Skip to main content
Top
Published in: BMC Anesthesiology 1/2015

Open Access 01-12-2015 | Research article

Effects of ketamine, s-ketamine, and MK 801 on proliferation, apoptosis, and necrosis in pancreatic cancer cells

Authors: Manuela Malsy, Kristina Gebhardt, Michael Gruber, Christoph Wiese, Bernhard Graf, Anika Bundscherer

Published in: BMC Anesthesiology | Issue 1/2015

Login to get access

Abstract

Background

Adenocarcinoma of the pancreas is one of the most aggressive cancer diseases affecting the human body. The oncogenic potential of this type of cancer is mainly characterized by its extreme growth rate triggered by the activation of signaling cascades. Modern oncological treatment strategies aim at efficiently modulating specific signaling and transcriptional pathways. Recently, anti-tumoral potential has been proven for several substances that are not primarily used in cancer treatment. In some tumor entities, for example, administration of glutamate antagonists inhibits cell proliferation, cell cycle arrest, and finally cell death.
To attain endogenic proof of NMDA receptor type expression in the pancreatic cancer cell lines PaTu8988t and Panc-1 and to investigate the impact of ketamine, s-ketamine, and the NMDA receptor antagonist MK 801 on proliferation, apoptosis, and necrosis in pancreatic carcinoma.

Methods

Cell proliferation was measured by means of the ELISA BrdU assay, and the apoptosis rate was analyzed by annexin V staining. Immunoblotting were also used.

Results

The NMDA receptor type R2a was expressed in both pancreatic carcinoma cell lines. Furthermore, ketamine, s-ketamine, and MK 801 significantly inhibited proliferation and apoptosis.

