Skip to main content
Top
Published in: BMC Anesthesiology 1/2017

Open Access 01-12-2017 | Research article

Combined use of dexmedetomidine and propofol in monitored anesthesia care: a randomized controlled study

Authors: Kyu Nam Kim, Hee Jong Lee, Soo Yeon Kim, Ji Yoon Kim

Published in: BMC Anesthesiology | Issue 1/2017

Login to get access

Abstract

Backgroud

Although propofol and dexmedetomidine have been widely used for monitored anesthesia care, their adverse effects necessitate the search for better methods. Therefore, we performed this randomized controlled trial to evaluate the combined use of propofol and dexmedetomidine.

Methods

Eighty-seven adult patients undergoing hand surgery under brachial plexus block were randomly allocated to receive 1.6 μg/ml of the target effect site concentration of propofol (P group) and infusion of 0.4 μg/kg/h dexmedetomidine following a loading dose of 1.0 μg/kg for 10 min (D group). The M group received a half-dose of both drugs simultaneously. The maintenance dose was adjusted to maintain an Observer Assessment of Alertness/Sedation score of 3. Cardiorespiratory variables, adverse effects, and drug efficacy were observed.

Results

The significantly higher mean arterial pressure (mmHg) in the D group [P group 86.9 (12.6), D group 96.0 (12.2), M group 85.6 (10.6), p = 0.004)] and a significantly higher heart rate (beat/min) in the P group were observed [P group 67.3 (9.0), D group 57.8 (6.9), M group 59.2 (7.4), p < 0.001)]. The M group had a significant lower incidence of airway obstruction (p < 0.001) and the D group had a higher incidence of bradycardia requiring atropine (p = 0.001). The P group had higher incidences of hypoxia (p = 0.001), spontaneous movement (p < 0.001) and agitation (p = 0.001). The satisfaction scores of the patients (p = 0.007) and surgeon (p < 0.001) were higher in the M group. Onset time was significantly longer in the D group (p < 0.001).

Conclusions

The combined use of propofol and dexmedetomidine provided cardiovascular stability with decreased adverse effects. Additionally, it led to a similar onset time of propofol and achieved higher satisfaction scores.

