Skip to main content
Top
Published in: BMC Immunology 1/2021

Open Access 01-12-2021 | Research article

The transmembrane domain and luminal C-terminal region independently support invariant chain trimerization and assembly with MHCII into nonamers

Authors: Maryse Cloutier, Jean-Simon Fortin, Jacques Thibodeau

Published in: BMC Immunology | Issue 1/2021

Login to get access

Abstract

Background

Invariant chain (CD74, Ii) is a multifunctional protein expressed in antigen presenting cells. It assists the ER exit of various cargos and serves as a receptor for the macrophage migration inhibitory factor. The newly translated Ii chains trimerize, a structural feature that is not readily understood in the context of its MHCII chaperoning function. Two segments of Ii, the luminal C-terminal region (TRIM) and the transmembrane domain (TM), have been shown to participate in the trimerization process but their relative importance and impact on the assembly with MHCII molecules remains debated. Here, we addressed the requirement of these domains in the trimerization of human Ii as well as in the oligomerization with MHCII molecules. We used site-directed mutagenesis to generate series of Ii and DR mutants. These were transiently transfected in HEK293T cells to test their cell surface expression and analyse their interactions by co-immunoprecipitations.

Results

Our results showed that the TRIM domain is not essential for Ii trimerization nor for intracellular trafficking with MHCII molecules. We also gathered evidence that in the absence of TM, TRIM allows the formation of multi-subunit complexes with HLA-DR. Similarly, in the absence of TRIM, Ii can assemble into high-order structures with MHCII molecules.

Conclusions

Altogether, our data show that trimerization of Ii through either TM or TRIM sustains nonameric complex formation with MHCII molecules.
Appendix
Available only for authorised users
Literature
1.
go back to reference Strubin M, Mach B, Long EO. The complete sequence of the mRNA for the HLA-DR-associated invariant chain reveals a polypeptide with an unusual transmembrane polarity. EMBO J. 1984;3:869–72.PubMedPubMedCentralCrossRef Strubin M, Mach B, Long EO. The complete sequence of the mRNA for the HLA-DR-associated invariant chain reveals a polypeptide with an unusual transmembrane polarity. EMBO J. 1984;3:869–72.PubMedPubMedCentralCrossRef
2.
go back to reference Singer PA, Lauer W, Dembic Z, Mayer WE, Lipp J, Koch N, Hammerling G, Klein J, Dobberstein B. Structure of the murine Ia-associated invariant (Ii) chain as deduced from a cDNA clone. EMBO J. 1984;3:873–7.PubMedPubMedCentralCrossRef Singer PA, Lauer W, Dembic Z, Mayer WE, Lipp J, Koch N, Hammerling G, Klein J, Dobberstein B. Structure of the murine Ia-associated invariant (Ii) chain as deduced from a cDNA clone. EMBO J. 1984;3:873–7.PubMedPubMedCentralCrossRef
4.
go back to reference Jones PP, Murphy DB, Hewgill D, McDevitt HO. Detection of a common polypeptide chain in I-A and I–E sub-region immunoprecipitates. Mol Immunol. 1979;16:51–60.PubMedCrossRef Jones PP, Murphy DB, Hewgill D, McDevitt HO. Detection of a common polypeptide chain in I-A and I–E sub-region immunoprecipitates. Mol Immunol. 1979;16:51–60.PubMedCrossRef
5.
go back to reference Busch R, Cloutier I, Sekaly R-P, Hammerling GJ. Invariant chain protects class II histocompatibility antigens from binding intact polypeptides in the endoplasmic reticulum. EMBO J. 1996;15:418–28.PubMedPubMedCentralCrossRef Busch R, Cloutier I, Sekaly R-P, Hammerling GJ. Invariant chain protects class II histocompatibility antigens from binding intact polypeptides in the endoplasmic reticulum. EMBO J. 1996;15:418–28.PubMedPubMedCentralCrossRef
6.
go back to reference Sekaly R-P, Tonnelle C, Strubin M, Mach B, Long EO. Cell surface expression of class II histocompatibility antigens occurs in the absence of the invariant chain. J Exp Med. 1986;164:1490–504.PubMedCrossRef Sekaly R-P, Tonnelle C, Strubin M, Mach B, Long EO. Cell surface expression of class II histocompatibility antigens occurs in the absence of the invariant chain. J Exp Med. 1986;164:1490–504.PubMedCrossRef
7.
