Skip to main content
Top
Published in: BMC Anesthesiology 1/2018

Open Access 01-12-2018 | Research article

Associations between intraoperative ventilator settings during one-lung ventilation and postoperative pulmonary complications: a prospective observational study

Authors: Shuji Okahara, Kazuyoshi Shimizu, Satoshi Suzuki, Kenzo Ishii, Hiroshi Morimatsu

Published in: BMC Anesthesiology | Issue 1/2018

Login to get access

Abstract

Background

The interest in perioperative lung protective ventilation has been increasing. However, optimal management during one-lung ventilation (OLV) remains undetermined, which not only includes tidal volume (VT) and positive end-expiratory pressure (PEEP) but also inspired oxygen fraction (FIO2). We aimed to investigate current practice of intraoperative ventilation during OLV, and analyze whether the intraoperative ventilator settings are associated with postoperative pulmonary complications (PPCs) after thoracic surgery.

Methods

We performed a prospective observational two-center study in Japan. Patients scheduled for thoracic surgery with OLV from April to October 2014 were eligible. We recorded ventilator settings (FIO2, VT, driving pressure (ΔP), and PEEP) and calculated the time-weighted average (TWA) of ventilator settings for the first 2 h of OLV. PPCs occurring within 7 days of thoracotomy were investigated. Associations between ventilator settings and the incidence of PPCs were examined by multivariate logistic regression.

Results

We analyzed perioperative information, including preoperative characteristics, ventilator settings, and details of surgery and anesthesia in 197 patients. Pressure control ventilation was utilized in most cases (92%). As an initial setting for OLV, an FIO2 of 1.0 was selected for more than 60% of all patients. Throughout OLV, the median TWA FIO2 of 0.8 (0.65-0.94), VT of 6.1 (5.3-7.0) ml/kg, ΔP of 17 (15-20) cm H2O, and PEEP of 4 (4-5) cm H2O was applied. Incidence rate of PPCs was 25.9%, and FIO2 was independently associated with the occurrence of PPCs in multivariate logistic regression. The adjusted odds ratio per FIO2 increase of 0.1 was 1.30 (95% confidence interval: 1.04-1.65, P = 0.0195).

