Skip to main content
Top
Published in: BMC Emergency Medicine 1/2019

Open Access 01-12-2019 | Central Nervous System Trauma | Research article

Grading and assessment of clinical predictive tools for paediatric head injury: a new evidence-based approach

Authors: Mohamed Khalifa, Blanca Gallego

Published in: BMC Emergency Medicine | Issue 1/2019

Login to get access

Abstract

Background

Many clinical predictive tools have been developed to diagnose traumatic brain injury among children and guide the use of computed tomography in the emergency department. It is not always feasible to compare tools due to the diversity of their development methodologies, clinical variables, target populations, and predictive performances. The objectives of this study are to grade and assess paediatric head injury predictive tools, using a new evidence-based approach, and to provide emergency clinicians with standardised objective information on predictive tools to support their search for and selection of effective tools.

Methods

Paediatric head injury predictive tools were identified through a focused review of literature. Based on the critical appraisal of published evidence about predictive performance, usability, potential effect, and post-implementation impact, tools were evaluated using a new framework for grading and assessment of predictive tools (GRASP). A comprehensive analysis was conducted to explain why certain tools were more successful.

Results

Fourteen tools were identified and evaluated. The highest-grade tool is PECARN; the only tool evaluated in post-implementation impact studies. PECARN and CHALICE were evaluated for their potential effect on healthcare, while the remaining 12 tools were only evaluated for predictive performance. Three tools; CATCH, NEXUS II, and Palchak, were externally validated. Three tools; Haydel, Atabaki, and Buchanich, were only internally validated. The remaining six tools; Da Dalt, Greenes, Klemetti, Quayle, Dietrich, and Güzel did not show sufficient internal validity for use in clinical practice.