Trial registration

KCT0001284. Retrospectively registered 25 November 2014.
Literature
1.
go back to reference Ghisi D, Fanelli A, Tosi M, Nuzzi M, Fanelli G. Monitored anesthesia care. Minerva Anestesiol. 2005;71:533–8.PubMed Ghisi D, Fanelli A, Tosi M, Nuzzi M, Fanelli G. Monitored anesthesia care. Minerva Anestesiol. 2005;71:533–8.PubMed
2.
go back to reference Knape JT, Adriaensen H, van Aken H, Blunnie WP, Carlsson C, Dupont M, et al. Guidelines for sedation and/or analgesia by non-anaesthesiology doctors. Eur J Anaesthesiol. 2007;24:563–7.CrossRefPubMed Knape JT, Adriaensen H, van Aken H, Blunnie WP, Carlsson C, Dupont M, et al. Guidelines for sedation and/or analgesia by non-anaesthesiology doctors. Eur J Anaesthesiol. 2007;24:563–7.CrossRefPubMed
3.
go back to reference Bhananker SM, Posner KL, Cheney FW, Caplan RA, Lee LA, Domino KB. Injury and liability associated with monitored anesthesia care: a closed claims analysis. Anesthesiology. 2006;104:228–34.CrossRefPubMed Bhananker SM, Posner KL, Cheney FW, Caplan RA, Lee LA, Domino KB. Injury and liability associated with monitored anesthesia care: a closed claims analysis. Anesthesiology. 2006;104:228–34.CrossRefPubMed
4.
go back to reference Wang D, Chen C, Chen J, Xu Y, Wang L, Zhu Z, et al. The use of propofol as a sedative agent in gastrointestinal endoscopy: a meta-analysis. PLoS One. 2013;8:e53311.CrossRefPubMedPubMedCentral Wang D, Chen C, Chen J, Xu Y, Wang L, Zhu Z, et al. The use of propofol as a sedative agent in gastrointestinal endoscopy: a meta-analysis. PLoS One. 2013;8:e53311.CrossRefPubMedPubMedCentral
5.
6.
go back to reference Egan TD. Target-controlled drug delivery: progress toward an intravenous “vaporizer” and automated anesthetic administration. Anesthesiology. 2003;99:1214–9.CrossRefPubMed Egan TD. Target-controlled drug delivery: progress toward an intravenous “vaporizer” and automated anesthetic administration. Anesthesiology. 2003;99:1214–9.CrossRefPubMed
7.
go back to reference McQuaid KR, Laine L. A systematic review and meta-analysis of randomized, controlled trials of moderate sedation for routine endoscopic procedures. Gastrointest Endosc. 2008;67:910–23.CrossRefPubMed McQuaid KR, Laine L. A systematic review and meta-analysis of randomized, controlled trials of moderate sedation for routine endoscopic procedures. Gastrointest Endosc. 2008;67:910–23.CrossRefPubMed
8.
go back to reference Cote GA, Hovis RM, Ansstas MA, et al. Incidence of sedation-related complications with propofol use during advanced endoscopic procedures. Clin Gastroenterol Hepatol. 2010;8:137–42.CrossRefPubMed Cote GA, Hovis RM, Ansstas MA, et al. Incidence of sedation-related complications with propofol use during advanced endoscopic procedures. Clin Gastroenterol Hepatol. 2010;8:137–42.CrossRefPubMed
9.
go back to reference Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg. 2000;90:699–705.CrossRefPubMed Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg. 2000;90:699–705.CrossRefPubMed
10.
go back to reference Chrysostomou C, Schmitt CG. Dexmedetomidine: sedation, analgesia and beyond. Expert Opin Drug Metab Toxicol. 2008;4:619–27.CrossRefPubMed Chrysostomou C, Schmitt CG. Dexmedetomidine: sedation, analgesia and beyond. Expert Opin Drug Metab Toxicol. 2008;4:619–27.CrossRefPubMed
11.
go back to reference Arain SR, Ebert TJ. The efficacy, side effects, and recovery characteristics of dexmedetomidine versus propofol when used for intraoperative sedation. Anesth Analg. 2002;95:461–6. table of contents.PubMed Arain SR, Ebert TJ. The efficacy, side effects, and recovery characteristics of dexmedetomidine versus propofol when used for intraoperative sedation. Anesth Analg. 2002;95:461–6. table of contents.PubMed
12.
go back to reference Bloor BC, Ward DS, Belleville JP, Maze M. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology. 1992;77:1134–42.CrossRefPubMed Bloor BC, Ward DS, Belleville JP, Maze M. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology. 1992;77:1134–42.CrossRefPubMed
13.
go back to reference Cohen LB, Hightower CD, Wood DA, Miller KM, Aisenberg J. Moderate level sedation during endoscopy: a prospective study using low-dose propofol, meperidine/fentanyl, and midazolam. Gastrointest Endosc. 2004;59:795–803.CrossRefPubMed Cohen LB, Hightower CD, Wood DA, Miller KM, Aisenberg J. Moderate level sedation during endoscopy: a prospective study using low-dose propofol, meperidine/fentanyl, and midazolam. Gastrointest Endosc. 2004;59:795–803.CrossRefPubMed
14.
go back to reference Yan JW, McLeod SL, Iansavitchene A. Ketamine-propofol versus propofol alone for procedural sedation in the emergency department: a systematic review and meta-analysis. Acad Emerg Med. 2015;22:1003–13.CrossRefPubMed Yan JW, McLeod SL, Iansavitchene A. Ketamine-propofol versus propofol alone for procedural sedation in the emergency department: a systematic review and meta-analysis. Acad Emerg Med. 2015;22:1003–13.CrossRefPubMed
15.
go back to reference Chernik DA, Gillings D, Laine H, Hendler J, Silver JM, Davidson AB, et al. Validity and reliability of the observer’s assessment of alertness/sedation scale: study with intravenous midazolam. J Clin Psychopharmacol. 1990;10:244–51.CrossRefPubMed Chernik DA, Gillings D, Laine H, Hendler J, Silver JM, Davidson AB, et al. Validity and reliability of the observer’s assessment of alertness/sedation scale: study with intravenous midazolam. J Clin Psychopharmacol. 1990;10:244–51.CrossRefPubMed