go back to reference Bikoff EK, Huang L-Y, Episkopou V, van Meerwijk J, Germain RN, Robertson EJ. Defective major histocompatibility complex class II assembly, transport, peptide acquisition, and CD4+ T cell selection in mice lacking invariant chain expression. J Exp Med. 1993;177:1699–712.PubMedCrossRef Bikoff EK, Huang L-Y, Episkopou V, van Meerwijk J, Germain RN, Robertson EJ. Defective major histocompatibility complex class II assembly, transport, peptide acquisition, and CD4+ T cell selection in mice lacking invariant chain expression. J Exp Med. 1993;177:1699–712.PubMedCrossRef
8.
go back to reference Rovere P, Forquet F, Zimmermann VS, Trucy J, Ricciardi-Castagnoli P, Davoust J. Dendritic cells from mice lacking the invariant chain express high levels of membrane MHC class II molecules in vivo. Adv Exp Med Biol. 1997;417:195–201.PubMedCrossRef Rovere P, Forquet F, Zimmermann VS, Trucy J, Ricciardi-Castagnoli P, Davoust J. Dendritic cells from mice lacking the invariant chain express high levels of membrane MHC class II molecules in vivo. Adv Exp Med Biol. 1997;417:195–201.PubMedCrossRef
9.
go back to reference Zimmermann VS, Rovere P, Trucy J, Serre K, Machy P, Forquet F, Leserman L, Davoust J. Engagement of B cell receptor regulates the invariant chain-dependent MHC class II presentation pathway. J Immunol. 1999;162:2495–502.PubMedCrossRef Zimmermann VS, Rovere P, Trucy J, Serre K, Machy P, Forquet F, Leserman L, Davoust J. Engagement of B cell receptor regulates the invariant chain-dependent MHC class II presentation pathway. J Immunol. 1999;162:2495–502.PubMedCrossRef
10.
go back to reference Strubin M, Berte C, Mach B. Alternative splicing and alternative initiation of translation explain the four forms of the Ia antigen-associated invariant chain. EMBO J. 1986;5:3485–8.CrossRef Strubin M, Berte C, Mach B. Alternative splicing and alternative initiation of translation explain the four forms of the Ia antigen-associated invariant chain. EMBO J. 1986;5:3485–8.CrossRef
11.
go back to reference O’Sullivan DM, Noonan D, Quaranta V. Four Ia invariant chain forms derive from a single gene by alternative splicing and alternate initiation of transcription/translation. J Exp Med. 1987;166:444–50.PubMedCrossRef O’Sullivan DM, Noonan D, Quaranta V. Four Ia invariant chain forms derive from a single gene by alternative splicing and alternate initiation of transcription/translation. J Exp Med. 1987;166:444–50.PubMedCrossRef
12.
go back to reference Lotteau V, Teyton L, Peleraux A, Nilsson T, Karlsson L, Schmid SL, Quaranta V, Peterson PA. Intracellular transport of class II MHC molecules directed by invariant chain. Nature. 1990;348:600–5.PubMedCrossRef Lotteau V, Teyton L, Peleraux A, Nilsson T, Karlsson L, Schmid SL, Quaranta V, Peterson PA. Intracellular transport of class II MHC molecules directed by invariant chain. Nature. 1990;348:600–5.PubMedCrossRef
13.
go back to reference Lamb CA, Yewdell JW, Bennink JR, Cresswell P. Invariant chain targets HLA class II molecules to acidic endosomes containing internalized influenza virus. Proc Natl Acad Sci USA. 1991;88:5998–6002.PubMedPubMedCentralCrossRef Lamb CA, Yewdell JW, Bennink JR, Cresswell P. Invariant chain targets HLA class II molecules to acidic endosomes containing internalized influenza virus. Proc Natl Acad Sci USA. 1991;88:5998–6002.PubMedPubMedCentralCrossRef
14.
go back to reference Schutze M-P, Peterson PA, Jackson MR. An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J. 1994;13:1696–705.PubMedPubMedCentralCrossRef Schutze M-P, Peterson PA, Jackson MR. An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J. 1994;13:1696–705.PubMedPubMedCentralCrossRef
15.
go back to reference Anderson HA, Roche PA. Phosphorylation regulates the delivery of MHC class II invariant chain complexes to antigen processing compartments. J Immunol. 1998;160:4850–8.PubMedCrossRef Anderson HA, Roche PA. Phosphorylation regulates the delivery of MHC class II invariant chain complexes to antigen processing compartments. J Immunol. 1998;160:4850–8.PubMedCrossRef
16.
go back to reference Kuwana T, Peterson PA, Karlsson L. Exit of major histocompatibility complex class II-invariant chain p35 complexes from the endoplasmic reticulum is modulated by phosphorylation. Proc Natl Acad Sci USA. 1998;95:1056–61.PubMedPubMedCentralCrossRef Kuwana T, Peterson PA, Karlsson L. Exit of major histocompatibility complex class II-invariant chain p35 complexes from the endoplasmic reticulum is modulated by phosphorylation. Proc Natl Acad Sci USA. 1998;95:1056–61.PubMedPubMedCentralCrossRef
17.