Conclusions

The GRASP framework provides clinicians with a high-level, evidence-based, comprehensive, yet simple and feasible approach to grade, compare, and select effective predictive tools. Comparing the three main tools which were assigned the highest grades; PECARN, CHALICE and CATCH, to the remaining 11, we find that the quality of tools’ development studies, the experience and credibility of their authors, and the support by well-funded research programs were correlated with the tools’ evidence-based assigned grades, and were more influential, than the sole high predictive performance, on the wide acceptance and successful implementation of the tools. Tools’ simplicity and feasibility, in terms of resources needed, technical requirements, and training, are also crucial factors for their success.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chaudhry B, Wang J, Wu S, Maglione M, Mojica W, Roth E, et al. Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. Ann Intern Med. 2006;144(10):742–52.PubMedCrossRef Chaudhry B, Wang J, Wu S, Maglione M, Mojica W, Roth E, et al. Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. Ann Intern Med. 2006;144(10):742–52.PubMedCrossRef
2.
go back to reference Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux P, Beyene J, et al. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005;293(10):1223–38.PubMedCrossRef Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux P, Beyene J, et al. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005;293(10):1223–38.PubMedCrossRef
3.
go back to reference Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. 2005;330(7494):765.PubMedPubMedCentralCrossRef Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. 2005;330(7494):765.PubMedPubMedCentralCrossRef
4.
go back to reference Oman KS. Evidence-based practice: an implementation guide for healthcare organizations. Burlington: Jones & Bartlett Publishers; 2010. Oman KS. Evidence-based practice: an implementation guide for healthcare organizations. Burlington: Jones & Bartlett Publishers; 2010.
5.
go back to reference Osheroff JA. Editor improving outcomes with clinical decision support: an implementer’s guide. Chicago: Himss; 2012. Osheroff JA. Editor improving outcomes with clinical decision support: an implementer’s guide. Chicago: Himss; 2012.
6.
go back to reference Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE. A roadmap for national action on clinical decision support. J Am Med Inform Assoc. 2007;14(2):141–5.PubMedPubMedCentralCrossRef Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE. A roadmap for national action on clinical decision support. J Am Med Inform Assoc. 2007;14(2):141–5.PubMedPubMedCentralCrossRef
7.
go back to reference Musen MA, Middleton B, Greenes RA. Clinical decision-support systems. Biomed Inform. 2014;1:643–74. Springer. Musen MA, Middleton B, Greenes RA. Clinical decision-support systems. Biomed Inform. 2014;1:643–74. Springer.
8.
go back to reference Shortliffe EH, Cimino JJ. Biomedical informatics: computer applications in health care and biomedicine. Berlin: Springer Science & Business Media; 2013. Shortliffe EH, Cimino JJ. Biomedical informatics: computer applications in health care and biomedicine. Berlin: Springer Science & Business Media; 2013.
10.
go back to reference Beattie P, Nelson R. Clinical prediction rules: what are they and what do they tell us? Aust J Physiother. 2006;52(3):157–63.PubMedCrossRef Beattie P, Nelson R. Clinical prediction rules: what are they and what do they tell us? Aust J Physiother. 2006;52(3):157–63.PubMedCrossRef
11.
go back to reference Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. Berlin: Springer Science & Business Media; 2008. Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. Berlin: Springer Science & Business Media; 2008.
12.
go back to reference Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31.PubMedPubMedCentralCrossRef Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31.PubMedPubMedCentralCrossRef
13.
go back to reference Bright TJ, Wong A, Dhurjati R, Bristow E, Bastian L, Coeytaux RR, et al. Effect of clinical decision-support systemsa systematic review. Ann Intern Med. 2012;157(1):29–43.PubMedCrossRef Bright TJ, Wong A, Dhurjati R, Bristow E, Bastian L, Coeytaux RR, et al. Effect of clinical decision-support systemsa systematic review. Ann Intern Med. 2012;157(1):29–43.PubMedCrossRef
14.
go back to reference Romano MJ, Stafford RS. Electronic health records and clinical decision support systems: impact on national ambulatory care quality. Arch Intern Med. 2011;171(10):897–903.PubMedPubMedCentral Romano MJ, Stafford RS. Electronic health records and clinical decision support systems: impact on national ambulatory care quality. Arch Intern Med. 2011;171(10):897–903.PubMedPubMedCentral
15.
go back to reference Bennett P, Hardiker NR. The use of computerized clinical decision support systems in emergency care: a substantive review of the literature. J Am Med Inform Assoc. 2016;24(3):655–68.PubMedCentral Bennett P, Hardiker NR. The use of computerized clinical decision support systems in emergency care: a substantive review of the literature. J Am Med Inform Assoc. 2016;24(3):655–68.PubMedCentral
16.
go back to reference Sahota N, Lloyd R, Ramakrishna A, Mackay JA, Prorok JC, Weise-Kelly L, et al. Computerized clinical decision support systems for acute care management: a decision-maker-researcher partnership systematic review of effects on process of care and patient outcomes. Implement Sci. 2011;6(1):91.PubMedPubMedCentralCrossRef Sahota N, Lloyd R, Ramakrishna A, Mackay JA, Prorok JC, Weise-Kelly L, et al. Computerized clinical decision support systems for acute care management: a decision-maker-researcher partnership systematic review of effects on process of care and patient outcomes. Implement Sci. 2011;6(1):91.PubMedPubMedCentralCrossRef