Conclusions

High FIO2 was applied to the majority of patients during OLV, whereas low VT and slight degree of PEEP were commonly used in our survey. Our findings suggested that a higher FIO2 during OLV could be associated with increased incidence of PPCs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Canet J, Mazo V. Postoperative pulmonary complications. Minerva Anestesiol. 2010;76(2):138–43.PubMed Canet J, Mazo V. Postoperative pulmonary complications. Minerva Anestesiol. 2010;76(2):138–43.PubMed
2.
go back to reference Canet J, Gallart L. Predicting postoperative pulmonary complications in the general population. Curr Opin Anaesthesiol. 2013;26(2):107–15.CrossRefPubMed Canet J, Gallart L. Predicting postoperative pulmonary complications in the general population. Curr Opin Anaesthesiol. 2013;26(2):107–15.CrossRefPubMed
3.
go back to reference Smetana GW, Lawrence VA, Cornell JE. Preoperative pulmonary risk stratification for noncardiothoracic surgery: systematic review for the American College of Physicians. Ann Intern Med. 2006;144(8):581–95.CrossRefPubMed Smetana GW, Lawrence VA, Cornell JE. Preoperative pulmonary risk stratification for noncardiothoracic surgery: systematic review for the American College of Physicians. Ann Intern Med. 2006;144(8):581–95.CrossRefPubMed
4.
go back to reference Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Espósito DC, Pasqualucci Mde O, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308(16):1651–9.CrossRefPubMed Serpa Neto A, Cardoso SO, Manetta JA, Pereira VG, Espósito DC, Pasqualucci Mde O, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308(16):1651–9.CrossRefPubMed
5.
go back to reference Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. IMPROVE study group. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369(5):428–37.CrossRefPubMed Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. IMPROVE study group. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369(5):428–37.CrossRefPubMed
6.
go back to reference PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, Hemmes SN, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet 2014; 384 (9942):495–503. PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, Hemmes SN, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet 2014; 384 (9942):495–503.
7.
go back to reference Ladha K, Vidal Melo MF, McLean DJ, Wanderer JP, Grabitz SD, Kurth T, et al. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study. BMJ. 2015;351:h3646.CrossRefPubMedPubMedCentral Ladha K, Vidal Melo MF, McLean DJ, Wanderer JP, Grabitz SD, Kurth T, et al. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study. BMJ. 2015;351:h3646.CrossRefPubMedPubMedCentral
8.
go back to reference Severgnini P, Selmo G, Lanza C, Chiesa A, Frigerio A, Bacuzzi A, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. 2013;118(6):1307–21.CrossRefPubMed Severgnini P, Selmo G, Lanza C, Chiesa A, Frigerio A, Bacuzzi A, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. 2013;118(6):1307–21.CrossRefPubMed
9.
go back to reference Fernández-Pérez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105(1):14–8.CrossRefPubMed Fernández-Pérez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105(1):14–8.CrossRefPubMed
10.
go back to reference Licker M, de Perrot M, Spiliopoulos A, Robert J, Diaper J, Chevalley C, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97(6):1558–65.CrossRefPubMed Licker M, de Perrot M, Spiliopoulos A, Robert J, Diaper J, Chevalley C, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97(6):1558–65.CrossRefPubMed
11.
go back to reference Michelet P, D'Journo XB, Roch A, Doddoli C, Marin V, Papazian L, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105(5):911–9.CrossRefPubMed Michelet P, D'Journo XB, Roch A, Doddoli C, Marin V, Papazian L, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105(5):911–9.CrossRefPubMed
12.
go back to reference Blank RS, Colquhoun DA, Durieux ME, Kozower BD, McMurry TL, Bender SP, et al. Management of one-Lung Ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124(6):1286–95.CrossRefPubMed Blank RS, Colquhoun DA, Durieux ME, Kozower BD, McMurry TL, Bender SP, et al. Management of one-Lung Ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124(6):1286–95.CrossRefPubMed
13.
go back to reference Schilling T, Kozian A, Kretzschmar M, Huth C, Welte T, Bühling F, et al. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. Br J Anaesth. 2007;99(3):368–75.CrossRefPubMed Schilling T, Kozian A, Kretzschmar M, Huth C, Welte T, Bühling F, et al. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. Br J Anaesth. 2007;99(3):368–75.CrossRefPubMed
14.
go back to reference De Conno E, Steurer MP, Wittlinger M, Zalunardo MP, Weder W, Schneiter D, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110(6):1316–26.CrossRefPubMed De Conno E, Steurer MP, Wittlinger M, Zalunardo MP, Weder W, Schneiter D, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110(6):1316–26.CrossRefPubMed
15.
go back to reference Sentürk M. New concepts of the management of one-lung ventilation. Curr Opin Anaesthesiol. 2006;19(1):1–4.CrossRefPubMed Sentürk M. New concepts of the management of one-lung ventilation. Curr Opin Anaesthesiol. 2006;19(1):1–4.CrossRefPubMed
