Skip to main content
Top
Published in: BMC Anesthesiology 1/2019

Open Access 01-12-2019 | Review

Electrical impedance tomography in perioperative medicine: careful respiratory monitoring for tailored interventions

Authors: Elena Spinelli, Tommaso Mauri, Alberto Fogagnolo, Gaetano Scaramuzzo, Annalisa Rundo, Domenico Luca Grieco, Giacomo Grasselli, Carlo Alberto Volta, Savino Spadaro

Published in: BMC Anesthesiology | Issue 1/2019

Login to get access

Abstract

Background

Electrical impedance tomography (EIT) is a non-invasive radiation-free monitoring technique that provides images based on tissue electrical conductivity of the chest. Several investigations applied EIT in the context of perioperative medicine, which is not confined to the intraoperative period but begins with the preoperative assessment and extends to postoperative follow-up.

Main body

EIT could provide careful respiratory monitoring in the preoperative assessment to improve preparation for surgery, during anaesthesia to guide optimal ventilation strategies and to monitor the hemodynamic status and in the postoperative period for early detection of respiratory complications. Moreover, EIT could further enhance care of patients undergoing perioperative diagnostic procedures. This narrative review summarizes the latest evidence on the application of this technique to the surgical patient, focusing also on possible future perspectives.

Conclusions

EIT is a promising technique for the perioperative assessment of surgical patients, providing tailored adaptive respiratory and haemodynamic monitoring. Further studies are needed to address the current technological limitations, confirm the findings and evaluate which patients can benefit more from this technology.
Literature
1.
go back to reference Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72:83–93.CrossRef Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72:83–93.CrossRef
2.
go back to reference Bayford R, Tizzard A. Bioimpedance imaging: an overview of potential clinical applications. Analyst. 2012;137:4635–43.CrossRef Bayford R, Tizzard A. Bioimpedance imaging: an overview of potential clinical applications. Analyst. 2012;137:4635–43.CrossRef
3.
go back to reference Lionheart WRB. EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiol Meas. 2004;25:125–42.CrossRef Lionheart WRB. EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiol Meas. 2004;25:125–42.CrossRef
4.
go back to reference Fuks LF, Cheney M, Isaacson D, Gisser DG, Newell JC. Detection and imaging of electric conductivity and permittivity at low frequency. IEEE Trans Biomed Eng. 1991;38:1106–10.CrossRef Fuks LF, Cheney M, Isaacson D, Gisser DG, Newell JC. Detection and imaging of electric conductivity and permittivity at low frequency. IEEE Trans Biomed Eng. 1991;38:1106–10.CrossRef
5.
go back to reference Hahn G, Sipinková I, Baisch F, Hellige G. Changes in the thoracic impedance distribution under different ventilatory conditions. Physiol Meas. 1995;16(3 Suppl A):A161–73.CrossRef Hahn G, Sipinková I, Baisch F, Hellige G. Changes in the thoracic impedance distribution under different ventilatory conditions. Physiol Meas. 1995;16(3 Suppl A):A161–73.CrossRef
6.
go back to reference Murphy EK, Mahara A, Wu X, Halter RJ. Phantom experiments using soft-prior regularization EIT for breast cancer imaging. Physiol Meas. 2017;38:1262–77.CrossRef Murphy EK, Mahara A, Wu X, Halter RJ. Phantom experiments using soft-prior regularization EIT for breast cancer imaging. Physiol Meas. 2017;38:1262–77.CrossRef
7.
go back to reference Murphy EK, Mahara A, Halter RJ. Absolute reconstructions using rotational electrical impedance tomography for breast Cancer imaging. IEEE Trans Med Imaging. 2017;36:892–903.CrossRef Murphy EK, Mahara A, Halter RJ. Absolute reconstructions using rotational electrical impedance tomography for breast Cancer imaging. IEEE Trans Med Imaging. 2017;36:892–903.CrossRef
8.
