Skip to main content
Top
Published in: BMC Immunology 1/2017

Open Access 01-06-2017 | Research

Experimental validation of the RATE tool for inferring HLA restrictions of T cell epitopes

Authors: Sinu Paul, Cecilia S. Lindestam Arlehamn, Veronique Schulten, Luise Westernberg, John Sidney, Bjoern Peters, Alessandro Sette

Published in: BMC Immunology | Special Issue 1/2017

Login to get access

Abstract

Background

The RATE tool was recently developed to computationally infer the HLA restriction of given epitopes from immune response data of HLA typed subjects without additional cumbersome experimentation.

Results

Here, RATE was validated using experimentally defined restriction data from a set of 191 tuberculosis-derived epitopes and 63 healthy individuals with MTB infection from the Western Cape Region of South Africa. Using this experimental dataset, the parameters utilized by the RATE tool to infer restriction were optimized, which included relative frequency (RF) of the subjects responding to a given epitope and expressing a given allele as compared to the general test population and the associated p-value in a Fisher’s exact test. We also examined the potential for further optimization based on the predicted binding affinity of epitopes to potential restricting HLA alleles, and the absolute number of individuals expressing a given allele and responding to the specific epitope. Different statistical measures, including Matthew’s correlation coefficient, accuracy, sensitivity and specificity were used to evaluate performance of RATE as a function of these criteria. Based on our results we recommend selection of HLA restrictions with cutoffs of p-value < 0.01 and RF ≥ 1.3. The usefulness of the tool was demonstrated by inferring new HLA restrictions for epitope sets where restrictions could not be experimentally determined due to lack of necessary cell lines and for an additional data set related to recognition of pollen derived epitopes from allergic patients.

