Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2018

Open Access 01-12-2018 | Research article

Towards integrated surveillance of zoonoses: spatiotemporal joint modeling of rodent population data and human tularemia cases in Finland

Authors: C. Rotejanaprasert, A. Lawson, H. Rossow, J. Sane, O. Huitu, H. Henttonen, V. J. Del Rio Vilas

Published in: BMC Medical Research Methodology | Issue 1/2018

Login to get access

Abstract

Background

There are an increasing number of geo-coded information streams available which could improve public health surveillance accuracy and efficiency when properly integrated. Specifically, for zoonotic diseases, knowledge of spatial and temporal patterns of animal host distribution can be used to raise awareness of human risk and enhance early prediction accuracy of human incidence.

Methods

To this end, we develop a spatiotemporal joint modeling framework to integrate human case data and animal host data to offer a modeling alternative for combining multiple surveillance data streams in a novel way. A case study is provided of spatiotemporal modeling of human tularemia incidence and rodent population data from Finnish health care districts during years 1995–2012.

Results

Spatial and temporal information of rodent abundance was shown to be useful in predicting human cases and in improving tularemia risk estimates in 40 and 75% of health care districts, respectively. The human relative risk estimates’ standard deviation with rodent’s information incorporated are smaller than those from the model that has only human incidence.