go back to reference Nissinen A, Kaipio JP, Vauhkonen M, Kolehmainen V. Contrast enhancement in EIT imaging of the brain. Physiol Meas. 2016;37:1–24.CrossRef Nissinen A, Kaipio JP, Vauhkonen M, Kolehmainen V. Contrast enhancement in EIT imaging of the brain. Physiol Meas. 2016;37:1–24.CrossRef
9.
go back to reference Lionheart WRL, Polydorides N, Borsic A. Electrical Impedance Tomography: Methods, History and Applications p3-64, Editor David Holder Institute of Physics Publishing, 2004. ISBN 0750309520. Lionheart WRL, Polydorides N, Borsic A. Electrical Impedance Tomography: Methods, History and Applications p3-64, Editor David Holder Institute of Physics Publishing, 2004. ISBN 0750309520.
10.
go back to reference de Munck JC, Faes TJ, Heethaar RM. The boundary element method in the forward and inverse problem of electrical impedance tomography. IEEE Trans Biomed Eng. 2000;47:792–800.CrossRef de Munck JC, Faes TJ, Heethaar RM. The boundary element method in the forward and inverse problem of electrical impedance tomography. IEEE Trans Biomed Eng. 2000;47:792–800.CrossRef
11.
go back to reference Zhao Z, Frerichs I, Pulletz S, Müller-Lisse U, Möller K. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation. Physiol Meas. 2014;35:1083–93.CrossRef Zhao Z, Frerichs I, Pulletz S, Müller-Lisse U, Möller K. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation. Physiol Meas. 2014;35:1083–93.CrossRef
12.
go back to reference Frerichs I, Zhao Z, Becher T, Zabel P, Weiler N, Vogt B. Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma. Physiol Meas. 2016;37:698–712.CrossRef Frerichs I, Zhao Z, Becher T, Zabel P, Weiler N, Vogt B. Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma. Physiol Meas. 2016;37:698–712.CrossRef
13.
go back to reference Vogt B, Pulletz S, Elke G, Zhao Z, Zabel P, Weiler N, et al. Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. J Appl Physiol. 2012;113:1154–61.CrossRef Vogt B, Pulletz S, Elke G, Zhao Z, Zabel P, Weiler N, et al. Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. J Appl Physiol. 2012;113:1154–61.CrossRef
14.
go back to reference Vogt B, Zhao Z, Zabel P, Weiler N, Frerichs I. Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2016;311:L8–19.CrossRef Vogt B, Zhao Z, Zabel P, Weiler N, Frerichs I. Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2016;311:L8–19.CrossRef
15.
go back to reference Spadaro S, Caramori G, Rizzuto C, Mojoli F, Zani G, Ragazzi R, et al. Expiratory flow limitation as a risk factor for pulmonary complications after major abdominal surgery. Anesth Analg. 2017;124:524–30.CrossRef Spadaro S, Caramori G, Rizzuto C, Mojoli F, Zani G, Ragazzi R, et al. Expiratory flow limitation as a risk factor for pulmonary complications after major abdominal surgery. Anesth Analg. 2017;124:524–30.CrossRef
16.
go back to reference Hedenstierna G, Rothen HU. Respiratory function during anesthesia: effects on gas exchange. Compr Physiol. 2012;2:69–96.PubMed Hedenstierna G, Rothen HU. Respiratory function during anesthesia: effects on gas exchange. Compr Physiol. 2012;2:69–96.PubMed
17.
go back to reference Grieco DL, Russo A, Romanò B, Anzellotti GM, Ciocchetti P, Torrini F, et al. Lung volumes, respiratory mechanics and dynamic strain during general anaesthesia. Br J Anaesth. 2018;121:1156–65.CrossRef Grieco DL, Russo A, Romanò B, Anzellotti GM, Ciocchetti P, Torrini F, et al. Lung volumes, respiratory mechanics and dynamic strain during general anaesthesia. Br J Anaesth. 2018;121:1156–65.CrossRef
18.