go back to reference O’Kelly I, Butler MH, Zilberberg N, Goldstein SA. Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell. 2002;111:577–88.PubMedCrossRef O’Kelly I, Butler MH, Zilberberg N, Goldstein SA. Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell. 2002;111:577–88.PubMedCrossRef
18.
go back to reference Peters PJ, Neefjes JJ, Oorschot V, Ploegh HL, Geuze HJ. Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature. 1991;349:669–76.PubMedCrossRef Peters PJ, Neefjes JJ, Oorschot V, Ploegh HL, Geuze HJ. Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature. 1991;349:669–76.PubMedCrossRef
19.
go back to reference Roche PA, Teletski CL, Stang E, Bakke O, Long EO. Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization. Proc Natl Acad Sci USA. 1993;90:8581–5.PubMedPubMedCentralCrossRef Roche PA, Teletski CL, Stang E, Bakke O, Long EO. Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization. Proc Natl Acad Sci USA. 1993;90:8581–5.PubMedPubMedCentralCrossRef
20.
21.
go back to reference Castellino F, Germain RN. Extensive trafficking of MHC class II-invariant chain complexes in the endocytic pathway and appearance of peptide-loaded class II in multiple compartments. Immunity. 1995;2:73–88.PubMedCrossRef Castellino F, Germain RN. Extensive trafficking of MHC class II-invariant chain complexes in the endocytic pathway and appearance of peptide-loaded class II in multiple compartments. Immunity. 1995;2:73–88.PubMedCrossRef
22.
go back to reference Peters PJ, Raposo G, Neefjes JJ, Oorschot V, Leijendekker RL, Geuze HJ, Ploegh HL. Major histocompatibility complex class II compartments in human B lymphoblastoid cells are distinct from early endosomes. J Exp Med. 1995;182:325–34.PubMedCrossRef Peters PJ, Raposo G, Neefjes JJ, Oorschot V, Leijendekker RL, Geuze HJ, Ploegh HL. Major histocompatibility complex class II compartments in human B lymphoblastoid cells are distinct from early endosomes. J Exp Med. 1995;182:325–34.PubMedCrossRef
23.
go back to reference Riberdy JM, Newcomb JR, Surman MJ, Barbosa JA, Cresswell P. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature. 1992;360:474–7.PubMedCrossRef Riberdy JM, Newcomb JR, Surman MJ, Barbosa JA, Cresswell P. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature. 1992;360:474–7.PubMedCrossRef
24.
go back to reference Denzin LK, Cresswell P. HLA-DM induces CLIP dissociation from MHC class II ab dimers and facilitates peptide loading. Cell. 1995;82:155–65.PubMedCrossRef Denzin LK, Cresswell P. HLA-DM induces CLIP dissociation from MHC class II ab dimers and facilitates peptide loading. Cell. 1995;82:155–65.PubMedCrossRef
25.
26.
27.
28.
go back to reference Anderson MS, Miller J. Invariant chain can function as a chaperone protein for class II major histocompatibility complex molecules. Proc Natl Acad Sci USA. 1992;89:2282–6.PubMedPubMedCentralCrossRef Anderson MS, Miller J. Invariant chain can function as a chaperone protein for class II major histocompatibility complex molecules. Proc Natl Acad Sci USA. 1992;89:2282–6.PubMedPubMedCentralCrossRef
29.
go back to reference Shachar I, Haran M. The secret second life of an innocent chaperone: the story of CD74 and B cell/chronic lymphocytic leukemia cell survival. Leuk Lymphoma. 2011;52:1446–54.PubMedCrossRef Shachar I, Haran M. The secret second life of an innocent chaperone: the story of CD74 and B cell/chronic lymphocytic leukemia cell survival. Leuk Lymphoma. 2011;52:1446–54.PubMedCrossRef
30.
go back to reference Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R. MIF signal transduction initiated by binding to CD74. J Exp Med. 2003;197:1467–76.PubMedPubMedCentralCrossRef Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R. MIF signal transduction initiated by binding to CD74. J Exp Med. 2003;197:1467–76.PubMedPubMedCentralCrossRef
31.
go back to reference Beswick EJ, Bland DA, Suarez G, Barrera CA, Fan X, Reyes VE. Helicobacter pylori binds to CD74 on gastric epithelial cells and stimulates interleukin-8 production. Infect Immun. 2005;73:2736–43.PubMedPubMedCentralCrossRef Beswick EJ, Bland DA, Suarez G, Barrera CA, Fan X, Reyes VE. Helicobacter pylori binds to CD74 on gastric epithelial cells and stimulates interleukin-8 production. Infect Immun. 2005;73:2736–43.PubMedPubMedCentralCrossRef
32.