Conclusions

These results support the integration of rodent population variables to reduce the uncertainty of tularemia risk estimates. However, more information on several covariates such as environmental, behavioral, and socio-economic factors can be investigated further to deeper understand the zoonotic relationship.
Literature
1.
go back to reference Vrbova L, et al. Utility of algorithms for the analysis of integrated Salmonel la surveillance data. Epidemiol Infect. 2016;144(10):2165–75.CrossRefPubMed Vrbova L, et al. Utility of algorithms for the analysis of integrated Salmonel la surveillance data. Epidemiol Infect. 2016;144(10):2165–75.CrossRefPubMed
2.
go back to reference Wendt A, Kreienbrock L, Campe A. Joint use of disparate data for the surveillance of Zoonoses: a feasibility study for a one health approach in Germany. Zoonoses Public Health. 2016;63(7):503–14. Wendt A, Kreienbrock L, Campe A. Joint use of disparate data for the surveillance of Zoonoses: a feasibility study for a one health approach in Germany. Zoonoses Public Health. 2016;63(7):503–14.
3.
go back to reference Rossow H, et al. Risk factors for pneumonic and ulceroglandular tularaemia in Finland: a population-based case-control study. Epidemiol Infect. 2014;142(10):2207–16.CrossRefPubMed Rossow H, et al. Risk factors for pneumonic and ulceroglandular tularaemia in Finland: a population-based case-control study. Epidemiol Infect. 2014;142(10):2207–16.CrossRefPubMed
4.
go back to reference Eliasson H, et al. The 2000 tularemia outbreak: a case-control study of risk factors in disease-endemic and emergent areas, Sweden. Emerg Infect Dis. 2002;8(9):956–60.CrossRefPubMedPubMedCentral Eliasson H, et al. The 2000 tularemia outbreak: a case-control study of risk factors in disease-endemic and emergent areas, Sweden. Emerg Infect Dis. 2002;8(9):956–60.CrossRefPubMedPubMedCentral
5.
go back to reference Dennis DT, et al. Tularemia as a biological weapon: medical and public health management. Jama. 2001;285(21):2763–73.CrossRefPubMed Dennis DT, et al. Tularemia as a biological weapon: medical and public health management. Jama. 2001;285(21):2763–73.CrossRefPubMed
7.
go back to reference Tärnvik A, Sandström G, Sjöstedt A. Epidemiological analysis of tularemia in Sweden 1931–1993. FEMS Immunol Med Microbiol. 1996;13(3):201–4.CrossRefPubMed Tärnvik A, Sandström G, Sjöstedt A. Epidemiological analysis of tularemia in Sweden 1931–1993. FEMS Immunol Med Microbiol. 1996;13(3):201–4.CrossRefPubMed
9.
go back to reference Allue M, et al. Tularaemia outbreak in Castilla y León, Spain, 2007: an update. Euro Surveill. 2008;13(32) Allue M, et al. Tularaemia outbreak in Castilla y León, Spain, 2007: an update. Euro Surveill. 2008;13(32)
10.
go back to reference Grunow, R., et al., Surveillance of tularaemia in Kosovo*, 2001 to 2010. 2012. Grunow, R., et al., Surveillance of tularaemia in Kosovo*, 2001 to 2010. 2012.
11.
go back to reference Luque-Larena JJ, et al. Tularemia outbreaks and common vole (Microtus arvalis) irruptive population dynamics in northwestern Spain, 1997–2014. Vector Borne Zoonotic Dis. 2015;15(9):568–70.CrossRefPubMed Luque-Larena JJ, et al. Tularemia outbreaks and common vole (Microtus arvalis) irruptive population dynamics in northwestern Spain, 1997–2014. Vector Borne Zoonotic Dis. 2015;15(9):568–70.CrossRefPubMed
12.
go back to reference Korpela K, et al. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Glob Chang Biol. 2013;19(3):697–710.CrossRefPubMed Korpela K, et al. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Glob Chang Biol. 2013;19(3):697–710.CrossRefPubMed
13.
go back to reference Sane J, et al. Regional differences in long-term cycles and seasonality of Puumala virus infections, Finland, 1995–2014. Epidemiol Infect. 2016;144(13):2883–2888. Sane J, et al. Regional differences in long-term cycles and seasonality of Puumala virus infections, Finland, 1995–2014. Epidemiol Infect. 2016;144(13):2883–2888.
14.
go back to reference Besag J. Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B Methodol. 1974:192–236. Besag J. Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B Methodol. 1974:192–236.
15.
go back to reference Gelman A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 2006;1(3):515–34.CrossRef Gelman A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 2006;1(3):515–34.CrossRef
16.
go back to reference Spiegelhalter DJ, et al. Bayesian measures of model complexity and fit. J R Stat Soc Series B Stat Methodol. 2002;64(4):583–639.CrossRef Spiegelhalter DJ, et al. Bayesian measures of model complexity and fit. J R Stat Soc Series B Stat Methodol. 2002;64(4):583–639.CrossRef
17.
go back to reference Celeux G, et al. Deviance information criteria for missing data models. Bayesian Anal. 2006;1(4):651–73.CrossRef Celeux G, et al. Deviance information criteria for missing data models. Bayesian Anal. 2006;1(4):651–73.CrossRef
18.
go back to reference Gelman A, et al. Bayesian data analysis, vol. 2. USA: Chapman & Hall/CRC Boca Raton, FL; 2014. Gelman A, et al. Bayesian data analysis, vol. 2. USA: Chapman & Hall/CRC Boca Raton, FL; 2014.
19.
go back to reference Gelman A, Hwang J, Vehtari A. Understanding predictive information criteria for Bayesian models. Stat Comput. 2014;24(6):997–1016.CrossRef Gelman A, Hwang J, Vehtari A. Understanding predictive information criteria for Bayesian models. Stat Comput. 2014;24(6):997–1016.CrossRef
20.
go back to reference Watanabe S. A widely applicable Bayesian information criterion. J Mach Learn Res. 2013;14(Mar):867–97. Watanabe S. A widely applicable Bayesian information criterion. J Mach Learn Res. 2013;14(Mar):867–97.
21.
go back to reference Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7(4):434–55. Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7(4):434–55.
22.
go back to reference Diggle PJ, Menezes R, Su Tl. Geostatistical inference under preferential sampling. J R Stat Soc: Ser C: Appl Stat. 2010;59(2):191–232.CrossRef Diggle PJ, Menezes R, Su Tl. Geostatistical inference under preferential sampling. J R Stat Soc: Ser C: Appl Stat. 2010;59(2):191–232.CrossRef
23.
go back to reference Faith S, et al. Growth conditions and environmental factors impact aerosolization but not virulence of Francisella tularensis infection in mice. Front Cell Infect Microbiol. 2012;2:126.CrossRefPubMedPubMedCentral Faith S, et al. Growth conditions and environmental factors impact aerosolization but not virulence of Francisella tularensis infection in mice. Front Cell Infect Microbiol. 2012;2:126.CrossRefPubMedPubMedCentral
24.
go back to reference Leblebicioglu H, et al. Outbreak of tularemia: a case–control study and environmental investigation in Turkey. Int J Infect Dis. 2008;12(3):265–9.CrossRefPubMed Leblebicioglu H, et al. Outbreak of tularemia: a case–control study and environmental investigation in Turkey. Int J Infect Dis. 2008;12(3):265–9.CrossRefPubMed
Metadata
Title
Towards integrated surveillance of zoonoses: spatiotemporal joint modeling of rodent population data and human tularemia cases in Finland
Authors
C. Rotejanaprasert
A. Lawson
H. Rossow
J. Sane
O. Huitu
H. Henttonen
V. J. Del Rio Vilas
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2018
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-018-0532-8

Other articles of this Issue 1/2018

BMC Medical Research Methodology 1/2018 Go to the issue