go back to reference Hedenstierna G, Tokics L, Scaramuzzo G, Rothen HU, Edmark L, Öhrvik J. Oxygenation impairment during anesthesia: influence of age and body weight. Anesthesiology. 2019;131:46–57.CrossRef Hedenstierna G, Tokics L, Scaramuzzo G, Rothen HU, Edmark L, Öhrvik J. Oxygenation impairment during anesthesia: influence of age and body weight. Anesthesiology. 2019;131:46–57.CrossRef
19.
go back to reference Spadaro S, Grasso S, Karbing DS, Fogagnolo A, Contoli M, Bollini G, et al. Physiologic evaluation of ventilation perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation. Anesthesiology. 2018;128:531–8.CrossRef Spadaro S, Grasso S, Karbing DS, Fogagnolo A, Contoli M, Bollini G, et al. Physiologic evaluation of ventilation perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation. Anesthesiology. 2018;128:531–8.CrossRef
20.
go back to reference Spadaro S, Karbing DS, Mauri T, Marangoni E, Mojoli F, Valpiani G, et al. Effect of positive end-expiratory pressure on pulmonary shunt and dynamic compliance during abdominal surgery. Br J Anaesth. 2016;116:855–61.CrossRef Spadaro S, Karbing DS, Mauri T, Marangoni E, Mojoli F, Valpiani G, et al. Effect of positive end-expiratory pressure on pulmonary shunt and dynamic compliance during abdominal surgery. Br J Anaesth. 2016;116:855–61.CrossRef
21.
go back to reference Gattinoni L, Quintel M, Marini JJ. Volutrauma and atelectrauma: which is worse? Crit Care. 2018;22:264.CrossRef Gattinoni L, Quintel M, Marini JJ. Volutrauma and atelectrauma: which is worse? Crit Care. 2018;22:264.CrossRef
22.
go back to reference Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.CrossRef Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.CrossRef
23.
go back to reference Humphreys S, Pham TMT, Stocker C, Schibler A. The effect of induction of anesthesia and intubation on end-expiratory lung level and regional ventilation distribution in cardiac children. Paediatr Anaesth. 2011;21:887–93.CrossRef Humphreys S, Pham TMT, Stocker C, Schibler A. The effect of induction of anesthesia and intubation on end-expiratory lung level and regional ventilation distribution in cardiac children. Paediatr Anaesth. 2011;21:887–93.CrossRef
24.
go back to reference Erlandsson K, Odenstedt H, Lundin S, Stenqvist O. Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery. Acta Anaesthesiol Scand. 2006;50:833–9.CrossRef Erlandsson K, Odenstedt H, Lundin S, Stenqvist O. Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery. Acta Anaesthesiol Scand. 2006;50:833–9.CrossRef
25.
go back to reference Nestler C, Simon P, Petroff D, Hammermüller S, Kamrath D, Wolf S, et al. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: a randomized controlled clinical trial using electrical impedance tomography. Br J Anaesth. 2017;119:1194–205.CrossRef Nestler C, Simon P, Petroff D, Hammermüller S, Kamrath D, Wolf S, et al. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: a randomized controlled clinical trial using electrical impedance tomography. Br J Anaesth. 2017;119:1194–205.CrossRef
26.
go back to reference Schaefer MS, Wania V, Bastin B, Schmalz U, Kienbaum P, Beiderlinden M, et al. Electrical impedance tomography during major open upper abdominal surgery: a pilot-study. BMC Anesthesiol. 2014;14:51.CrossRef Schaefer MS, Wania V, Bastin B, Schmalz U, Kienbaum P, Beiderlinden M, et al. Electrical impedance tomography during major open upper abdominal surgery: a pilot-study. BMC Anesthesiol. 2014;14:51.CrossRef
27.
go back to reference Pereira SM, Tucci MR, Morais CCA, Simões CM, Tonelotto BFF, Pompeo MS, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. Anesthesiology. 2018;129:1070–81.CrossRef Pereira SM, Tucci MR, Morais CCA, Simões CM, Tonelotto BFF, Pompeo MS, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. Anesthesiology. 2018;129:1070–81.CrossRef
28.