go back to reference Jasanoff A, Song S, Dinner AR, Wagner G, Wiley DC. One of two unstructured domains of Ii becomes ordered in complexes with MHC class II molecules. Immunity. 1999;10:761–8.PubMedCrossRef Jasanoff A, Song S, Dinner AR, Wagner G, Wiley DC. One of two unstructured domains of Ii becomes ordered in complexes with MHC class II molecules. Immunity. 1999;10:761–8.PubMedCrossRef
33.
go back to reference Roche PA, Marks MS, Cresswell P. Formation of a nine-subunit complex by HLA class II glycoproteins and the invariant chain. Nature. 1991;354:392–4.PubMedCrossRef Roche PA, Marks MS, Cresswell P. Formation of a nine-subunit complex by HLA class II glycoproteins and the invariant chain. Nature. 1991;354:392–4.PubMedCrossRef
34.
go back to reference Bijlmakers ME, Benaroch P, Ploegh HL. Mapping functional regions in the lumenal domain of the class II-associated invariant chain. J Exp Med. 1994;180:623–9.PubMedCrossRef Bijlmakers ME, Benaroch P, Ploegh HL. Mapping functional regions in the lumenal domain of the class II-associated invariant chain. J Exp Med. 1994;180:623–9.PubMedCrossRef
35.
go back to reference Newcomb JR, Carboy-Newcomb C, Cresswell P. Trimeric interactions of the invariant chain and its association with major histocompatibility complex class II alpha beta dimers. J Biol Chem. 1996;271:24249–56.PubMedCrossRef Newcomb JR, Carboy-Newcomb C, Cresswell P. Trimeric interactions of the invariant chain and its association with major histocompatibility complex class II alpha beta dimers. J Biol Chem. 1996;271:24249–56.PubMedCrossRef
36.
go back to reference Marks MS, Blum JS, Cresswell P. Invariant chain trimers are sequestered in the rough endoplasmic reticulum in the absence of association with HLA class II antigens. J Cell Biol. 1990;111:839–55.PubMedCrossRef Marks MS, Blum JS, Cresswell P. Invariant chain trimers are sequestered in the rough endoplasmic reticulum in the absence of association with HLA class II antigens. J Cell Biol. 1990;111:839–55.PubMedCrossRef
37.
go back to reference Park SJ, Sadegh-Nasseri S, Wiley DC. Invariant chain made in Escherichia coli has an exposed N-terminal segment that blocks antigen binding to HLA-DR1 and a trimeric C-terminal segment that binds empty HLA-DR1. Proc Natl Acad Sci USA. 1995;92:11289–93.PubMedPubMedCentralCrossRef Park SJ, Sadegh-Nasseri S, Wiley DC. Invariant chain made in Escherichia coli has an exposed N-terminal segment that blocks antigen binding to HLA-DR1 and a trimeric C-terminal segment that binds empty HLA-DR1. Proc Natl Acad Sci USA. 1995;92:11289–93.PubMedPubMedCentralCrossRef
38.
go back to reference Jasanoff A, Wagner G, Wiley DC. Structure of a trimeric domain of the MHC class II-associated chaperonin and targeting protein Ii. EMBO J. 1998;17:6812–8.PubMedPubMedCentralCrossRef Jasanoff A, Wagner G, Wiley DC. Structure of a trimeric domain of the MHC class II-associated chaperonin and targeting protein Ii. EMBO J. 1998;17:6812–8.PubMedPubMedCentralCrossRef
39.
go back to reference Ashman JB, Miller J. A role for the transmembrane domain in the trimerization of the MHC class II-associated invariant chain. J Immunol. 1999;163:2704–12.PubMedCrossRef Ashman JB, Miller J. A role for the transmembrane domain in the trimerization of the MHC class II-associated invariant chain. J Immunol. 1999;163:2704–12.PubMedCrossRef
40.
go back to reference Kukol A, Torres J, Arkin IT. A structure for the trimeric MHC class II-associated invariant chain transmembrane domain. J Mol Biol. 2002;320:1109–17.PubMedCrossRef Kukol A, Torres J, Arkin IT. A structure for the trimeric MHC class II-associated invariant chain transmembrane domain. J Mol Biol. 2002;320:1109–17.PubMedCrossRef
41.
go back to reference Dixon AM, Stanley BJ, Matthews EE, Dawson JP, Engelman DM. Invariant chain transmembrane domain trimerization: a step in MHC class II assembly. Biochemistry. 2006;45:5228–34.PubMedCrossRef Dixon AM, Stanley BJ, Matthews EE, Dawson JP, Engelman DM. Invariant chain transmembrane domain trimerization: a step in MHC class II assembly. Biochemistry. 2006;45:5228–34.PubMedCrossRef
42.