Conclusions

In this study, we showed the expression of the NMDA receptor type R2a in pancreatic cancer cells. The NMDA antagonists ketamine, s-ketamine, and MK 801 inhibited cell proliferation and cell death. Further clinical studies are warranted to identify the impact of these agents on the treatment of cancer patients.
Literature
1.
4.
go back to reference Gnoni A, Licchetta A, Scarpa A, Azzariti A, Brunett A, Simone G, et al. Carcinogenesis of pancreatic adenocarcinoma: precursor lesion. Int J Mol Sci. 2013;14:19731–62. Gnoni A, Licchetta A, Scarpa A, Azzariti A, Brunett A, Simone G, et al. Carcinogenesis of pancreatic adenocarcinoma: precursor lesion. Int J Mol Sci. 2013;14:19731–62.
6.
go back to reference Doi R, Imamura M, Hosotani R, Imaizumi T, Hatori T, Takasaki K, et al. Surgery versus radiochemotherapy for resectable locally invasive pancreatic cancer: final results of a randomized multi-institutional trial. Surg Today. 2008;38:1021–8. Doi R, Imamura M, Hosotani R, Imaizumi T, Hatori T, Takasaki K, et al. Surgery versus radiochemotherapy for resectable locally invasive pancreatic cancer: final results of a randomized multi-institutional trial. Surg Today. 2008;38:1021–8.
7.
go back to reference Egberts J, Cloosters V, Noack A, Scniewind B, Thon L, Klose S, et al. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2008;5:1443–50. Egberts J, Cloosters V, Noack A, Scniewind B, Thon L, Klose S, et al. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2008;5:1443–50.
8.
go back to reference Parada-Turska J, Rzeski W, Majdan M, Kandefer-Szerszen M, Turski WA. Effect of glutamate receptor antagonists and antirheumatic drugs on proliferation of synoviocytes in vitro. Eur J Pharmacol. 2006;535:95–7. Parada-Turska J, Rzeski W, Majdan M, Kandefer-Szerszen M, Turski WA. Effect of glutamate receptor antagonists and antirheumatic drugs on proliferation of synoviocytes in vitro. Eur J Pharmacol. 2006;535:95–7.
9.
go back to reference Jimi N, Segawa K, Minami K, Sata T, Shigematsu A. Inhibitory effect of the intravenous anesthetic, ketamine, on rat mesangial cell proliferation. Anesth Analg. 1997;84:190–5.CrossRefPubMed Jimi N, Segawa K, Minami K, Sata T, Shigematsu A. Inhibitory effect of the intravenous anesthetic, ketamine, on rat mesangial cell proliferation. Anesth Analg. 1997;84:190–5.CrossRefPubMed
10.
go back to reference Shiga Y, Minami K, Segawa K, Uezono Y, Shiraishi M, Sata T, et al. The inhibition of aortic smooth muscle cell proliferation by the intravenous anesthetic ketamine. Anesth Analg. 2004;99:1408–12. Shiga Y, Minami K, Segawa K, Uezono Y, Shiraishi M, Sata T, et al. The inhibition of aortic smooth muscle cell proliferation by the intravenous anesthetic ketamine. Anesth Analg. 2004;99:1408–12.
11.
go back to reference Rzeski W, Ikonomidou C, Turski L. Glutamate antagonists limit tumor growth. Biochem Pharmacol. 2002;64:1195–200.CrossRefPubMed Rzeski W, Ikonomidou C, Turski L. Glutamate antagonists limit tumor growth. Biochem Pharmacol. 2002;64:1195–200.CrossRefPubMed
12.
go back to reference Lee S, Wu T, Yu P, Chen R. Apoptotic insults to human Hep G2 cells induced by S-(+)-ketamine occurs through activation of a Bax-mitochondra-caspase protease pathway. Br J Anaesth. 2009;102:80–9.CrossRefPubMed Lee S, Wu T, Yu P, Chen R. Apoptotic insults to human Hep G2 cells induced by S-(+)-ketamine occurs through activation of a Bax-mitochondra-caspase protease pathway. Br J Anaesth. 2009;102:80–9.CrossRefPubMed
13.
go back to reference Yamaguchi F, Hirata Y, Akram H, Kamitori K, Dong Y, Sui L, et al. FOXO/TXNIP pathway is involved in the suppression of hepatocellular carcinoma growth by glutamate antagonist MK 801. BMC Cancer. 2013;13:468–79. Yamaguchi F, Hirata Y, Akram H, Kamitori K, Dong Y, Sui L, et al. FOXO/TXNIP pathway is involved in the suppression of hepatocellular carcinoma growth by glutamate antagonist MK 801. BMC Cancer. 2013;13:468–79.
15.
go back to reference Craven R. Ketamine. Anaesthesia. 2013;1:48–53. Craven R. Ketamine. Anaesthesia. 2013;1:48–53.
16.
go back to reference Hirota K, Lambert DG. Ketamine:its mechanism(s) of action and unusual clinical uses. Br J Anaesth. 1996;77:441–4.CrossRefPubMed Hirota K, Lambert DG. Ketamine:its mechanism(s) of action and unusual clinical uses. Br J Anaesth. 1996;77:441–4.CrossRefPubMed
17.
18.
go back to reference Bredlau AL, Thakur R, Korones DN, Dworkin RH. Ketamine for Pain in Adults and Children with cancer: a systematic Review and Synthesis of the Literature. Pain Med. 2013;14:1505–7.CrossRefPubMed Bredlau AL, Thakur R, Korones DN, Dworkin RH. Ketamine for Pain in Adults and Children with cancer: a systematic Review and Synthesis of the Literature. Pain Med. 2013;14:1505–7.CrossRefPubMed