go back to reference Eronia N, Mauri T, Maffezzini E, Gatti S, Bronco A, Alban L, et al. Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study. Ann Intensive Care. 2017;7:76.CrossRef Eronia N, Mauri T, Maffezzini E, Gatti S, Bronco A, Alban L, et al. Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study. Ann Intensive Care. 2017;7:76.CrossRef
29.
go back to reference Steinmann D, Stahl CA, Minner J, Schumann S, Loop T, Kirschbaum A, et al. Electrical impedance tomography to confirm correct placement of double-lumen tube: a feasibility study. Br J Anaesth. 2008;101:411–8.CrossRef Steinmann D, Stahl CA, Minner J, Schumann S, Loop T, Kirschbaum A, et al. Electrical impedance tomography to confirm correct placement of double-lumen tube: a feasibility study. Br J Anaesth. 2008;101:411–8.CrossRef
30.
go back to reference Zhao Z, Möller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med. 2009;35:1900–6.CrossRef Zhao Z, Möller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med. 2009;35:1900–6.CrossRef
31.
go back to reference Zhao Z, Wang W, Zhang Z, Xu M, Frerichs I, Wu J, et al. Influence of tidal volume and positive end-expiratory pressure on ventilation distribution and oxygenation during one-lung ventilation. Physiol Meas. 2018;39:034003.CrossRef Zhao Z, Wang W, Zhang Z, Xu M, Frerichs I, Wu J, et al. Influence of tidal volume and positive end-expiratory pressure on ventilation distribution and oxygenation during one-lung ventilation. Physiol Meas. 2018;39:034003.CrossRef
32.
go back to reference Spadaro S, Mauri T, Böhm SH, Scaramuzzo G, Turrini C, Waldmann AD, et al. Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment. Crit Care. 2018;22:26.CrossRef Spadaro S, Mauri T, Böhm SH, Scaramuzzo G, Turrini C, Waldmann AD, et al. Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment. Crit Care. 2018;22:26.CrossRef
33.
go back to reference Karagiannidis C, Waldmann AD, Róka PL, Schreiber T, Strassmann S, Windisch W, et al. Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study. Crit Care. 2018;22:221.CrossRef Karagiannidis C, Waldmann AD, Róka PL, Schreiber T, Strassmann S, Windisch W, et al. Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study. Crit Care. 2018;22:221.CrossRef
34.
go back to reference Junhasavasdikul D, Telias I, Grieco DL, Chen L, Gutierrez CM, Piraino T, et al. Expiratory flow limitation during mechanical ventilation. Chest. 2018;154:948–62.CrossRef Junhasavasdikul D, Telias I, Grieco DL, Chen L, Gutierrez CM, Piraino T, et al. Expiratory flow limitation during mechanical ventilation. Chest. 2018;154:948–62.CrossRef
35.
go back to reference Chen L, Del Sorbo L, Fan E, Brochard L. Reply to Koutsoukou: expiratory flow limitation and airway closure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2019;199:128–9.CrossRef Chen L, Del Sorbo L, Fan E, Brochard L. Reply to Koutsoukou: expiratory flow limitation and airway closure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2019;199:128–9.CrossRef
36.
go back to reference Reinius H, Borges JB, Fredén F, Jideus L, Camargo EDLB, Amato MBP, et al. Real-time ventilation and perfusion distributions by electrical impedance tomography during one-lung ventilation with capnothorax. Acta Anaesthesiol Scand. 2015;59:354–68.CrossRef Reinius H, Borges JB, Fredén F, Jideus L, Camargo EDLB, Amato MBP, et al. Real-time ventilation and perfusion distributions by electrical impedance tomography during one-lung ventilation with capnothorax. Acta Anaesthesiol Scand. 2015;59:354–68.CrossRef
37.
go back to reference Ferrando C, Soro M, Unzueta C, Suarez-Sipmann F, Canet J, Librero J, et al. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): a randomised controlled trial. Lancet Respir Med. 2018;6:193–203.CrossRef Ferrando C, Soro M, Unzueta C, Suarez-Sipmann F, Canet J, Librero J, et al. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): a randomised controlled trial. Lancet Respir Med. 2018;6:193–203.CrossRef
38.