go back to reference Motta A, Amodeo P, Fucile P, Castiglione Morelli M, Bremnes B, Bakke O. A new triple-stranded a-helical bundle in solution: the assembling of the cytosolic tail of MHC associated invariant chain. Structure. 1997;5:1453–64.PubMedCrossRef Motta A, Amodeo P, Fucile P, Castiglione Morelli M, Bremnes B, Bakke O. A new triple-stranded a-helical bundle in solution: the assembling of the cytosolic tail of MHC associated invariant chain. Structure. 1997;5:1453–64.PubMedCrossRef
43.
go back to reference Arneson LS, Miller J. Efficient endosomal localization of major histocompatibility complex class II-invariant chain complexes requires multimerization of the invariant chain targeting sequence. J Cell Biol. 1995;129:1217–28.PubMedCrossRef Arneson LS, Miller J. Efficient endosomal localization of major histocompatibility complex class II-invariant chain complexes requires multimerization of the invariant chain targeting sequence. J Cell Biol. 1995;129:1217–28.PubMedCrossRef
44.
go back to reference Gedde-Dahl M, Freisewinkel I, Staschewski M, Schenck K, Koch N, Bakke O. Exon 6 is essential for invariant chain trimerization and induction of large endosomal structures. J Biol Chem. 1997;272:8281–7.PubMedCrossRef Gedde-Dahl M, Freisewinkel I, Staschewski M, Schenck K, Koch N, Bakke O. Exon 6 is essential for invariant chain trimerization and induction of large endosomal structures. J Biol Chem. 1997;272:8281–7.PubMedCrossRef
45.
go back to reference Majera D, Kristan KC, Neefjes J, Turk D, Mihelic M. Expression, purification and assembly of soluble multimeric MHC class II-invariant chain complexes. FEBS Lett. 2012;586:1318–24.PubMedCrossRef Majera D, Kristan KC, Neefjes J, Turk D, Mihelic M. Expression, purification and assembly of soluble multimeric MHC class II-invariant chain complexes. FEBS Lett. 2012;586:1318–24.PubMedCrossRef
46.
go back to reference Bertolino P, Staschewski M, Trescol-Biémont M-C, Freisewinkel IM, Schenck K, Chrétien I, Forquet F, Gerlier D, Rabourdin-Combe C, Koch N. Deletion of a C-terminal sequence of the class II-associated invariant chain abrogates invariant chains oligomer formation and class II antigen presentation. J Immunol. 1995;154:5620–9.PubMedCrossRef Bertolino P, Staschewski M, Trescol-Biémont M-C, Freisewinkel IM, Schenck K, Chrétien I, Forquet F, Gerlier D, Rabourdin-Combe C, Koch N. Deletion of a C-terminal sequence of the class II-associated invariant chain abrogates invariant chains oligomer formation and class II antigen presentation. J Immunol. 1995;154:5620–9.PubMedCrossRef
47.
go back to reference Amigorena S, Webster P, Drake J, Newcomb J, Cresswell P, Mellman I. Invariant chain cleavage and peptide loading in major histocompatibility complex class II vesicles. J Exp Med. 1995;181:1729–41.PubMedCrossRef Amigorena S, Webster P, Drake J, Newcomb J, Cresswell P, Mellman I. Invariant chain cleavage and peptide loading in major histocompatibility complex class II vesicles. J Exp Med. 1995;181:1729–41.PubMedCrossRef
48.
go back to reference Khalil H, Brunet A, Thibodeau J. A three-amino-acid-long HLA-DRbeta cytoplasmic tail is sufficient to overcome ER retention of invariant-chain p35. J Cell Sci. 2005;118:4679–87.PubMedCrossRef Khalil H, Brunet A, Thibodeau J. A three-amino-acid-long HLA-DRbeta cytoplasmic tail is sufficient to overcome ER retention of invariant-chain p35. J Cell Sci. 2005;118:4679–87.PubMedCrossRef
49.
go back to reference Cloutier M, Gauthier C, Fortin JS, Thibodeau J. The invariant chain p35 isoform promotes formation of nonameric complexes with MHC II molecules. Immunol Cell Biol. 2014;92:553–6.PubMedCrossRef Cloutier M, Gauthier C, Fortin JS, Thibodeau J. The invariant chain p35 isoform promotes formation of nonameric complexes with MHC II molecules. Immunol Cell Biol. 2014;92:553–6.PubMedCrossRef
50.