17.
go back to reference Wilk S, Michalowski W, O’Sullivan D, Farion K, Sayyad-Shirabad J, Kuziemsky C, et al. A task-based support architecture for developing point-of-care clinical decision support systems for the emergency department. Methods Inf Med. 2013;52(01):18–32.PubMedCrossRef Wilk S, Michalowski W, O’Sullivan D, Farion K, Sayyad-Shirabad J, Kuziemsky C, et al. A task-based support architecture for developing point-of-care clinical decision support systems for the emergency department. Methods Inf Med. 2013;52(01):18–32.PubMedCrossRef
18.
19.
go back to reference Azim A, Joseph B. Traumatic brain injury. Surgical critical care therapy. Berlin: Springer; 2018. p. 1–10. Azim A, Joseph B. Traumatic brain injury. Surgical critical care therapy. Berlin: Springer; 2018. p. 1–10.
20.
go back to reference Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths-United States, 2007 and 2013. MMWR Surveill Summ (Washington, DC: 2002). 2017;66(9):1–16.CrossRef Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths-United States, 2007 and 2013. MMWR Surveill Summ (Washington, DC: 2002). 2017;66(9):1–16.CrossRef
21.
go back to reference Langlois JA, Rutland-Brown W, Thomas KE. Traumatic brain injury in the United States; emergency department visits, hospitalizations, and deaths; 2006.CrossRef Langlois JA, Rutland-Brown W, Thomas KE. Traumatic brain injury in the United States; emergency department visits, hospitalizations, and deaths; 2006.CrossRef
22.
go back to reference Maguire JL, Boutis K, Uleryk EM, Laupacis A, Parkin PC. Should a head-injured child receive a head CT scan? A systematic review of clinical prediction rules. Pediatrics. 2009;124(1):e145–e54.PubMedCrossRef Maguire JL, Boutis K, Uleryk EM, Laupacis A, Parkin PC. Should a head-injured child receive a head CT scan? A systematic review of clinical prediction rules. Pediatrics. 2009;124(1):e145–e54.PubMedCrossRef
24.
go back to reference Pandor A, Goodacre S, Harnan S, Holmes M, Pickering A, Fitzgerald P, et al. Diagnostic management strategies for adults and children with minor head injury: a systematic review and an economic evaluation. Health Technol Assess (Winch. Eng.). 2011;15(27):1. Pandor A, Goodacre S, Harnan S, Holmes M, Pickering A, Fitzgerald P, et al. Diagnostic management strategies for adults and children with minor head injury: a systematic review and an economic evaluation. Health Technol Assess (Winch. Eng.). 2011;15(27):1.
25.
go back to reference Mueller DL, Hatab M, Al-Senan R, Cohn SM, Corneille MG, Dent DL, et al. Pediatric radiation exposure during the initial evaluation for blunt trauma. J Trauma Acute Care Surg. 2011;70(3):724–31.CrossRef Mueller DL, Hatab M, Al-Senan R, Cohn SM, Corneille MG, Dent DL, et al. Pediatric radiation exposure during the initial evaluation for blunt trauma. J Trauma Acute Care Surg. 2011;70(3):724–31.CrossRef
26.
go back to reference Bregstein JS, Lubell TR, Ruscica AM, Roskind CG. Nuking the radiation: minimizing radiation exposure in the evaluation of pediatric blunt trauma. Curr Opin Pediatr. 2014;26(3):272–8.PubMedCrossRef Bregstein JS, Lubell TR, Ruscica AM, Roskind CG. Nuking the radiation: minimizing radiation exposure in the evaluation of pediatric blunt trauma. Curr Opin Pediatr. 2014;26(3):272–8.PubMedCrossRef
27.
go back to reference Pandor A, Harnan S, Goodacre S, Pickering A, Fitzgerald P, Rees A. Diagnostic accuracy of clinical characteristics for identifying CT abnormality after minor brain injury: a systematic review and meta-analysis. J Neurotrauma. 2012;29(5):707–18.PubMedCrossRef Pandor A, Harnan S, Goodacre S, Pickering A, Fitzgerald P, Rees A. Diagnostic accuracy of clinical characteristics for identifying CT abnormality after minor brain injury: a systematic review and meta-analysis. J Neurotrauma. 2012;29(5):707–18.PubMedCrossRef
28.
go back to reference Pickering A, Harnan S, Fitzgerald P, Pandor A, Goodacre S. Clinical decision rules for children with minor head injury: a systematic review. Arch Dis Child. 2011;96(5):414–21.PubMedCrossRef Pickering A, Harnan S, Fitzgerald P, Pandor A, Goodacre S. Clinical decision rules for children with minor head injury: a systematic review. Arch Dis Child. 2011;96(5):414–21.PubMedCrossRef
29.
go back to reference Ebell MH. Evidence-based diagnosis: a handbook of clinical prediction rules. Berlin: Springer Science & Business Media; 2001. Ebell MH. Evidence-based diagnosis: a handbook of clinical prediction rules. Berlin: Springer Science & Business Media; 2001.
30.
go back to reference Kappen T, van Klei W, van Wolfswinkel L, Kalkman C, Vergouwe Y, Moons K. General discussion I: evaluating the impact of the use of prediction models in clinical practice: challenges and recommendations. Prediction models and decision support; 2015. p. 89. Kappen T, van Klei W, van Wolfswinkel L, Kalkman C, Vergouwe Y, Moons K. General discussion I: evaluating the impact of the use of prediction models in clinical practice: challenges and recommendations. Prediction models and decision support; 2015. p. 89.
31.
go back to reference Taljaard M, Tuna M, Bennett C, Perez R, Rosella L, Tu JV, et al. Cardiovascular disease population risk tool (CVDPoRT): predictive algorithm for assessing CVD risk in the community setting. a study protocol. BMJ Open. 2014;4(10):e006701.PubMedPubMedCentralCrossRef Taljaard M, Tuna M, Bennett C, Perez R, Rosella L, Tu JV, et al. Cardiovascular disease population risk tool (CVDPoRT): predictive algorithm for assessing CVD risk in the community setting. a study protocol. BMJ Open. 2014;4(10):e006701.PubMedPubMedCentralCrossRef
32.