go back to reference Makaryus R, Miller TE, Gan TJ. Current concepts of fluid management in enhanced recovery pathways. Br J Anaesth. 2018;120:376–83.CrossRef Makaryus R, Miller TE, Gan TJ. Current concepts of fluid management in enhanced recovery pathways. Br J Anaesth. 2018;120:376–83.CrossRef
39.
go back to reference Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–6.CrossRef Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–6.CrossRef
40.
go back to reference Benes J, Chytra I, Altmann P, Hluchy M, Kasal E, Svitak R, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care. 2010;14:R118.CrossRef Benes J, Chytra I, Altmann P, Hluchy M, Kasal E, Svitak R, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care. 2010;14:R118.CrossRef
41.
go back to reference Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6:199–204.CrossRef Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6:199–204.CrossRef
42.
go back to reference Vonk-Noordegraaf A, Janse A, Marcus JT, Bronzwaer JG, Postmust PE, Faes TJ, et al. Determination of stroke volume by means of electrical impedance tomography. Physiol Meas. 2000;21:285–93.CrossRef Vonk-Noordegraaf A, Janse A, Marcus JT, Bronzwaer JG, Postmust PE, Faes TJ, et al. Determination of stroke volume by means of electrical impedance tomography. Physiol Meas. 2000;21:285–93.CrossRef
43.
go back to reference Pikkemaat R, Lundin S, Stenqvist O, Hilgers R-D, Leonhardt S. Recent advances in and limitations of cardiac output monitoring by means of electrical impedance tomography. Anesth Analg. 2014;119:76–83.CrossRef Pikkemaat R, Lundin S, Stenqvist O, Hilgers R-D, Leonhardt S. Recent advances in and limitations of cardiac output monitoring by means of electrical impedance tomography. Anesth Analg. 2014;119:76–83.CrossRef
44.
go back to reference da Silva Ramos FJ, Hovnanian A, Souza R, Azevedo LCP, Amato MBP, Costa ELV. Estimation of stroke volume and stroke volume changes by electrical impedance tomography. Anesth Analg. 2018;126:102–10.CrossRef da Silva Ramos FJ, Hovnanian A, Souza R, Azevedo LCP, Amato MBP, Costa ELV. Estimation of stroke volume and stroke volume changes by electrical impedance tomography. Anesth Analg. 2018;126:102–10.CrossRef
45.
go back to reference Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care. 2000;4:282–9.CrossRef Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care. 2000;4:282–9.CrossRef
46.
go back to reference Kubitz JC, Annecke T, Forkl S, Kemming GI, Kronas N, Goetz AE, et al. Validation of pulse contour derived stroke volume variation during modifications of cardiac afterload. Br J Anaesth. 2007;98:591–7.CrossRef Kubitz JC, Annecke T, Forkl S, Kemming GI, Kronas N, Goetz AE, et al. Validation of pulse contour derived stroke volume variation during modifications of cardiac afterload. Br J Anaesth. 2007;98:591–7.CrossRef
47.
go back to reference Marquez J, McCurry K, Severyn DA, Pinsky MR. Ability of pulse power, esophageal Doppler, and arterial pulse pressure to estimate rapid changes in stroke volume in humans. Crit Care Med. 2008;36:3001–7.CrossRef Marquez J, McCurry K, Severyn DA, Pinsky MR. Ability of pulse power, esophageal Doppler, and arterial pulse pressure to estimate rapid changes in stroke volume in humans. Crit Care Med. 2008;36:3001–7.CrossRef
48.
go back to reference Maisch S, Bohm SH, Solà J, Goepfert MS, Kubitz JC, Richter HP, et al. Heart-lung interactions measured by electrical impedance tomography. Crit Care Med. 2011;39:2173–6.CrossRef Maisch S, Bohm SH, Solà J, Goepfert MS, Kubitz JC, Richter HP, et al. Heart-lung interactions measured by electrical impedance tomography. Crit Care Med. 2011;39:2173–6.CrossRef
49.