16.
go back to reference Schilling T, Kozian A, Huth C, Bühling F, Kretzschmar M, Welte T, et al. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg. 2005;101(4):957–65.CrossRefPubMed Schilling T, Kozian A, Huth C, Bühling F, Kretzschmar M, Welte T, et al. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg. 2005;101(4):957–65.CrossRefPubMed
17.
go back to reference Canet J, Gallart L, Gomar C, Paluzie G, Vallès J, Castillo J, et al. ARISCAT group: prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology. 2010;113(6):1338–50.CrossRefPubMed Canet J, Gallart L, Gomar C, Paluzie G, Vallès J, Castillo J, et al. ARISCAT group: prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology. 2010;113(6):1338–50.CrossRefPubMed
18.
go back to reference The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef
19.
go back to reference Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309–32.CrossRefPubMed Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309–32.CrossRefPubMed
20.
go back to reference Stéphan F, Boucheseiche S, Hollande J, Flahault A, Cheffi A, Bazelly B, et al. Pulmonary complications following lung resection: a comprehensive analysis of incidence and possible risk factors. Chest. 2000;118(5):1263–70.CrossRefPubMed Stéphan F, Boucheseiche S, Hollande J, Flahault A, Cheffi A, Bazelly B, et al. Pulmonary complications following lung resection: a comprehensive analysis of incidence and possible risk factors. Chest. 2000;118(5):1263–70.CrossRefPubMed
21.
go back to reference Licker M, Diaper J, Villiger Y, Spiliopoulos A, Licker V, Robert J, et al. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care. 2009;13(2):R41.CrossRefPubMedPubMedCentral Licker M, Diaper J, Villiger Y, Spiliopoulos A, Licker V, Robert J, et al. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care. 2009;13(2):R41.CrossRefPubMedPubMedCentral
22.
go back to reference Lohser J, Ishikawa S. Clinical Management of one-Lung Ventilation. In: Slinger P, editor. Principles and practice of anesthesia for thoracic surgery. New York: Springer Science & Business Media; 2011. p. 83–101.CrossRef Lohser J, Ishikawa S. Clinical Management of one-Lung Ventilation. In: Slinger P, editor. Principles and practice of anesthesia for thoracic surgery. New York: Springer Science & Business Media; 2011. p. 83–101.CrossRef
23.
go back to reference Wilson WC, Benumof JL. Anesthesia for thoracic surgery. In: Miller RD, editor. Miller’s anesthesia. 6th ed. Philadelphia: Elsevier Churchill Livingstone; 2005. p. 1847–939. Wilson WC, Benumof JL. Anesthesia for thoracic surgery. In: Miller RD, editor. Miller’s anesthesia. 6th ed. Philadelphia: Elsevier Churchill Livingstone; 2005. p. 1847–939.
24.
go back to reference Rothen HU, Sporre B, Engberg G, Wegenius G, Högman M, Hedenstierna G. Influence of gas composition on recurrence of atelectasis after a reexpansion maneuver during general anesthesia. Anesthesiology. 1995;82(4):832–42.CrossRefPubMed Rothen HU, Sporre B, Engberg G, Wegenius G, Högman M, Hedenstierna G. Influence of gas composition on recurrence of atelectasis after a reexpansion maneuver during general anesthesia. Anesthesiology. 1995;82(4):832–42.CrossRefPubMed
25.
go back to reference Magnusson L, Spahn DR. New concepts of atelectasis during general anaesthesia. Br J Anaesth. 2003;91(1):61–72.CrossRefPubMed Magnusson L, Spahn DR. New concepts of atelectasis during general anaesthesia. Br J Anaesth. 2003;91(1):61–72.CrossRefPubMed
26.
go back to reference Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G. Optimal oxygen concentration during induction of general anesthesia. Anesthesiology. 2003;98(1):28–33.CrossRefPubMed Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G. Optimal oxygen concentration during induction of general anesthesia. Anesthesiology. 2003;98(1):28–33.CrossRefPubMed
27.
go back to reference Benoît Z, Wicky S, Fischer JF, Frascarolo P, Chapuis C, Spahn DR, et al. The effect of increased FIO2 before tracheal extubation on postoperative atelectasis. Anesth Analg. 2002;95(6):1777–81.CrossRefPubMed Benoît Z, Wicky S, Fischer JF, Frascarolo P, Chapuis C, Spahn DR, et al. The effect of increased FIO2 before tracheal extubation on postoperative atelectasis. Anesth Analg. 2002;95(6):1777–81.CrossRefPubMed
29.
go back to reference Misthos P, Katsaragakis S, Theodorou D, Milingos N, Skottis I. The degree of oxidative stress is associated with major adverse effects after lung resection: a prospective study. Eur J Cardiothorac Surg. 2006;29(4):591–5.CrossRefPubMed Misthos P, Katsaragakis S, Theodorou D, Milingos N, Skottis I. The degree of oxidative stress is associated with major adverse effects after lung resection: a prospective study. Eur J Cardiothorac Surg. 2006;29(4):591–5.CrossRefPubMed
30.
go back to reference Wanderer JP, Ehrenfeld JM, Epstein RH, Kor DJ, Bartz RR, Fernandez-Bustamante A, et al. Temporal trends and current practice patterns for intraoperative ventilation at U.S. academic medical centers: a retrospective study. BMC Anesthesiol. 2015;15:40.CrossRefPubMedPubMedCentral Wanderer JP, Ehrenfeld JM, Epstein RH, Kor DJ, Bartz RR, Fernandez-Bustamante A, et al. Temporal trends and current practice patterns for intraoperative ventilation at U.S. academic medical centers: a retrospective study. BMC Anesthesiol. 2015;15:40.CrossRefPubMedPubMedCentral