go back to reference Cloutier M, Gauthier C, Fortin JS, Geneve L, Kim K, Gruenheid S, Kim J, Thibodeau J. ER egress of invariant chain isoform p35 requires direct binding to MHCII molecules and is inhibited by the NleA virulence factor of enterohaemorrhagic Escherichia coli. Hum Immunol. 2015;76:292–6.PubMedCrossRef Cloutier M, Gauthier C, Fortin JS, Geneve L, Kim K, Gruenheid S, Kim J, Thibodeau J. ER egress of invariant chain isoform p35 requires direct binding to MHCII molecules and is inhibited by the NleA virulence factor of enterohaemorrhagic Escherichia coli. Hum Immunol. 2015;76:292–6.PubMedCrossRef
51.
go back to reference Bakke O, Dobberstein B. MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. Cell. 1990;63:707–16.PubMedCrossRef Bakke O, Dobberstein B. MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. Cell. 1990;63:707–16.PubMedCrossRef
52.
go back to reference Pieters J, Bakke O, Dobberstein B. The MHC class II-associated invariant chain contains two endosomal targeting signals within its cytoplasmic tail. J Cell Sci. 1993;106:831–46.PubMedCrossRef Pieters J, Bakke O, Dobberstein B. The MHC class II-associated invariant chain contains two endosomal targeting signals within its cytoplasmic tail. J Cell Sci. 1993;106:831–46.PubMedCrossRef
53.
go back to reference Koch N, Hammerling GJ. Structure of Ia antigens: identification of dimeric complexes formed by the invariant chain. J Immunol. 1982;128:1155–8.PubMedCrossRef Koch N, Hammerling GJ. Structure of Ia antigens: identification of dimeric complexes formed by the invariant chain. J Immunol. 1982;128:1155–8.PubMedCrossRef
54.
go back to reference Thayer WP, Ignatowicz L, Weber DA, Jensen PE. Class II-associated invariant chain peptide-independent binding of invariant chain to class II MHC molecules. J Immunol. 1999;162:1502–9.PubMedCrossRef Thayer WP, Ignatowicz L, Weber DA, Jensen PE. Class II-associated invariant chain peptide-independent binding of invariant chain to class II MHC molecules. J Immunol. 1999;162:1502–9.PubMedCrossRef
55.
go back to reference Neumann J, Koch N. A novel domain on HLA-DRbeta chain regulates the chaperone role of the invariant chain. J Cell Sci. 2006;119:4207–14.PubMedCrossRef Neumann J, Koch N. A novel domain on HLA-DRbeta chain regulates the chaperone role of the invariant chain. J Cell Sci. 2006;119:4207–14.PubMedCrossRef
56.
go back to reference Ghosh P, Amaya M, Mellins E, Wiley DC. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature. 1995;378:457–62.PubMedCrossRef Ghosh P, Amaya M, Mellins E, Wiley DC. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature. 1995;378:457–62.PubMedCrossRef
57.
go back to reference Thayer WP, Dao CT, Ignatowicz L, Jensen PE. A novel single chain I-A(b) molecule can stimulate and stain antigen-specific T cells. Mol Immunol. 2003;39:861–70.PubMedCrossRef Thayer WP, Dao CT, Ignatowicz L, Jensen PE. A novel single chain I-A(b) molecule can stimulate and stain antigen-specific T cells. Mol Immunol. 2003;39:861–70.PubMedCrossRef
58.
go back to reference Khalil H, Brunet A, Saba I, Terra R, Sekaly RP, Thibodeau J. The MHC class II beta chain cytoplasmic tail overcomes the invariant chain p35-encoded endoplasmic reticulum retention signal. Int Immunol. 2003;15:1249–63.PubMedCrossRef Khalil H, Brunet A, Saba I, Terra R, Sekaly RP, Thibodeau J. The MHC class II beta chain cytoplasmic tail overcomes the invariant chain p35-encoded endoplasmic reticulum retention signal. Int Immunol. 2003;15:1249–63.PubMedCrossRef
59.
go back to reference Neumann J, Koch N. Assembly of major histocompatibility complex class II subunits with invariant chain. FEBS Lett. 2005;579:6055–9.PubMedCrossRef Neumann J, Koch N. Assembly of major histocompatibility complex class II subunits with invariant chain. FEBS Lett. 2005;579:6055–9.PubMedCrossRef
60.
go back to reference Wraight CJ, Van Endert P, Moller P, Lipp J, Ling NR, MacLennan IC, Koch N, Moldenhauer G. Human major histocompatibility complex class II invariant chain is expressed on the cell surface. J Biol Chem. 1990;265:5787–92.PubMedCrossRef Wraight CJ, Van Endert P, Moller P, Lipp J, Ling NR, MacLennan IC, Koch N, Moldenhauer G. Human major histocompatibility complex class II invariant chain is expressed on the cell surface. J Biol Chem. 1990;265:5787–92.PubMedCrossRef
61.