go back to reference Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, et al. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol. 2011;112:225–36.CrossRef Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, et al. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol. 2011;112:225–36.CrossRef
50.
go back to reference Graf M, Riedel T. Electrical impedance tomography: amplitudes of cardiac related impedance changes in the lung are highly position dependent. PLoS One. 2017;12:e0188313.CrossRef Graf M, Riedel T. Electrical impedance tomography: amplitudes of cardiac related impedance changes in the lung are highly position dependent. PLoS One. 2017;12:e0188313.CrossRef
51.
go back to reference Braun F, Proença M, Adler A, Riedel T, Thiran J-P, Solà J. Accuracy and reliability of noninvasive stroke volume monitoring via ECG-gated 3D electrical impedance tomography in healthy volunteers. PLoS One. 2018;13:e0191870.CrossRef Braun F, Proença M, Adler A, Riedel T, Thiran J-P, Solà J. Accuracy and reliability of noninvasive stroke volume monitoring via ECG-gated 3D electrical impedance tomography in healthy volunteers. PLoS One. 2018;13:e0191870.CrossRef
52.
go back to reference Teboul J-L, Monnet X. Just fastening the belt! Is it the future measure for assessing fluid responsiveness? Crit Care Med. 2011;39:2200–1.CrossRef Teboul J-L, Monnet X. Just fastening the belt! Is it the future measure for assessing fluid responsiveness? Crit Care Med. 2011;39:2200–1.CrossRef
53.
go back to reference Reychler G, Uribe Rodriguez V, Hickmann CE, Tombal B, Laterre P-F, Feyaerts A, et al. Incentive spirometry and positive expiratory pressure improve ventilation and recruitment in postoperative recovery: a randomized crossover study. Physiother Theory Pract. 2018:1–7. Reychler G, Uribe Rodriguez V, Hickmann CE, Tombal B, Laterre P-F, Feyaerts A, et al. Incentive spirometry and positive expiratory pressure improve ventilation and recruitment in postoperative recovery: a randomized crossover study. Physiother Theory Pract. 2018:1–7.
54.
go back to reference Karsten J, Heinze H, Meier T. Impact of PEEP during laparoscopic surgery on early postoperative ventilation distribution visualized by electrical impedance tomography. Minerva Anestesiol. 2014;80:158–66.PubMed Karsten J, Heinze H, Meier T. Impact of PEEP during laparoscopic surgery on early postoperative ventilation distribution visualized by electrical impedance tomography. Minerva Anestesiol. 2014;80:158–66.PubMed
55.
go back to reference Frasca D, Geraud L, Charriere JM, Debaene B, Mimoz O. Comparison of acoustic and impedance methods with mask capnometry to assess respiration rate in obese patients recovering from general anaesthesia. Anaesthesia. 2015;70:26–31.CrossRef Frasca D, Geraud L, Charriere JM, Debaene B, Mimoz O. Comparison of acoustic and impedance methods with mask capnometry to assess respiration rate in obese patients recovering from general anaesthesia. Anaesthesia. 2015;70:26–31.CrossRef
56.
go back to reference Voscopoulos CJ, MacNabb CM, Brayanov J, Qin L, Freeman J, Mullen GJ, et al. The evaluation of a non-invasive respiratory volume monitor in surgical patients undergoing elective surgery with general anesthesia. J Clin Monit Comput. 2015;29:223–30.CrossRef Voscopoulos CJ, MacNabb CM, Brayanov J, Qin L, Freeman J, Mullen GJ, et al. The evaluation of a non-invasive respiratory volume monitor in surgical patients undergoing elective surgery with general anesthesia. J Clin Monit Comput. 2015;29:223–30.CrossRef
57.