go back to reference Ansari S, Rashidian A. Guidelines for guidelines: are they up to the task? A comparative assessment of clinical practice guideline development handbooks. PLoS One. 2012;7(11):e49864.PubMedPubMedCentralCrossRef Ansari S, Rashidian A. Guidelines for guidelines: are they up to the task? A comparative assessment of clinical practice guideline development handbooks. PLoS One. 2012;7(11):e49864.PubMedPubMedCentralCrossRef
33.
35.
go back to reference Tranfield D, Denyer D, Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 2003;14(3):207–22.CrossRef Tranfield D, Denyer D, Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 2003;14(3):207–22.CrossRef
38.
go back to reference Sempértegui Cárdenas PX. Validación de una escala de predicción de lesiones intracraneales para trauma cráneo-encefálico en niños de 0 a 5 años del Hospital Vicente Corral Moscoso Enero-Diciembre 2014. Cuenca: Estudio de test diagnóstico; 2016. Sempértegui Cárdenas PX. Validación de una escala de predicción de lesiones intracraneales para trauma cráneo-encefálico en niños de 0 a 5 años del Hospital Vicente Corral Moscoso Enero-Diciembre 2014. Cuenca: Estudio de test diagnóstico; 2016.
39.
go back to reference Atabaki SM, Stiell IG, Bazarian JJ, Sadow KE, Vu TT, Camarca MA, et al. A clinical decision rule for cranial computed tomography in minor pediatric head trauma. Arch Pediatr Adolesc Med. 2008;162(5):439–45.PubMedCrossRef Atabaki SM, Stiell IG, Bazarian JJ, Sadow KE, Vu TT, Camarca MA, et al. A clinical decision rule for cranial computed tomography in minor pediatric head trauma. Arch Pediatr Adolesc Med. 2008;162(5):439–45.PubMedCrossRef
40.
go back to reference Buchanich JM. A clinical decision-making rule for mild head injury in children less than three years old. Pittsburgh: University of Pittsburgh; 2007. Buchanich JM. A clinical decision-making rule for mild head injury in children less than three years old. Pittsburgh: University of Pittsburgh; 2007.
41.
go back to reference Da Dalt L, Marchi AG, Laudizi L, Crichiutti G, Messi G, Pavanello L, et al. Predictors of intracranial injuries in children after blunt head trauma. Eur J Pediatr. 2006;165(3):142–8.PubMedCrossRef Da Dalt L, Marchi AG, Laudizi L, Crichiutti G, Messi G, Pavanello L, et al. Predictors of intracranial injuries in children after blunt head trauma. Eur J Pediatr. 2006;165(3):142–8.PubMedCrossRef
42.
go back to reference Dietrich AM, Bowman MJ, Ginn-Pease ME, Kosnik E, King DR. Pediatric head injuries: can clinical factors reliably predict an abnormality on computed tomography? Ann Emerg Med. 1993;22(10):1535–40.PubMedCrossRef Dietrich AM, Bowman MJ, Ginn-Pease ME, Kosnik E, King DR. Pediatric head injuries: can clinical factors reliably predict an abnormality on computed tomography? Ann Emerg Med. 1993;22(10):1535–40.PubMedCrossRef
43.
go back to reference Dunning J, Daly JP, Lomas J, Lecky F, Batchelor J, Mackway-Jones K. Derivation of the children’s head injury algorithm for the prediction of important clinical events decision rule for head injury in children. Arch Dis Child. 2006;91(11):885–91.PubMedPubMedCentralCrossRef Dunning J, Daly JP, Lomas J, Lecky F, Batchelor J, Mackway-Jones K. Derivation of the children’s head injury algorithm for the prediction of important clinical events decision rule for head injury in children. Arch Dis Child. 2006;91(11):885–91.PubMedPubMedCentralCrossRef
44.
go back to reference Greenes DS, Schutzman SA. Clinical indicators of intracranial injury in head-injured infants. Pediatrics. 1999;104(4):861–7.PubMedCrossRef Greenes DS, Schutzman SA. Clinical indicators of intracranial injury in head-injured infants. Pediatrics. 1999;104(4):861–7.PubMedCrossRef
45.
go back to reference Greenes DS, Schutzman SA. Clinical significance of scalp abnormalities in asymptomatic head-injured infants. Pediatr Emerg Care. 2001;17(2):88–92.PubMedCrossRef Greenes DS, Schutzman SA. Clinical significance of scalp abnormalities in asymptomatic head-injured infants. Pediatr Emerg Care. 2001;17(2):88–92.PubMedCrossRef
46.
go back to reference Güzel A, Hiçdönmez T, Temizöz O, Aksu B, Aylanç H, Karasalihoglu S. Indications for brain computed tomography and hospital admission in pediatric patients with minor head injury: how much can we rely upon clinical findings? Pediatr Neurosurg. 2009;45(4):262–70.PubMedCrossRef Güzel A, Hiçdönmez T, Temizöz O, Aksu B, Aylanç H, Karasalihoglu S. Indications for brain computed tomography and hospital admission in pediatric patients with minor head injury: how much can we rely upon clinical findings? Pediatr Neurosurg. 2009;45(4):262–70.PubMedCrossRef
47.
go back to reference Haydel MJ, Shembekar AD. Prediction of intracranial injury in children aged five years and older with loss of consciousness after minor head injury due to nontrivial mechanisms. Ann Emerg Med. 2003;42(4):507–14.PubMedCrossRef Haydel MJ, Shembekar AD. Prediction of intracranial injury in children aged five years and older with loss of consciousness after minor head injury due to nontrivial mechanisms. Ann Emerg Med. 2003;42(4):507–14.PubMedCrossRef
48.
go back to reference Klemetti S, Uhari M, Pokka T, Rantala H. Evaluation of decision rules for identifying serious consequences of traumatic head injuries in pediatric patients. Pediatr Emerg Care. 2009;25(12):811–5.PubMedCrossRef Klemetti S, Uhari M, Pokka T, Rantala H. Evaluation of decision rules for identifying serious consequences of traumatic head injuries in pediatric patients. Pediatr Emerg Care. 2009;25(12):811–5.PubMedCrossRef
49.
go back to reference Kuppermann N, Holmes JF, Dayan PS, Hoyle JD, Atabaki SM, Holubkov R, et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet. 2009;374(9696):1160–70.PubMedCrossRef Kuppermann N, Holmes JF, Dayan PS, Hoyle JD, Atabaki SM, Holubkov R, et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet. 2009;374(9696):1160–70.PubMedCrossRef