19.
go back to reference Szczurowska E, Mares P. Glutamate, glutamate receptors and downstream signaling pathways. Int J Biol Sci. 2013;9:948–59.CrossRef Szczurowska E, Mares P. Glutamate, glutamate receptors and downstream signaling pathways. Int J Biol Sci. 2013;9:948–59.CrossRef
20.
go back to reference Cull-Candy S and Leszkiew D. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE. 2004;255:re16. Cull-Candy S and Leszkiew D. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE. 2004;255:re16.
21.
22.
go back to reference Mueller H, Meador-Woodruff J. NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res. 2004;71:361–70.CrossRefPubMed Mueller H, Meador-Woodruff J. NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res. 2004;71:361–70.CrossRefPubMed
23.
go back to reference Luksch H, Uckermann O, Stepulak A, Hendruschk S, Marzahn J, Bastian S, et al. Silencing of selected glutamate receptor subunits modulates cancer growth. Anticancer Res. 2011;10:3181–92. Luksch H, Uckermann O, Stepulak A, Hendruschk S, Marzahn J, Bastian S, et al. Silencing of selected glutamate receptor subunits modulates cancer growth. Anticancer Res. 2011;10:3181–92.
24.
go back to reference Stepulak A, Luksch H, Gebhardt C, Uckermann O, Marzahn J, Sifringer M, et al. Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol. 2009;132:435–45. Stepulak A, Luksch H, Gebhardt C, Uckermann O, Marzahn J, Sifringer M, et al. Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol. 2009;132:435–45.
25.
go back to reference Stepulak A, Luksch H, Uckermann O, Sifringer M, Rzeski W, Polberg K, et al. Glutamate Receptors in Laryngeal Cancer cells. Anticancer Res. 2011;31:565–73. Stepulak A, Luksch H, Uckermann O, Sifringer M, Rzeski W, Polberg K, et al. Glutamate Receptors in Laryngeal Cancer cells. Anticancer Res. 2011;31:565–73.
26.
go back to reference Kalariti N, Pissimissis N, Koutsilieris M. The glutamatergic system outside the CNS and in cancer biology. Expert Opin Investig. 2005;12:1487–96.CrossRef Kalariti N, Pissimissis N, Koutsilieris M. The glutamatergic system outside the CNS and in cancer biology. Expert Opin Investig. 2005;12:1487–96.CrossRef
27.
go back to reference Abdul M, Hoosein N. N-methyl-D-aspartate receptor in human prostate cancer. J Membr Biol. 2005;205:125–8.CrossRefPubMed Abdul M, Hoosein N. N-methyl-D-aspartate receptor in human prostate cancer. J Membr Biol. 2005;205:125–8.CrossRefPubMed
28.
go back to reference Watanabe K, Kanno T, Oshima T, Miwa H, Tashiro C, Nishizaki T. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells. Biochem Biophys Res Commun. 2008;367:487–90.CrossRefPubMed Watanabe K, Kanno T, Oshima T, Miwa H, Tashiro C, Nishizaki T. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells. Biochem Biophys Res Commun. 2008;367:487–90.CrossRefPubMed
29.
go back to reference Kim M, Yamashita K, Baek J, Park H, Carvalho A, Osada M, et al. N-Methyl-D-aspartae receptor type 2B is epigenetically inactivated and exhibits tumor-suppressive activity in human esophageal cancer. Cancer Res. 2006;66:3409–18. Kim M, Yamashita K, Baek J, Park H, Carvalho A, Osada M, et al. N-Methyl-D-aspartae receptor type 2B is epigenetically inactivated and exhibits tumor-suppressive activity in human esophageal cancer. Cancer Res. 2006;66:3409–18.
30.
go back to reference This is Number 30Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl E, et al. NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and supresses cancer growth. Proc Natl Acad Sci U S A. 2005;102:15605–10. This is Number 30Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl E, et al. NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and supresses cancer growth. Proc Natl Acad Sci U S A. 2005;102:15605–10.
31.
go back to reference This is Number 31Idvall J, Ahlgren I, Aronsen K, Stenberg P. Ketamine infusions: Pharmacokonetics and clinical effects. Br J Anaesth. 1979;51:1167–73. This is Number 31Idvall J, Ahlgren I, Aronsen K, Stenberg P. Ketamine infusions: Pharmacokonetics and clinical effects. Br J Anaesth. 1979;51:1167–73.
32.
go back to reference He H, Chen J, Xie WP, Cao S, Hu HY, Yang LQ, et al. Ketamine used as an acesodyne in human breast cancer therapy causes an undesirable side effect, upregulating anti-apoptosis protein Bcl-2 expression. Genet Mol Res. 2014;12:1907–15. He H, Chen J, Xie WP, Cao S, Hu HY, Yang LQ, et al. Ketamine used as an acesodyne in human breast cancer therapy causes an undesirable side effect, upregulating anti-apoptosis protein Bcl-2 expression. Genet Mol Res. 2014;12:1907–15.
33.
35.