go back to reference Heinze H, Eichler W, Karsten J, Sedemund-Adib B, Heringlake M, Meier T. Functional residual capacity-guided alveolar recruitment strategy after endotracheal suctioning in cardiac surgery patients. Crit Care Med. 2011;39:1042–9.CrossRef Heinze H, Eichler W, Karsten J, Sedemund-Adib B, Heringlake M, Meier T. Functional residual capacity-guided alveolar recruitment strategy after endotracheal suctioning in cardiac surgery patients. Crit Care Med. 2011;39:1042–9.CrossRef
58.
go back to reference Krause U, Becker K, Hahn G, Dittmar J, Ruschewski W, Paul T. Monitoring of regional lung ventilation using electrical impedance tomography after cardiac surgery in infants and children. Pediatr Cardiol. 2014;35:990–7.CrossRef Krause U, Becker K, Hahn G, Dittmar J, Ruschewski W, Paul T. Monitoring of regional lung ventilation using electrical impedance tomography after cardiac surgery in infants and children. Pediatr Cardiol. 2014;35:990–7.CrossRef
59.
go back to reference Rossi F de S, Yagui ACZ, Haddad LB, Deutsch AD, Rebello CM. Electrical impedance tomography to evaluate air distribution prior to extubation in very-low-birth-weight infants: a feasibility study. Clinics (Sao Paulo). 2013;68:345–50.CrossRef Rossi F de S, Yagui ACZ, Haddad LB, Deutsch AD, Rebello CM. Electrical impedance tomography to evaluate air distribution prior to extubation in very-low-birth-weight infants: a feasibility study. Clinics (Sao Paulo). 2013;68:345–50.CrossRef
60.
go back to reference de la Oliva P, Waldmann AD, Böhm SH, Verdú-Sánchez C, Pérez-Ferrer A, Alvarez-Rojas E. Bedside breath-wise visualization of bronchospasm by electrical impedance tomography could improve perioperative patient safety: a case report. A A Case Rep. 2017;8:316–9.CrossRef de la Oliva P, Waldmann AD, Böhm SH, Verdú-Sánchez C, Pérez-Ferrer A, Alvarez-Rojas E. Bedside breath-wise visualization of bronchospasm by electrical impedance tomography could improve perioperative patient safety: a case report. A A Case Rep. 2017;8:316–9.CrossRef
61.
go back to reference Zhao Z, Müller-Lisse U, Frerichs I, Fischer R, Möller K. Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution CT. Physiol Meas. 2013;34:N107–14.CrossRef Zhao Z, Müller-Lisse U, Frerichs I, Fischer R, Möller K. Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution CT. Physiol Meas. 2013;34:N107–14.CrossRef
62.
go back to reference Smit HJ, Vonk Noordegraaf A, Roeleveld RJ, Bronzwaer JGF, Postmus PE, de Vries PMJM, et al. Epoprostenol-induced pulmonary vasodilatation in patients with pulmonary hypertension measured by electrical impedance tomography. Physiol Meas. 2002;23:237–43.CrossRef Smit HJ, Vonk Noordegraaf A, Roeleveld RJ, Bronzwaer JGF, Postmus PE, de Vries PMJM, et al. Epoprostenol-induced pulmonary vasodilatation in patients with pulmonary hypertension measured by electrical impedance tomography. Physiol Meas. 2002;23:237–43.CrossRef
63.
go back to reference Grieco DL, Mura B, Bisanti A, Tagliaferri C, Maviglia R, Antonelli M. Electrical impedance tomography to monitor lung sampling during broncho-alveolar lavage. Intensive Care Med. 2016;42:1088–9.CrossRef Grieco DL, Mura B, Bisanti A, Tagliaferri C, Maviglia R, Antonelli M. Electrical impedance tomography to monitor lung sampling during broncho-alveolar lavage. Intensive Care Med. 2016;42:1088–9.CrossRef
64.
go back to reference Meduri GU, Chastre J. The standardization of bronchoscopic techniques for ventilator-associated pneumonia. Chest. 1992;102(5 Suppl 1):557S–64S.CrossRef Meduri GU, Chastre J. The standardization of bronchoscopic techniques for ventilator-associated pneumonia. Chest. 1992;102(5 Suppl 1):557S–64S.CrossRef
65.