16.
go back to reference Ma XX, Fang XM, Hou TN. Comparison of the effectiveness of dexmedetomidine versus propofol target-controlled infusion for sedation during coblation-assisted upper airway procedure. Chin Med J (Engl). 2012;125:869–73. Ma XX, Fang XM, Hou TN. Comparison of the effectiveness of dexmedetomidine versus propofol target-controlled infusion for sedation during coblation-assisted upper airway procedure. Chin Med J (Engl). 2012;125:869–73.
17.
go back to reference Alhashemi JA. Dexmedetomidine vs midazolam for monitored anaesthesia care during cataract surgery. Br J Anaesth. 2006;96:722–6.CrossRefPubMed Alhashemi JA. Dexmedetomidine vs midazolam for monitored anaesthesia care during cataract surgery. Br J Anaesth. 2006;96:722–6.CrossRefPubMed
18.
go back to reference Wu Y, Zhang Y, Hu X, Qian C, Zhou Y, Xie J. A comparison of propofol vs. dexmedetomidine for sedation, haemodynamic control and satisfaction, during esophagogastroduodenoscopy under conscious sedation. J Clin Pharm Ther. 2015;40:419–25.CrossRefPubMed Wu Y, Zhang Y, Hu X, Qian C, Zhou Y, Xie J. A comparison of propofol vs. dexmedetomidine for sedation, haemodynamic control and satisfaction, during esophagogastroduodenoscopy under conscious sedation. J Clin Pharm Ther. 2015;40:419–25.CrossRefPubMed
19.
go back to reference Aghajanian GK, VanderMaelen CP. alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science. 1982;215:1394–6.CrossRefPubMed Aghajanian GK, VanderMaelen CP. alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science. 1982;215:1394–6.CrossRefPubMed
20.
go back to reference Hsu YW, Cortinez LI, Robertson KM, Keifer JC, Sum-Ping ST, Moretti EW, et al. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology. 2004;101:1066–76.CrossRefPubMed Hsu YW, Cortinez LI, Robertson KM, Keifer JC, Sum-Ping ST, Moretti EW, et al. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology. 2004;101:1066–76.CrossRefPubMed
21.
22.
go back to reference Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93:382–94.CrossRefPubMed Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93:382–94.CrossRefPubMed
23.
go back to reference Ard Jr JL, Bekker AY, Doyle WK. Dexmedetomidine in awake craniotomy: a technical note. Surg Neurol. 2005;63:114–6. discussion 6–7.CrossRefPubMed Ard Jr JL, Bekker AY, Doyle WK. Dexmedetomidine in awake craniotomy: a technical note. Surg Neurol. 2005;63:114–6. discussion 6–7.CrossRefPubMed
24.
go back to reference Chen J, Zhou JQ, Chen ZF, Huang Y, Jiang H. Efficacy and safety of dexmedetomidine versus propofol for the sedation of tube-retention after oral maxillofacial surgery. J Oral Maxillofac Surg. 2014;72:285.e1–7.CrossRef Chen J, Zhou JQ, Chen ZF, Huang Y, Jiang H. Efficacy and safety of dexmedetomidine versus propofol for the sedation of tube-retention after oral maxillofacial surgery. J Oral Maxillofac Surg. 2014;72:285.e1–7.CrossRef
25.
go back to reference Lenkovsky F, Robertson BD, Iyer C, Ross L, Ahmed SA, Herazo L, et al. Metoclopramide does not influence the frequency of propofol-induced spontaneous movements. J Clin Anesth. 2007;19:530–3.CrossRefPubMed Lenkovsky F, Robertson BD, Iyer C, Ross L, Ahmed SA, Herazo L, et al. Metoclopramide does not influence the frequency of propofol-induced spontaneous movements. J Clin Anesth. 2007;19:530–3.CrossRefPubMed
26.
go back to reference Chan A, Nickoll E, Thornton C, Dore C, Newton DE. Spontaneous movement after injection of propofol. Anaesthesia. 1996;51:663–6.CrossRefPubMed Chan A, Nickoll E, Thornton C, Dore C, Newton DE. Spontaneous movement after injection of propofol. Anaesthesia. 1996;51:663–6.CrossRefPubMed
27.
go back to reference Reddy RV, Moorthy SS, Dierdorf SF, Deitch Jr RD, Link L. Excitatory effects and electroencephalographic correlation of etomidate, thiopental, methohexital, and propofol. Anesth Analg. 1993;77:1008–11.CrossRefPubMed Reddy RV, Moorthy SS, Dierdorf SF, Deitch Jr RD, Link L. Excitatory effects and electroencephalographic correlation of etomidate, thiopental, methohexital, and propofol. Anesth Analg. 1993;77:1008–11.CrossRefPubMed
28.
go back to reference Blaudszun G, Lysakowski C, Elia N, Tramer MR. Effect of perioperative systemic alpha2 agonists on postoperative morphine consumption and pain intensity: systematic review and meta-analysis of randomized controlled trials. Anesthesiology. 2012;116:1312–22.CrossRefPubMed Blaudszun G, Lysakowski C, Elia N, Tramer MR. Effect of perioperative systemic alpha2 agonists on postoperative morphine consumption and pain intensity: systematic review and meta-analysis of randomized controlled trials. Anesthesiology. 2012;116:1312–22.CrossRefPubMed
Metadata
Title
Combined use of dexmedetomidine and propofol in monitored anesthesia care: a randomized controlled study
Authors
Kyu Nam Kim
Hee Jong Lee
Soo Yeon Kim
Ji Yoon Kim
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2017
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-017-0311-9

Other articles of this Issue 1/2017

BMC Anesthesiology 1/2017 Go to the issue