50.
go back to reference Oman JA, Cooper RJ, Holmes JF, Viccellio P, Nyce A, Ross SE, et al. Performance of a decision rule to predict need for computed tomography among children with blunt head trauma. Pediatrics. 2006;117(2):e238–e46.PubMedCrossRef Oman JA, Cooper RJ, Holmes JF, Viccellio P, Nyce A, Ross SE, et al. Performance of a decision rule to predict need for computed tomography among children with blunt head trauma. Pediatrics. 2006;117(2):e238–e46.PubMedCrossRef
51.
go back to reference Osmond MH, Klassen TP, Wells GA, Correll R, Jarvis A, Joubert G, et al. CATCH: a clinical decision rule for the use of computed tomography in children with minor head injury. Can Med Assoc J. 2010;182(4):341–8.CrossRef Osmond MH, Klassen TP, Wells GA, Correll R, Jarvis A, Joubert G, et al. CATCH: a clinical decision rule for the use of computed tomography in children with minor head injury. Can Med Assoc J. 2010;182(4):341–8.CrossRef
52.
go back to reference Palchak MJ, Holmes JF, Vance CW, Gelber RE, Schauer BA, Harrison MJ, et al. A decision rule for identifying children at low risk for brain injuries after blunt head trauma. Ann Emerg Med. 2003;42(4):492–506.PubMedCrossRef Palchak MJ, Holmes JF, Vance CW, Gelber RE, Schauer BA, Harrison MJ, et al. A decision rule for identifying children at low risk for brain injuries after blunt head trauma. Ann Emerg Med. 2003;42(4):492–506.PubMedCrossRef
53.
go back to reference Quayle KS, Jaffe DM, Kuppermann N, Kaufman BA, Lee BC, Park T, et al. Diagnostic testing for acute head injury in children: when are head computed tomography and skull radiographs indicated? Pediatrics. 1997;99(5):e11–e.PubMedCrossRef Quayle KS, Jaffe DM, Kuppermann N, Kaufman BA, Lee BC, Park T, et al. Diagnostic testing for acute head injury in children: when are head computed tomography and skull radiographs indicated? Pediatrics. 1997;99(5):e11–e.PubMedCrossRef
54.
go back to reference Sun BC, Hoffman JR, Mower WR. Evaluation of a modified prediction instrument to identify significant pediatric intracranial injury after blunt head trauma. Ann Emerg Med. 2007;49(3):325–32. e1.PubMedCrossRef Sun BC, Hoffman JR, Mower WR. Evaluation of a modified prediction instrument to identify significant pediatric intracranial injury after blunt head trauma. Ann Emerg Med. 2007;49(3):325–32. e1.PubMedCrossRef
55.
go back to reference Ahmadi S, Yousefifard M. Accuracy of pediatric emergency care applied research network rules in prediction of clinically important head injuries; a systematic review and meta-analysis. Int J Pediatr. 2017;5(12):6285–300. Ahmadi S, Yousefifard M. Accuracy of pediatric emergency care applied research network rules in prediction of clinically important head injuries; a systematic review and meta-analysis. Int J Pediatr. 2017;5(12):6285–300.
56.
go back to reference Atabaki SM, Hoyle JD Jr, Schunk JE, Monroe DJ, Alpern ER, Quayle KS, et al. Comparison of prediction rules and clinician suspicion for identifying children with clinically important brain injuries after blunt head trauma. Acad Emerg Med. 2016;23(5):566–75.PubMedCrossRef Atabaki SM, Hoyle JD Jr, Schunk JE, Monroe DJ, Alpern ER, Quayle KS, et al. Comparison of prediction rules and clinician suspicion for identifying children with clinically important brain injuries after blunt head trauma. Acad Emerg Med. 2016;23(5):566–75.PubMedCrossRef
57.
go back to reference Atabaki SM, Jacobs BR, Brown KM, Shahzeidi S, Heard-Garris NJ, Chamberlain MB, et al. Quality improvement in pediatric head trauma with PECARN rules implementation as computerized decision support. Pediatr Qual Saf. 2017;2(3):e019.PubMedPubMedCentralCrossRef Atabaki SM, Jacobs BR, Brown KM, Shahzeidi S, Heard-Garris NJ, Chamberlain MB, et al. Quality improvement in pediatric head trauma with PECARN rules implementation as computerized decision support. Pediatr Qual Saf. 2017;2(3):e019.PubMedPubMedCentralCrossRef
58.
go back to reference Babl FE, Borland ML, Phillips N, Kochar A, Dalton S, McCaskill M, et al. Accuracy of PECARN, CATCH, and CHALICE head injury decision rules in children: a prospective cohort study. Lancet. 2017;389(10087):2393–402.PubMedCrossRef Babl FE, Borland ML, Phillips N, Kochar A, Dalton S, McCaskill M, et al. Accuracy of PECARN, CATCH, and CHALICE head injury decision rules in children: a prospective cohort study. Lancet. 2017;389(10087):2393–402.PubMedCrossRef
59.
go back to reference Babl FE, Bressan S. Physician practice and PECARN rule outperform CATCH and CHALICE rules based on the detection of traumatic brain injury as defined by PECARN. BMJ Evid Based Med. 2015;20(1):33–4.CrossRef Babl FE, Bressan S. Physician practice and PECARN rule outperform CATCH and CHALICE rules based on the detection of traumatic brain injury as defined by PECARN. BMJ Evid Based Med. 2015;20(1):33–4.CrossRef
60.
go back to reference Babl FE, Lyttle MD, Bressan S, Borland M, Phillips N, Kochar A, et al. A prospective observational study to assess the diagnostic accuracy of clinical decision rules for children presenting to emergency departments after head injuries (protocol): the Australasian Paediatric head injury rules study (APHIRST). BMC Pediatr. 2014;14(1):148.PubMedPubMedCentralCrossRef Babl FE, Lyttle MD, Bressan S, Borland M, Phillips N, Kochar A, et al. A prospective observational study to assess the diagnostic accuracy of clinical decision rules for children presenting to emergency departments after head injuries (protocol): the Australasian Paediatric head injury rules study (APHIRST). BMC Pediatr. 2014;14(1):148.PubMedPubMedCentralCrossRef
61.