go back to reference Frerichs I, Dargaville PA, Rimensberger PC. Regional pulmonary effects of bronchoalveolar lavage procedure determined by electrical impedance tomography. Intensive Care Med Exp. 2019;7:11.CrossRef Frerichs I, Dargaville PA, Rimensberger PC. Regional pulmonary effects of bronchoalveolar lavage procedure determined by electrical impedance tomography. Intensive Care Med Exp. 2019;7:11.CrossRef
66.
go back to reference Becher T, Bußmeyer M, Lautenschläger I, Schädler D, Weiler N, Frerichs I. Characteristic pattern of pleural effusion in electrical impedance tomography images of critically ill patients. Br J Anaesth. 2018;120:1219–28.CrossRef Becher T, Bußmeyer M, Lautenschläger I, Schädler D, Weiler N, Frerichs I. Characteristic pattern of pleural effusion in electrical impedance tomography images of critically ill patients. Br J Anaesth. 2018;120:1219–28.CrossRef
67.
go back to reference Yasin M, Böhm S, Gaggero PO, Adler A. Evaluation of EIT system performance. Physiol Meas. 2011;32:851–65.CrossRef Yasin M, Böhm S, Gaggero PO, Adler A. Evaluation of EIT system performance. Physiol Meas. 2011;32:851–65.CrossRef
68.
go back to reference Bläser D, Pulletz S, Becher T, Schädler D, Elke G, Weiler N, et al. Unilateral empyema impacts the assessment of regional lung ventilation by electrical impedance tomography. Physiol Meas. 2014;35:975–83.CrossRef Bläser D, Pulletz S, Becher T, Schädler D, Elke G, Weiler N, et al. Unilateral empyema impacts the assessment of regional lung ventilation by electrical impedance tomography. Physiol Meas. 2014;35:975–83.CrossRef
69.
go back to reference Yoshida T, Torsani V, Gomes S, De Santis RR, Beraldo MA, Costa ELV, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188:1420–7.CrossRef Yoshida T, Torsani V, Gomes S, De Santis RR, Beraldo MA, Costa ELV, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188:1420–7.CrossRef
70.
go back to reference Alves SHS, Amato MBP, Terra RM, Vargas FS, Caruso P. Lung reaeration and reventilation after aspiration of pleural effusions. A study using electrical impedance tomography. Ann Am Thorac Soc. 2014;11:186–91.CrossRef Alves SHS, Amato MBP, Terra RM, Vargas FS, Caruso P. Lung reaeration and reventilation after aspiration of pleural effusions. A study using electrical impedance tomography. Ann Am Thorac Soc. 2014;11:186–91.CrossRef
71.
go back to reference Chitturi V, Nagi F. Spatial resolution in electrical impedance tomography: a topical review. J Electrical Bioimpedance. 2017;8:66–78–78.CrossRef Chitturi V, Nagi F. Spatial resolution in electrical impedance tomography: a topical review. J Electrical Bioimpedance. 2017;8:66–78–78.CrossRef
72.
go back to reference Zhang F, Li C, Zhang J, Guo H, Wu D. Comparison of quantitative computed tomography analysis and single-indicator thermodilution to measure pulmonary edema in patients with acute respiratory distress syndrome. Biomed Eng Online. 2014;13:30.CrossRef Zhang F, Li C, Zhang J, Guo H, Wu D. Comparison of quantitative computed tomography analysis and single-indicator thermodilution to measure pulmonary edema in patients with acute respiratory distress syndrome. Biomed Eng Online. 2014;13:30.CrossRef
Metadata
Title
Electrical impedance tomography in perioperative medicine: careful respiratory monitoring for tailored interventions
Authors
Elena Spinelli
Tommaso Mauri
Alberto Fogagnolo
Gaetano Scaramuzzo
Annalisa Rundo
Domenico Luca Grieco
Giacomo Grasselli
Carlo Alberto Volta
Savino Spadaro
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2019
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-019-0814-7

Other articles of this Issue 1/2019

BMC Anesthesiology 1/2019 Go to the issue