Conclusions

Experimental data sets were used to validate RATE tool and the parameters used by the RATE tool to infer restriction were optimized. New HLA restrictions were identified using the optimized RATE tool.
Appendix
Available only for authorised users
Literature
2.
go back to reference Davis MM, Altman JD, Newell EW. Interrogating the repertoire: broadening the scope of peptide–MHC multimer analysis. Nat Rev Immunol. 2011;11(8):551–8.CrossRefPubMedPubMedCentral Davis MM, Altman JD, Newell EW. Interrogating the repertoire: broadening the scope of peptide–MHC multimer analysis. Nat Rev Immunol. 2011;11(8):551–8.CrossRefPubMedPubMedCentral
3.
go back to reference Newell EW, Davis MM. Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat Biotechnol. 2014;32(2):149–57.CrossRefPubMedPubMedCentral Newell EW, Davis MM. Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat Biotechnol. 2014;32(2):149–57.CrossRefPubMedPubMedCentral
5.
go back to reference Coffey LL, Mertens E, Brehin A, Fernandez-Garcia MD, Amara A, Després P, Sakuntabhai A. Human genetic determinants of dengue virus susceptibility. Microb Infect. 2009;11(2):143–56.CrossRef Coffey LL, Mertens E, Brehin A, Fernandez-Garcia MD, Amara A, Després P, Sakuntabhai A. Human genetic determinants of dengue virus susceptibility. Microb Infect. 2009;11(2):143–56.CrossRef
7.
go back to reference McKinney DM, Southwood S, Hinz D, Oseroff C, Arlehamn CSL, Schulten V, Taplitz R, Broide D, Hanekom WA, Scriba TJ, Wood R, Alam R, Peters B, Sidney J, Sette A. A strategy to determine HLA class II restriction broadly covering the DR, DP, and DQ allelic variants most commonly expressed in the general population. Immunogenetics. 2013;(65):357–70. McKinney DM, Southwood S, Hinz D, Oseroff C, Arlehamn CSL, Schulten V, Taplitz R, Broide D, Hanekom WA, Scriba TJ, Wood R, Alam R, Peters B, Sidney J, Sette A. A strategy to determine HLA class II restriction broadly covering the DR, DP, and DQ allelic variants most commonly expressed in the general population. Immunogenetics. 2013;(65):357–70.
8.
go back to reference Paul S, Dillon MB, Lindestam Arlehamn CS, Huang H, Davis MM, McKinney DM, Scriba TJ, Sidney J, Peters B, Sette A. A population response analysis approach to assign class II HLA-epitope restrictions. J Immunol. 2015;194(12):6164–76.CrossRefPubMedPubMedCentral Paul S, Dillon MB, Lindestam Arlehamn CS, Huang H, Davis MM, McKinney DM, Scriba TJ, Sidney J, Peters B, Sette A. A population response analysis approach to assign class II HLA-epitope restrictions. J Immunol. 2015;194(12):6164–76.CrossRefPubMedPubMedCentral
9.
go back to reference Arlehamn C, McKinney D, Carpenter C, Paul S, Rozot V, Makgotlho E, Yolande G, Rooyen M, Hanekom W, Peters B, Scriba T, Sette A. A Quantitative Analysis of Complexity of Human Pathogen-specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans. PLoS Pathog. 2016;12.7:e1005760. Arlehamn C, McKinney D, Carpenter C, Paul S, Rozot V, Makgotlho E, Yolande G, Rooyen M, Hanekom W, Peters B, Scriba T,  Sette A. A Quantitative Analysis of Complexity of Human Pathogen-specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans. PLoS Pathog. 2016;12.7:e1005760.
10.
go back to reference Arlehamn CSL, Gerasimova A, Mele F, Henderson R, Swann J, Greenbaum JA, Kim Y, Sidney J, James EA, Taplitz R, McKinney DS, Kwok WM, Grey H, Sallusto F, Peters B, Sette A. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3 CCR6 Th1 subset. PLoS Pathog. 2013;9(1):e1003130. Arlehamn CSL, Gerasimova A, Mele F, Henderson R, Swann J, Greenbaum JA, Kim Y, Sidney J, James EA, Taplitz R, McKinney DS, Kwok WM, Grey H, Sallusto F, Peters B, Sette A. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3 CCR6 Th1 subset. PLoS Pathog. 2013;9(1):e1003130.
11.
go back to reference Arlehamn CS, Sidney J, Henderson R, Greenbaum JA, James EA, Moutaftsi M, Coler R, McKinney DM, Park D, Taplitz R, Kwok WW, Grey H, Peters B, Sette A. Dissecting mechanisms of immunodominance to the common tuberculosis antigens ESAT-6, CFP10, Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c (EsxJ). J Immunol. 2012;188(10):5020–31.CrossRefPubMedPubMedCentral Arlehamn CS, Sidney J, Henderson R, Greenbaum JA, James EA, Moutaftsi M, Coler R, McKinney DM, Park D, Taplitz R, Kwok WW, Grey H, Peters B, Sette A. Dissecting mechanisms of immunodominance to the common tuberculosis antigens ESAT-6, CFP10, Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c (EsxJ). J Immunol. 2012;188(10):5020–31.CrossRefPubMedPubMedCentral
12.
go back to reference Mustafa AS, Al-Attiyah R, Hanif SN, Shaban FA. Efficient testing of large pools of Mycobacterium tuberculosis RD1 peptides and identification of major antigens and immunodominant peptides recognized by human Th1 cells. Clin Vaccine Immunol. 2008;15(6):916–24.CrossRefPubMedPubMedCentral Mustafa AS, Al-Attiyah R, Hanif SN, Shaban FA. Efficient testing of large pools of Mycobacterium tuberculosis RD1 peptides and identification of major antigens and immunodominant peptides recognized by human Th1 cells. Clin Vaccine Immunol. 2008;15(6):916–24.CrossRefPubMedPubMedCentral
13.
go back to reference Mustafa A. Th1 cell reactivity and HLA‐DR binding prediction for promiscuous recognition of MPT63 (Rv1926c), a major secreted protein of Mycobacterium tuberculosis. Scand J Immunol. 2009;69(3):213–22.CrossRefPubMed Mustafa A. Th1 cell reactivity and HLA‐DR binding prediction for promiscuous recognition of MPT63 (Rv1926c), a major secreted protein of Mycobacterium tuberculosis. Scand J Immunol. 2009;69(3):213–22.CrossRefPubMed
14.