go back to reference Babl FE, Oakley E, Dalziel SR, Borland ML, Phillips N, Kochar A, et al. Accuracy of clinician practice compared with three head injury decision rules in children: a prospective cohort study. Ann Emerg Med. 2018;71(6):703–10.PubMedCrossRef Babl FE, Oakley E, Dalziel SR, Borland ML, Phillips N, Kochar A, et al. Accuracy of clinician practice compared with three head injury decision rules in children: a prospective cohort study. Ann Emerg Med. 2018;71(6):703–10.PubMedCrossRef
62.
go back to reference Barrett J. The use of clinical decision rules to reduce unnecessary head CT scans in pediatric populations. Tucson: The University of Arizona; 2016. Barrett J. The use of clinical decision rules to reduce unnecessary head CT scans in pediatric populations. Tucson: The University of Arizona; 2016.
63.
go back to reference Bozan Ö, Aksel G, Kahraman H, Giritli Ö, Eroğlu S. Comparison of PECARN and CATCH clinical decision rules in children with minor blunt head trauma. Eur J Trauma Emerg Surg. 2017;43:1–7. E-ISSN: 1863-9941, PMID: 29071378 Version:1. https://doi.org/10.1007/s00068-017-0865-8. Bozan Ö, Aksel G, Kahraman H, Giritli Ö, Eroğlu S. Comparison of PECARN and CATCH clinical decision rules in children with minor blunt head trauma. Eur J Trauma Emerg Surg. 2017;43:1–7. E-ISSN: 1863-9941, PMID: 29071378 Version:1. https://​doi.​org/​10.​1007/​s00068-017-0865-8.
64.
go back to reference Bressan S, Romanato S, Mion T, Zanconato S, Da Dalt L. Implementation of adapted PECARN decision rule for children with minor head injury in the pediatric emergency department. Acad Emerg Med. 2012;19(7):801–7.PubMedCrossRef Bressan S, Romanato S, Mion T, Zanconato S, Da Dalt L. Implementation of adapted PECARN decision rule for children with minor head injury in the pediatric emergency department. Acad Emerg Med. 2012;19(7):801–7.PubMedCrossRef
65.
go back to reference Bressan S, Steiner IP, Mion T, Berlese P, Romanato S, Da Dalt L. The pediatric emergency care applied research network intermediate-risk predictors were not associated with scanning decisions for minor head injuries. Acta Paediatr. 2015;104(1):47–52.PubMedCrossRef Bressan S, Steiner IP, Mion T, Berlese P, Romanato S, Da Dalt L. The pediatric emergency care applied research network intermediate-risk predictors were not associated with scanning decisions for minor head injuries. Acta Paediatr. 2015;104(1):47–52.PubMedCrossRef
66.
go back to reference Easter JS, Bakes K, Dhaliwal J, Miller M, Caruso E, Haukoos JS. Comparison of PECARN, CATCH, and CHALICE rules for children with minor head injury: a prospective cohort study. Ann Emerg Med. 2014;64(2):145–52. e5.PubMedPubMedCentralCrossRef Easter JS, Bakes K, Dhaliwal J, Miller M, Caruso E, Haukoos JS. Comparison of PECARN, CATCH, and CHALICE rules for children with minor head injury: a prospective cohort study. Ann Emerg Med. 2014;64(2):145–52. e5.PubMedPubMedCentralCrossRef
67.
go back to reference Fuller G, Dunning J, Batchelor J, Lecky F, editors. An external validation of the PECARN clinical decision rule for CT head imaging of infants with minor head injury. 2012. BRAIN INJURY; INFORMA HEALTHCARE TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND. Fuller G, Dunning J, Batchelor J, Lecky F, editors. An external validation of the PECARN clinical decision rule for CT head imaging of infants with minor head injury. 2012. BRAIN INJURY; INFORMA HEALTHCARE TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND.
68.
go back to reference Gökharman FD, AYDIN S, Fatihoğlu E, KOŞAR PN. Pediatric emergency care applied research network head injuryprediction rules: on the basis of cost and effectiveness. Turk J Med Sci. 2017;47(6):1770–7.PubMedCrossRef Gökharman FD, AYDIN S, Fatihoğlu E, KOŞAR PN. Pediatric emergency care applied research network head injuryprediction rules: on the basis of cost and effectiveness. Turk J Med Sci. 2017;47(6):1770–7.PubMedCrossRef
69.
go back to reference Holmes M, Goodacre S, Stevenson M, Pandor A, Pickering A. The cost-effectiveness of diagnostic management strategies for children with minor head injury. Arch Dis Child. 2013;98(12):939–44.PubMedCrossRef Holmes M, Goodacre S, Stevenson M, Pandor A, Pickering A. The cost-effectiveness of diagnostic management strategies for children with minor head injury. Arch Dis Child. 2013;98(12):939–44.PubMedCrossRef
70.
go back to reference Ide K, Uematsu S, Tetsuhara K, Yoshimura S, Kato T, Kobayashi T. External validation of the PECARN head trauma prediction rules in Japan. Acad Emerg Med. 2017;24(3):308–14.PubMedCrossRef Ide K, Uematsu S, Tetsuhara K, Yoshimura S, Kato T, Kobayashi T. External validation of the PECARN head trauma prediction rules in Japan. Acad Emerg Med. 2017;24(3):308–14.PubMedCrossRef
71.
go back to reference Lorton F, Poullaouec C, Legallais E, Simon-Pimmel J, Chêne M, Leroy H, et al. Validation of the PECARN clinical decision rule for children with minor head trauma: a French multicenter prospective study. Scand J Trauma Resusc Emerg Med. 2016;24(1):98.PubMedPubMedCentralCrossRef Lorton F, Poullaouec C, Legallais E, Simon-Pimmel J, Chêne M, Leroy H, et al. Validation of the PECARN clinical decision rule for children with minor head trauma: a French multicenter prospective study. Scand J Trauma Resusc Emerg Med. 2016;24(1):98.PubMedPubMedCentralCrossRef
72.
go back to reference Lyttle MD, Cheek JA, Blackburn C, Oakley E, Ward B, Fry A, et al. Applicability of the CATCH, CHALICE and PECARN paediatric head injury clinical decision rules: pilot data from a single Australian Centre. Emerg Med J. 2013;30(10):790–4.PubMedCrossRef Lyttle MD, Cheek JA, Blackburn C, Oakley E, Ward B, Fry A, et al. Applicability of the CATCH, CHALICE and PECARN paediatric head injury clinical decision rules: pilot data from a single Australian Centre. Emerg Med J. 2013;30(10):790–4.PubMedCrossRef
73.