go back to reference Ong GL, Goldenberg DM, Hansen HJ, Mattes MJ. Cell surface expression and metabolism of major histocompatibility complex class II invariant chain (CD74) by diverse cell lines. Immunology. 1999;98:296–302.PubMedPubMedCentralCrossRef Ong GL, Goldenberg DM, Hansen HJ, Mattes MJ. Cell surface expression and metabolism of major histocompatibility complex class II invariant chain (CD74) by diverse cell lines. Immunology. 1999;98:296–302.PubMedPubMedCentralCrossRef
62.
go back to reference Meza-Romero R, Benedek G, Leng L, Bucala R, Vandenbark AA. Predicted structure of MIF/CD74 and RTL1000/CD74 complexes. Metab Brain Dis. 2016;31:249–55.PubMedPubMedCentralCrossRef Meza-Romero R, Benedek G, Leng L, Bucala R, Vandenbark AA. Predicted structure of MIF/CD74 and RTL1000/CD74 complexes. Metab Brain Dis. 2016;31:249–55.PubMedPubMedCentralCrossRef
64.
go back to reference Becker-Herman S, Arie G, Medvedovsky H, Kerem A, Shachar I. CD74 is a member of the regulated intramembrane proteolysis-processed protein family. Mol Biol Cell. 2005;16:5061–9.PubMedPubMedCentralCrossRef Becker-Herman S, Arie G, Medvedovsky H, Kerem A, Shachar I. CD74 is a member of the regulated intramembrane proteolysis-processed protein family. Mol Biol Cell. 2005;16:5061–9.PubMedPubMedCentralCrossRef
65.
go back to reference Schneppenheim J, Dressel R, Huttl S, Lullmann-Rauch R, Engelke M, Dittmann K, Wienands J, Eskelinen EL, Hermans-Borgmeyer I, Fluhrer R, Saftig P, Schroder B. The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain. J Exp Med. 2013;210:41–58.PubMedPubMedCentralCrossRef Schneppenheim J, Dressel R, Huttl S, Lullmann-Rauch R, Engelke M, Dittmann K, Wienands J, Eskelinen EL, Hermans-Borgmeyer I, Fluhrer R, Saftig P, Schroder B. The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain. J Exp Med. 2013;210:41–58.PubMedPubMedCentralCrossRef
66.
go back to reference Gil-Yarom N, Radomir L, Sever L, Kramer MP, Lewinsky H, Bornstein C, Blecher-Gonen R, Barnett-Itzhaki Z, Mirkin V, Friedlander G, Shvidel L, Herishanu Y, Lolis EJ, Becker-Herman S, Amit I, Shachar I. CD74 is a novel transcription regulator. Proc Natl Acad Sci USA. 2017;114:562–7.PubMedCrossRef Gil-Yarom N, Radomir L, Sever L, Kramer MP, Lewinsky H, Bornstein C, Blecher-Gonen R, Barnett-Itzhaki Z, Mirkin V, Friedlander G, Shvidel L, Herishanu Y, Lolis EJ, Becker-Herman S, Amit I, Shachar I. CD74 is a novel transcription regulator. Proc Natl Acad Sci USA. 2017;114:562–7.PubMedCrossRef
67.
go back to reference Nijenhuis M, Calafat J, Kuijpers KC, Janssen H, de Haas M, Nordeng TW, Bakke O, Neefjes JJ. Targeting major histocompatibility complex class II molecules to the cell surface by invariant chain allows antigen presentation upon recycling. Eur J Immunol. 1994;24:873–83.PubMedCrossRef Nijenhuis M, Calafat J, Kuijpers KC, Janssen H, de Haas M, Nordeng TW, Bakke O, Neefjes JJ. Targeting major histocompatibility complex class II molecules to the cell surface by invariant chain allows antigen presentation upon recycling. Eur J Immunol. 1994;24:873–83.PubMedCrossRef
68.
go back to reference Arunachalam B, Lamb CA, Cresswell P. Transport properties of free and MHC class II associated oligomers containing different isoforms of human invariant chain. Int Immunol. 1993;6:439–51.CrossRef Arunachalam B, Lamb CA, Cresswell P. Transport properties of free and MHC class II associated oligomers containing different isoforms of human invariant chain. Int Immunol. 1993;6:439–51.CrossRef
69.