go back to reference Petroiano G, Osswald P. Ketamin. In: Anästhesie in Frage und Antwort. 3rd ed. Deutschand: Springerverlag; 2000. p. 99–102.CrossRef Petroiano G, Osswald P. Ketamin. In: Anästhesie in Frage und Antwort. 3rd ed. Deutschand: Springerverlag; 2000. p. 99–102.CrossRef
37.
go back to reference Tavare A, Perry N, Benzonana L, Takata M, Ma D. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer. 2012;130:1237–50.CrossRefPubMed Tavare A, Perry N, Benzonana L, Takata M, Ma D. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer. 2012;130:1237–50.CrossRefPubMed
38.
go back to reference Goldfarb Y, Ben-Eliyahu S. Surgery as a risk factor for breast cancer recurrence and metastasis: mediating mechanisms and clinical prophylactic approaches. Breast Dis. 2006;26:99–114.CrossRefPubMed Goldfarb Y, Ben-Eliyahu S. Surgery as a risk factor for breast cancer recurrence and metastasis: mediating mechanisms and clinical prophylactic approaches. Breast Dis. 2006;26:99–114.CrossRefPubMed
39.
go back to reference Xuan W, Hankin J, Zhao H, Yao S and Ma D. The potential benefits of the use of regional anesthesia in cancer patients. Int J Cancer. 2014. Xuan W, Hankin J, Zhao H, Yao S and Ma D. The potential benefits of the use of regional anesthesia in cancer patients. Int J Cancer. 2014.
40.
go back to reference Chen WK, Miao C. The effect of anesthetic technique on survival in human cancers: a meta-analysis of retrospective and prospective studies. PLoS One. 2013;8:56540.CrossRef Chen WK, Miao C. The effect of anesthetic technique on survival in human cancers: a meta-analysis of retrospective and prospective studies. PLoS One. 2013;8:56540.CrossRef
41.
go back to reference Werdehausen R, Braun S, Essmann F, Schulze-Osthoff K, Walczak H, Lipfert P, et al. Lidocaine induces apoptosis via the mitochondrial pathway independently of death receptor signaling. Anesthesiology. 2007;107:136–43. Werdehausen R, Braun S, Essmann F, Schulze-Osthoff K, Walczak H, Lipfert P, et al. Lidocaine induces apoptosis via the mitochondrial pathway independently of death receptor signaling. Anesthesiology. 2007;107:136–43.
42.
go back to reference Huang H, Benzonana L, Zhao H, Watts H, Perry N, Bevan C, et al. Prostate cancer cell malignancy via modulation of HIF-1 α pathway with isoflurane and propofol alone and in combination. Br J Cancer. 2014;111:1338–49. Huang H, Benzonana L, Zhao H, Watts H, Perry N, Bevan C, et al. Prostate cancer cell malignancy via modulation of HIF-1 α pathway with isoflurane and propofol alone and in combination. Br J Cancer. 2014;111:1338–49.
43.
go back to reference Basu G, Pathangey L, Tinder T, Gendler S, Mukherjee P. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res. 2005;7:422–35.CrossRef Basu G, Pathangey L, Tinder T, Gendler S, Mukherjee P. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res. 2005;7:422–35.CrossRef
44.
go back to reference Kushida A, Inada T, Shingu K. Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol Immunotoxicol. 2007;29:477–86.CrossRefPubMed Kushida A, Inada T, Shingu K. Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol Immunotoxicol. 2007;29:477–86.CrossRefPubMed
45.
go back to reference Bidart M, Berger F, Pelletier L. Anti-angiogenetic therapie: from theory to practice. Ann Biol Clin (Paris). 2013;71:527–35. Bidart M, Berger F, Pelletier L. Anti-angiogenetic therapie: from theory to practice. Ann Biol Clin (Paris). 2013;71:527–35.
46.
go back to reference Burger J, Montserrat E. Coming full circle: 70 years of chronic lymphocytic leukemia cell redistribution, from glucocorticoids to inhibitors of B-cell receptor signalling. Blood. 2013;121:1501–9.CrossRefPubMedPubMedCentral Burger J, Montserrat E. Coming full circle: 70 years of chronic lymphocytic leukemia cell redistribution, from glucocorticoids to inhibitors of B-cell receptor signalling. Blood. 2013;121:1501–9.CrossRefPubMedPubMedCentral
47.
go back to reference Modest D, Hiddemann W, Heinemann V. Chemotherapy of metastatic colorectal cancer. Internist. 2014;55:37–42.CrossRefPubMed Modest D, Hiddemann W, Heinemann V. Chemotherapy of metastatic colorectal cancer. Internist. 2014;55:37–42.CrossRefPubMed
48.
go back to reference Roderick H, Cook S. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 2008;8:361–75.CrossRefPubMed Roderick H, Cook S. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 2008;8:361–75.CrossRefPubMed
Metadata
Title
Effects of ketamine, s-ketamine, and MK 801 on proliferation, apoptosis, and necrosis in pancreatic cancer cells
Authors
Manuela Malsy
Kristina Gebhardt
Michael Gruber
Christoph Wiese
Bernhard Graf
Anika Bundscherer
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2015
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-015-0076-y

Other articles of this Issue 1/2015

BMC Anesthesiology 1/2015 Go to the issue