go back to reference Mihindu E, Bhullar I, Tepas J, Kerwin A. Computed tomography of the head in children with mild traumatic brain injury. Am Surg. 2014;80(9):841–3.PubMed Mihindu E, Bhullar I, Tepas J, Kerwin A. Computed tomography of the head in children with mild traumatic brain injury. Am Surg. 2014;80(9):841–3.PubMed
74.
go back to reference Nakhjavan-Shahraki B, Yousefifard M, Hajighanbari M, Oraii A, Safari S, Hosseini M. Pediatric emergency care applied research network (PECARN) prediction rules in identifying high risk children with mild traumatic brain injury. Eur J Trauma Emerg Surg. 2017;43(6):755–62.PubMedCrossRef Nakhjavan-Shahraki B, Yousefifard M, Hajighanbari M, Oraii A, Safari S, Hosseini M. Pediatric emergency care applied research network (PECARN) prediction rules in identifying high risk children with mild traumatic brain injury. Eur J Trauma Emerg Surg. 2017;43(6):755–62.PubMedCrossRef
75.
go back to reference Nishijima DK, Yang Z, Urbich M, Holmes JF, Zwienenberg-Lee M, Melnikow J, et al. Cost-effectiveness of the PECARN rules in children with minor head trauma. Ann Emerg Med. 2015;65(1):72–80. e6.PubMedCrossRef Nishijima DK, Yang Z, Urbich M, Holmes JF, Zwienenberg-Lee M, Melnikow J, et al. Cost-effectiveness of the PECARN rules in children with minor head trauma. Ann Emerg Med. 2015;65(1):72–80. e6.PubMedCrossRef
77.
go back to reference Thiam DW, Yap SH, Chong SL. Clinical decision rules for paediatric minor head injury: are CT scans a necessary evil. Ann Acad Med Singap. 2015;44(9):335–41.PubMed Thiam DW, Yap SH, Chong SL. Clinical decision rules for paediatric minor head injury: are CT scans a necessary evil. Ann Acad Med Singap. 2015;44(9):335–41.PubMed
78.
go back to reference Alali AS, Burton K, Fowler RA, Naimark DM, Scales DC, Mainprize TG, et al. Economic evaluations in the diagnosis and management of traumatic brain injury: a systematic review and analysis of quality. Value Health. 2015;18(5):721–34.PubMedCrossRef Alali AS, Burton K, Fowler RA, Naimark DM, Scales DC, Mainprize TG, et al. Economic evaluations in the diagnosis and management of traumatic brain injury: a systematic review and analysis of quality. Value Health. 2015;18(5):721–34.PubMedCrossRef
80.
go back to reference Harty E, Bellis F. CHALICE head injury rule: an implementation study. Emerg Med J. 2010;2009:077644. Harty E, Bellis F. CHALICE head injury rule: an implementation study. Emerg Med J. 2010;2009:077644.
81.
go back to reference Gerdung C, Dowling S, Lang E. Review of the CATCH study: a clinical decision rule for the use of computed tomography in children with minor head injury. Can J Emerg Med. 2012;14(4):247–51. Gerdung C, Dowling S, Lang E. Review of the CATCH study: a clinical decision rule for the use of computed tomography in children with minor head injury. Can J Emerg Med. 2012;14(4):247–51.
82.
go back to reference Osmond M, Stiell I. Canadian assessment of tomography for childhood head injuries. Ontario: University of Ottawa, Trauma Division of Pediatric Emergency Medicine Children’s Hospital of Eastern Ontario Personal communication; 2002. Osmond M, Stiell I. Canadian assessment of tomography for childhood head injuries. Ontario: University of Ottawa, Trauma Division of Pediatric Emergency Medicine Children’s Hospital of Eastern Ontario Personal communication; 2002.
83.
go back to reference Osmond MH, Klassen TP, Stiell IG, Correll R. The CATCH rule: a clinical decision rule for the use of computed tomography of the head in children with minor head injury. Acad Emerg Med. 2006;13(5 Supplement 1):S11.CrossRef Osmond MH, Klassen TP, Stiell IG, Correll R. The CATCH rule: a clinical decision rule for the use of computed tomography of the head in children with minor head injury. Acad Emerg Med. 2006;13(5 Supplement 1):S11.CrossRef
84.
go back to reference Gupta M, Mower WR, Rodriguez RM, Hendey GW. Validation of the pediatric NEXUS II head computed tomography decision instrument for selective imaging of pediatric patients with blunt head trauma. Acad Emerg Med. 2018;25(7):729-37.PubMedCrossRef Gupta M, Mower WR, Rodriguez RM, Hendey GW. Validation of the pediatric NEXUS II head computed tomography decision instrument for selective imaging of pediatric patients with blunt head trauma. Acad Emerg Med. 2018;25(7):729-37.PubMedCrossRef
85.
go back to reference Schachar JL, Zampolin RL, Miller TS, Farinhas JM, Freeman K, Taragin BH. External validation of the New Orleans criteria (NOC), the Canadian CT head rule (CCHR) and the National Emergency X-radiography utilization study II (NEXUS II) for CT scanning in pediatric patients with minor head injury in a non-trauma center. Pediatr Radiol. 2011;41(8):971.PubMedCrossRef Schachar JL, Zampolin RL, Miller TS, Farinhas JM, Freeman K, Taragin BH. External validation of the New Orleans criteria (NOC), the Canadian CT head rule (CCHR) and the National Emergency X-radiography utilization study II (NEXUS II) for CT scanning in pediatric patients with minor head injury in a non-trauma center. Pediatr Radiol. 2011;41(8):971.PubMedCrossRef
86.
go back to reference Stein SC, Fabbri A, Servadei F, Glick HA. A critical comparison of clinical decision instruments for computed tomographic scanning in mild closed traumatic brain injury in adolescents and adults. Ann Emerg Med. 2009;53(2):180–8.PubMedCrossRef Stein SC, Fabbri A, Servadei F, Glick HA. A critical comparison of clinical decision instruments for computed tomographic scanning in mild closed traumatic brain injury in adolescents and adults. Ann Emerg Med. 2009;53(2):180–8.PubMedCrossRef
87.
go back to reference Palchak MJ, Holmes JF, Kuppermann N. Clinician judgment versus a decision rule for identifying children at risk of traumatic brain injury on computed tomography after blunt head trauma. Pediatr Emerg Care. 2009;25(2):61–5.PubMedCrossRef Palchak MJ, Holmes JF, Kuppermann N. Clinician judgment versus a decision rule for identifying children at risk of traumatic brain injury on computed tomography after blunt head trauma. Pediatr Emerg Care. 2009;25(2):61–5.PubMedCrossRef
