–56.
83.
go back to reference Tucker KL, Chen H, Hannan MT, Adrienne Cupples L, Wilson PWF, Felson D, et al. Bone mineral density and dietary patterns in older adults: the Framingham osteoporosis study. Am J Clin Nutr. 2002;76:245–52.CrossRef Tucker KL, Chen H, Hannan MT, Adrienne Cupples L, Wilson PWF, Felson D, et al. Bone mineral density and dietary patterns in older adults: the Framingham osteoporosis study. Am J Clin Nutr. 2002;76:245–52.CrossRef
84.
go back to reference Finch H. Comparison of distance measures in cluster analysis with dichotomous data. J Data Sci. 2005;3:85–100. Finch H. Comparison of distance measures in cluster analysis with dichotomous data. J Data Sci. 2005;3:85–100.
87.
go back to reference Yim O, Ramdeen KT. Hierarchical cluster analysis: comparison of three linkage measures and application to psychological data. Quant Methods Psychol. 2015;11:8–21.CrossRef Yim O, Ramdeen KT. Hierarchical cluster analysis: comparison of three linkage measures and application to psychological data. Quant Methods Psychol. 2015;11:8–21.CrossRef
88.
go back to reference Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate Data Analysis. Vectors. 2010;6:816. Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate Data Analysis. Vectors. 2010;6:816.
90.
go back to reference Buskirk TD. Surveying the forests and sampling the trees: an overview of classification and regression trees and random forests with applications in survey research. Surv Pract. 2018;11:2709. Buskirk TD. Surveying the forests and sampling the trees: an overview of classification and regression trees and random forests with applications in survey research. Surv Pract. 2018;11:2709.
91.
go back to reference Horn SR, Pietrzak RH, Schechter C, Bromet EJ, Katz CL, Reissman DB, et al. Latent typologies of posttraumatic stress disorder in world trade center responders. J Psychiatr Res. 2016;83:151–9.CrossRef Horn SR, Pietrzak RH, Schechter C, Bromet EJ, Katz CL, Reissman DB, et al. Latent typologies of posttraumatic stress disorder in world trade center responders. J Psychiatr Res. 2016;83:151–9.CrossRef
92.
go back to reference Kang J, Ciecierski CC, Malin EL, Carroll AJ, Gidea M, Craft LL, et al. A latent class analysis of cancer risk behaviors among U.S. college students. Prev Med (Baltim). 2014;64:121–5.CrossRef Kang J, Ciecierski CC, Malin EL, Carroll AJ, Gidea M, Craft LL, et al. A latent class analysis of cancer risk behaviors among U.S. college students. Prev Med (Baltim). 2014;64:121–5.CrossRef
94.
go back to reference Boudier A, Curjuric I, Basagaña X, Hazgui H, Anto JM, Bousquet J, et al. Ten-year follow-up of cluster-based asthma phenotypes in adults a pooled analysis of three cohorts. Am J Respir Crit Care Med. 2013;188:550–60.CrossRef Boudier A, Curjuric I, Basagaña X, Hazgui H, Anto JM, Bousquet J, et al. Ten-year follow-up of cluster-based asthma phenotypes in adults a pooled analysis of three cohorts. Am J Respir Crit Care Med. 2013;188:550–60.CrossRef
Metadata
Title
A systematic review of the clinical application of data-driven population segmentation analysis
Authors
Shi Yan
Yu Heng Kwan
Chuen Seng Tan
Julian Thumboo
Lian Leng Low
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2018
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-018-0584-9

Other articles of this Issue 1/2018

BMC Medical Research Methodology 1/2018 Go to the issue