72.
go back to reference Romagnoli P, Germain RN. Inhibition of invariant chain (Ii)-calnexin interaction results in enhanced degradation of Ii but does not prevent the assembly of abIi complexes. J Exp Med. 1995;182:2027–36.PubMedCrossRef Romagnoli P, Germain RN. Inhibition of invariant chain (Ii)-calnexin interaction results in enhanced degradation of Ii but does not prevent the assembly of abIi complexes. J Exp Med. 1995;182:2027–36.PubMedCrossRef
73.
go back to reference Miller J, Germain RN. Efficient cell surface expression of class II MHC molecules in the absence of associated invariant chain. J Exp Med. 1986;164:1478–89.PubMedCrossRef Miller J, Germain RN. Efficient cell surface expression of class II MHC molecules in the absence of associated invariant chain. J Exp Med. 1986;164:1478–89.PubMedCrossRef
74.
go back to reference Bikoff EK, Germain RN, Robertson EJ. Allelic differences affecting invariant chain dependency of MHC class II subunit assembly. Immunity. 1995;2:301–10.PubMedCrossRef Bikoff EK, Germain RN, Robertson EJ. Allelic differences affecting invariant chain dependency of MHC class II subunit assembly. Immunity. 1995;2:301–10.PubMedCrossRef
75.
go back to reference Machamer CE, Cresswell P. Biosynthesis and glycosylation of the invariant chain associated with HLA-DR antigens. J Immunol. 1982;129:2564–9.PubMedCrossRef Machamer CE, Cresswell P. Biosynthesis and glycosylation of the invariant chain associated with HLA-DR antigens. J Immunol. 1982;129:2564–9.PubMedCrossRef
76.
go back to reference Romagnoli P, Germain RN. The CLIP region of invariant chain plays a critical role in regulating major histocompatibility complex class II folding, transport, and peptide occupancy. J Exp Med. 1994;180:1107–13.PubMedCrossRef Romagnoli P, Germain RN. The CLIP region of invariant chain plays a critical role in regulating major histocompatibility complex class II folding, transport, and peptide occupancy. J Exp Med. 1994;180:1107–13.PubMedCrossRef
77.
go back to reference Yamashita Y, Anczurowski M, Nakatsugawa M, Tanaka M, Kagoya Y, Sinha A, Chamoto K, Ochi T, Guo T, Saso K, Butler MO, Minden MD, Kislinger T, Hirano N. HLA-DP(84Gly) constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat Commun. 2017;8:15244.PubMedPubMedCentralCrossRef Yamashita Y, Anczurowski M, Nakatsugawa M, Tanaka M, Kagoya Y, Sinha A, Chamoto K, Ochi T, Guo T, Saso K, Butler MO, Minden MD, Kislinger T, Hirano N. HLA-DP(84Gly) constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat Commun. 2017;8:15244.PubMedPubMedCentralCrossRef
78.
go back to reference Anczurowski M, Hirano N. Mechanisms of HLA-DP antigen processing and presentation revisited. Trends Immunol. 2018;39:960–4.PubMedCrossRef Anczurowski M, Hirano N. Mechanisms of HLA-DP antigen processing and presentation revisited. Trends Immunol. 2018;39:960–4.PubMedCrossRef
79.
80.
go back to reference Zwart W, Peperzak V, Keller AM, van der Horst G, Veraar EA, Geumann U, Janssen H, Janssen L, Naik SH, Neefjes J, Borst J. The invariant chain transports TNF family member CD70 to MHC class II compartments in dendritic cells. J Cell Sci. 2010;123:3817–27.PubMedCrossRef Zwart W, Peperzak V, Keller AM, van der Horst G, Veraar EA, Geumann U, Janssen H, Janssen L, Naik SH, Neefjes J, Borst J. The invariant chain transports TNF family member CD70 to MHC class II compartments in dendritic cells. J Cell Sci. 2010;123:3817–27.PubMedCrossRef
81.
go back to reference Schroder B. The multifaceted roles of the invariant chain CD74–More than just a chaperone. Biochim Biophys Acta. 2016;1863:1269–81.PubMedCrossRef Schroder B. The multifaceted roles of the invariant chain CD74–More than just a chaperone. Biochim Biophys Acta. 2016;1863:1269–81.PubMedCrossRef
82.
go back to reference Faubert A, Samaan A, Thibodeau J. Functional analysis of tryptophans alpha 62 and beta 120 on HLA-DM. J Biol Chem. 2002;277:2750–5.PubMedCrossRef Faubert A, Samaan A, Thibodeau J. Functional analysis of tryptophans alpha 62 and beta 120 on HLA-DM. J Biol Chem. 2002;277:2750–5.PubMedCrossRef
Metadata
Title
The transmembrane domain and luminal C-terminal region independently support invariant chain trimerization and assembly with MHCII into nonamers
Authors
Maryse Cloutier
Jean-Simon Fortin
Jacques Thibodeau
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2021
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/s12865-021-00444-6

Other articles of this Issue 1/2021

BMC Immunology 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.