go back to reference Cuccu B, Freer G, Genovesi A, Garzelli C, Rindi L. Identification of a human immunodominant T-cell epitope of mycobacterium tuberculosis antigen PPE44. BMC Microbiol. 2011;11(1):1.CrossRef Cuccu B, Freer G, Genovesi A, Garzelli C, Rindi L. Identification of a human immunodominant T-cell epitope of mycobacterium tuberculosis antigen PPE44. BMC Microbiol. 2011;11(1):1.CrossRef
15.
go back to reference Vita R, Vaughan K, Zarebski L, Salimi N, Fleri W, Grey H, Sathiamurthy M, Mokili J, Bui HH, Bourne PE, Ponomarenko J, de Castro R, Jr CRK, Sidney J, Wilson SS, Stewart S, Way S, Peters B, Sette A. Curation of complex, context-dependent immunological data. BMC Bioinf. 2006;7:341.CrossRef Vita R, Vaughan K, Zarebski L, Salimi N, Fleri W, Grey H, Sathiamurthy M, Mokili J, Bui HH, Bourne PE, Ponomarenko J, de Castro R, Jr CRK, Sidney J, Wilson SS, Stewart S, Way S, Peters B, Sette A. Curation of complex, context-dependent immunological data. BMC Bioinf. 2006;7:341.CrossRef
16.
go back to reference Oseroff C, Sidney J, Kotturi MF, Kolla R, Alam R, Broide DH, Wasserman SI, Weiskopf D, McKinney DM, Chung JL, Petersen A, Grey H, Peters B, Sette A. Molecular determinants of T cell epitope recognition to the common Timothy grass allergen. J Immunol. 2010;185(2):943–55.CrossRefPubMedPubMedCentral Oseroff C, Sidney J, Kotturi MF, Kolla R, Alam R, Broide DH, Wasserman SI, Weiskopf D, McKinney DM, Chung JL, Petersen A, Grey H, Peters B, Sette A. Molecular determinants of T cell epitope recognition to the common Timothy grass allergen. J Immunol. 2010;185(2):943–55.CrossRefPubMedPubMedCentral
17.
go back to reference Schulten V, Greenbaum JA, Hauser M, McKinney DM, Sidney J, Kolla R, Lindestam Arlehamn CS, Oseroff C, Alam R, Broide DH, Ferreira F, Grey HM, Sette A, Peters B. Previously undescribed grass pollen antigens are the major inducers of T helper 2 cytokine-producing T cells in allergic individuals. Proc Natl Acad Sci U S A. 2013;110(9):3459–64.CrossRefPubMedPubMedCentral Schulten V, Greenbaum JA, Hauser M, McKinney DM, Sidney J, Kolla R, Lindestam Arlehamn CS, Oseroff C, Alam R, Broide DH, Ferreira F, Grey HM, Sette A, Peters B. Previously undescribed grass pollen antigens are the major inducers of T helper 2 cytokine-producing T cells in allergic individuals. Proc Natl Acad Sci U S A. 2013;110(9):3459–64.CrossRefPubMedPubMedCentral
18.
go back to reference Schulten V, Tripple V, Sidney J, Greenbaum J, Frazier A, Alam R, Broide D, Peters B, Sette A. Association between specific timothy grass antigens and changes in T H 1-and T H 2-cell responses following specific immunotherapy. J Allergy Clin Immunol. 2014;134(5):1076–83.CrossRefPubMedPubMedCentral Schulten V, Tripple V, Sidney J, Greenbaum J, Frazier A, Alam R, Broide D, Peters B, Sette A. Association between specific timothy grass antigens and changes in T H 1-and T H 2-cell responses following specific immunotherapy. J Allergy Clin Immunol. 2014;134(5):1076–83.CrossRefPubMedPubMedCentral
19.
go back to reference Westernberg L, Schulten V, Greenbaum JA, Natali S, Tripple V, McKinney DM, Frazier A, Hofer H, Wallner M, Sallusto F, Sette A, Peters B. T-cell epitope conservation across allergen species is a major determinant of immunogenicity. J Allergy Clin Immunol. 2016;138(2):571–78. Westernberg L, Schulten V, Greenbaum JA, Natali S, Tripple V, McKinney DM, Frazier A, Hofer H, Wallner M, Sallusto F, Sette A, Peters B. T-cell epitope conservation across allergen species is a major determinant of immunogenicity. J Allergy Clin Immunol. 2016;138(2):571–78.
20.
go back to reference McKinney DM, Fu Z, Le L, Greenbaum JA, Peters B, Sette A. Development and validation of a sample sparing strategy for HLA typing utilizing next generation sequencing. Hum Immunol. 2015;76(12):917–22.CrossRefPubMedPubMedCentral McKinney DM, Fu Z, Le L, Greenbaum JA, Peters B, Sette A. Development and validation of a sample sparing strategy for HLA typing utilizing next generation sequencing. Hum Immunol. 2015;76(12):917–22.CrossRefPubMedPubMedCentral
21.
go back to reference Panina‐Bordignon P, Tan A, Termijtelen A, Demotz S, Corradin G, Lanzavecchia A. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol. 1989;19(12):2237–42.CrossRefPubMed Panina‐Bordignon P, Tan A, Termijtelen A, Demotz S, Corradin G, Lanzavecchia A. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol. 1989;19(12):2237–42.CrossRefPubMed
22.
go back to reference Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics. 2011;63(6):325–35.CrossRefPubMedPubMedCentral Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics. 2011;63(6):325–35.CrossRefPubMedPubMedCentral
23.
go back to reference Gonzalez-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MH, da Silva AL, Silva AL T e, Ghattaoraya GS, Alfirevic A, Jones AR, Middleton D. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 2015;43(Database issue):D784-8.PubMed Gonzalez-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MH, da Silva AL, Silva AL T e, Ghattaoraya GS, Alfirevic A, Jones AR, Middleton D. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 2015;43(Database issue):D784-8.PubMed
Metadata
Title
Experimental validation of the RATE tool for inferring HLA restrictions of T cell epitopes
Authors
Sinu Paul
Cecilia S. Lindestam Arlehamn
Veronique Schulten
Luise Westernberg
John Sidney
Bjoern Peters
Alessandro Sette
Publication date
01-06-2017
Publisher
BioMed Central
Published in
BMC Immunology / Issue Special Issue 1/2017
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/s12865-017-0204-1

Other articles of this Special Issue 1/2017

BMC Immunology 1/2017 Go to the issue