31.
go back to reference Karalapillai D, Weinberg L, Galtieri J, Glassford N, Eastwood G, Darvall J, et al. Current ventilation practice during general anaesthesia: a prospective audit in Melbourne, Australia. BMC Anesthesiol. 2014;14:85.CrossRefPubMedPubMedCentral Karalapillai D, Weinberg L, Galtieri J, Glassford N, Eastwood G, Darvall J, et al. Current ventilation practice during general anaesthesia: a prospective audit in Melbourne, Australia. BMC Anesthesiol. 2014;14:85.CrossRefPubMedPubMedCentral
32.
go back to reference Damiani E, Adrario E, Girardis M, Romano R, Pelaia P, Singer M, et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014;18(6):711.CrossRefPubMedPubMedCentral Damiani E, Adrario E, Girardis M, Romano R, Pelaia P, Singer M, et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014;18(6):711.CrossRefPubMedPubMedCentral
33.
go back to reference Stub D, Smith K, Bernard S, Nehme Z, Stephenson M, Bray JE, et al. AVOID investigators: air versus oxygen in ST-segment-elevation myocardial infarction. Circulation. 2015;131(24):2143–50.CrossRefPubMed Stub D, Smith K, Bernard S, Nehme Z, Stephenson M, Bray JE, et al. AVOID investigators: air versus oxygen in ST-segment-elevation myocardial infarction. Circulation. 2015;131(24):2143–50.CrossRefPubMed
34.
go back to reference Austin MA, Wills KE, Blizzard L, Walters EH, Wood-Baker R. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ. 2010;341:c5462.CrossRefPubMedPubMedCentral Austin MA, Wills KE, Blizzard L, Walters EH, Wood-Baker R. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ. 2010;341:c5462.CrossRefPubMedPubMedCentral
35.
go back to reference Kilgannon JH, Jones AE, Parrillo JE, Dellinger RP, Milcarek B, Hunter K, et al. Emergency medicine shock research network (EMShockNet) investigators: relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;123(23):2717–22.CrossRefPubMed Kilgannon JH, Jones AE, Parrillo JE, Dellinger RP, Milcarek B, Hunter K, et al. Emergency medicine shock research network (EMShockNet) investigators: relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;123(23):2717–22.CrossRefPubMed
36.
go back to reference Panwar R, Hardie M, Bellomo R, Barrot L, Eastwood GM, Young PJ, CLOSE Study Investigators and the ANZICS Clinical Trials Group, et al. Conservative versus liberal oxygenation targets for mechanically ventilated patients. A pilot multicenter randomized controlled trial. Am J Respir Crit Care Med. 2016;193(1):43–51.CrossRefPubMed Panwar R, Hardie M, Bellomo R, Barrot L, Eastwood GM, Young PJ, CLOSE Study Investigators and the ANZICS Clinical Trials Group, et al. Conservative versus liberal oxygenation targets for mechanically ventilated patients. A pilot multicenter randomized controlled trial. Am J Respir Crit Care Med. 2016;193(1):43–51.CrossRefPubMed
37.
go back to reference Helmerhorst HJ, Schultz MJ, van der Voort PH, Bosman RJ, Juffermans NP, de Wilde RB, et al. Effectiveness and clinical outcomes of a two-step implementation of conservative oxygenation targets in critically ill patients: a before and after trial. Crit Care Med. 2016;44(3):554–63.CrossRefPubMed Helmerhorst HJ, Schultz MJ, van der Voort PH, Bosman RJ, Juffermans NP, de Wilde RB, et al. Effectiveness and clinical outcomes of a two-step implementation of conservative oxygenation targets in critically ill patients: a before and after trial. Crit Care Med. 2016;44(3):554–63.CrossRefPubMed
38.
go back to reference Suzuki S, Eastwood GM, Goodwin MD, Noë GD, Smith PE, Glassford N, et al. Atelectasis and mechanical ventilation mode during conservative oxygen therapy: a before-and-after study. J Crit Care. 2015;30(6):1232–7.CrossRefPubMed Suzuki S, Eastwood GM, Goodwin MD, Noë GD, Smith PE, Glassford N, et al. Atelectasis and mechanical ventilation mode during conservative oxygen therapy: a before-and-after study. J Crit Care. 2015;30(6):1232–7.CrossRefPubMed
39.
go back to reference Girardis M, Busani S, Damiani E, Donati A, Rinaldi L, Marudi A, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA. 2016;316(15):1583–9.CrossRefPubMed Girardis M, Busani S, Damiani E, Donati A, Rinaldi L, Marudi A, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA. 2016;316(15):1583–9.CrossRefPubMed
40.
go back to reference Yang M, Ahn HJ, Kim K, Kim JA, Yi CA, Kim MJ, et al. Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery?: a randomized controlled trial. Chest. 2011;139(3):530–7.CrossRefPubMed Yang M, Ahn HJ, Kim K, Kim JA, Yi CA, Kim MJ, et al. Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery?: a randomized controlled trial. Chest. 2011;139(3):530–7.CrossRefPubMed
Metadata
Title
Associations between intraoperative ventilator settings during one-lung ventilation and postoperative pulmonary complications: a prospective observational study
Authors
Shuji Okahara
Kazuyoshi Shimizu
Satoshi Suzuki
Kenzo Ishii
Hiroshi Morimatsu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2018
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-018-0476-x

Other articles of this Issue 1/2018

BMC Anesthesiology 1/2018 Go to the issue