88.
go back to reference Mower WR, Hoffman JR, Herbert M, Wolfson AB, Pollack CV Jr, Zucker MI, et al. Developing a clinical decision instrument to rule out intracranial injuries in patients with minor head trauma: methodology of the NEXUS II investigation. Ann Emerg Med. 2002;40(5):505–15.PubMedCrossRef Mower WR, Hoffman JR, Herbert M, Wolfson AB, Pollack CV Jr, Zucker MI, et al. Developing a clinical decision instrument to rule out intracranial injuries in patients with minor head trauma: methodology of the NEXUS II investigation. Ann Emerg Med. 2002;40(5):505–15.PubMedCrossRef
89.
go back to reference Mower WR, Hoffman JR, Herbert M, Wolfson AB, Pollack CV Jr, Zucker MI, et al. Developing a decision instrument to guide computed tomographic imaging of blunt head injury patients. J Trauma Acute Care Surg. 2005;59(4):954–9.CrossRef Mower WR, Hoffman JR, Herbert M, Wolfson AB, Pollack CV Jr, Zucker MI, et al. Developing a decision instrument to guide computed tomographic imaging of blunt head injury patients. J Trauma Acute Care Surg. 2005;59(4):954–9.CrossRef
91.
92.
go back to reference Kadom N, Alvarado E, Medina LS. Pediatric accidental traumatic brain injury: evidence-based emergency imaging. Evidence-based emergency imaging. Berlin: Springer; 2018. p. 65–77.CrossRef Kadom N, Alvarado E, Medina LS. Pediatric accidental traumatic brain injury: evidence-based emergency imaging. Evidence-based emergency imaging. Berlin: Springer; 2018. p. 65–77.CrossRef
93.
go back to reference Lyttle M, Borland M, Phillips N, Kochar A, Cheek J, Gilhotra Y, et al. G273 accuracy of physician practice as compared with Pecarn, Catch and Chalice head injury clinical decision rules in children. A predict prospective cohort study. London: BMJ Publishing Group Ltd; 2017. Lyttle M, Borland M, Phillips N, Kochar A, Cheek J, Gilhotra Y, et al. G273 accuracy of physician practice as compared with Pecarn, Catch and Chalice head injury clinical decision rules in children. A predict prospective cohort study. London: BMJ Publishing Group Ltd; 2017.
94.
go back to reference Dalziel K, Cheek JA, Fanning L, Borland ML, Phillips N, Kochar A, Dalton S, Furyk J, Neutze J, Dalziel SR, Lyttle MD. A cost-effectiveness analysis comparing clinical decision rules PECARN, CATCH, and CHALICE with usual Care for the Management of pediatric head injury. Ann Emerg Med. 2019;73(5):429-39.PubMedCrossRef Dalziel K, Cheek JA, Fanning L, Borland ML, Phillips N, Kochar A, Dalton S, Furyk J, Neutze J, Dalziel SR, Lyttle MD. A cost-effectiveness analysis comparing clinical decision rules PECARN, CATCH, and CHALICE with usual Care for the Management of pediatric head injury. Ann Emerg Med. 2019;73(5):429-39.PubMedCrossRef
95.
go back to reference Stiell IG, Greenberg GH, McKnight RD, Nair RC, McDowell I, Worthington JR. A study to develop clinical decision rules for the use of radiography in acute ankle injuries. Ann Emerg Med. 1992;21(4):384–90.PubMedCrossRef Stiell IG, Greenberg GH, McKnight RD, Nair RC, McDowell I, Worthington JR. A study to develop clinical decision rules for the use of radiography in acute ankle injuries. Ann Emerg Med. 1992;21(4):384–90.PubMedCrossRef
96.
go back to reference Stiell IG, Greenberg GH, Wells GA, McKnight RD, Cwinn AA, Cacciotti T, et al. Derivation of a decision rule for the use of radiography in acute knee injuries. Ann Emerg Med. 1995;26(4):405–13.PubMedCrossRef Stiell IG, Greenberg GH, Wells GA, McKnight RD, Cwinn AA, Cacciotti T, et al. Derivation of a decision rule for the use of radiography in acute knee injuries. Ann Emerg Med. 1995;26(4):405–13.PubMedCrossRef
97.
go back to reference Stiell I, Wells G, Laupacis A, Brison R, Verbeek R, Vandemheen K, et al. Multicentre trial to introduce the Ottawa ankle rules for use of radiography in acute ankle injuries. BMJ. 1995;311(7005):594–7.PubMedPubMedCentralCrossRef Stiell I, Wells G, Laupacis A, Brison R, Verbeek R, Vandemheen K, et al. Multicentre trial to introduce the Ottawa ankle rules for use of radiography in acute ankle injuries. BMJ. 1995;311(7005):594–7.PubMedPubMedCentralCrossRef
98.
go back to reference Stiell IG, McKnight RD, Greenberg GH, McDowell I, Nair RC, Wells GA, et al. Implementation of the Ottawa ankle rules. JAMA. 1994;271(11):827–32.PubMedCrossRef Stiell IG, McKnight RD, Greenberg GH, McDowell I, Nair RC, Wells GA, et al. Implementation of the Ottawa ankle rules. JAMA. 1994;271(11):827–32.PubMedCrossRef
99.
go back to reference Stiell IG, Wells GA, Hoag RH, Sivilotti ML, Cacciotti TF, Verbeek PR, et al. Implementation of the Ottawa knee rule for the use of radiography in acute knee injuries. JAMA. 1997;278(23):2075–9.PubMedCrossRef Stiell IG, Wells GA, Hoag RH, Sivilotti ML, Cacciotti TF, Verbeek PR, et al. Implementation of the Ottawa knee rule for the use of radiography in acute knee injuries. JAMA. 1997;278(23):2075–9.PubMedCrossRef
100.
go back to reference Nichol G, Stiel IG, Wells GA, Juergensen LS, Laupacis A. An economic analysis of the Ottawa knee rule. Ann Emerg Med. 1999;34(4):438–47.PubMedCrossRef Nichol G, Stiel IG, Wells GA, Juergensen LS, Laupacis A. An economic analysis of the Ottawa knee rule. Ann Emerg Med. 1999;34(4):438–47.PubMedCrossRef
Metadata
Title
Grading and assessment of clinical predictive tools for paediatric head injury: a new evidence-based approach
Authors
Mohamed Khalifa
Blanca Gallego
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Emergency Medicine / Issue 1/2019
Electronic ISSN: 1471-227X
DOI
https://doi.org/10.1186/s12873-019-0249-y

Other articles of this Issue 1/2019

BMC Emergency Medicine 1/2019 Go to the issue