Skip to main content
Top
Published in: BMC Immunology 1/2015

Open Access 01-12-2015 | Research article

Mycobacterial glycolipids di-O-acylated trehalose and tri-O-acylated trehalose downregulate inducible nitric oxide synthase and nitric oxide production in macrophages

Authors: Patricia Espinosa-Cueto, Marina Escalera-Zamudio, Alejandro Magallanes-Puebla, Luz María López-Marín, Erika Segura-Salinas, Raúl Mancilla

Published in: BMC Immunology | Issue 1/2015

Login to get access

Abstract

Background

Tuberculosis (TB) remains a serious human health problem that affects millions of people in the world. Understanding the biology of Mycobacterium tuberculosis (Mtb) is essential for tackling this devastating disease. Mtb possesses a very complex cell envelope containing a variety of lipid components that participate in the establishment of the infection. We have previously demonstrated that di-O-acylated trehalose (DAT), a non-covalently linked cell wall glycolipid, inhibits the proliferation of T lymphocytes and the production of cytokines.

Results

In this work we show that DAT and the closely related tri-O-acylated trehalose (TAT) inhibits nitric oxide (NO) production and the inducible nitric oxide synthase (iNOS) expression in macrophages (MØ).

Conclusions

These findings show that DAT and TAT are cell-wall located virulence factors that downregulate an important effector of the immune response against mycobacteria.
Literature
2.
go back to reference Daffé M, Draper P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol. 1998;39:131–203.PubMed Daffé M, Draper P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol. 1998;39:131–203.PubMed
3.
go back to reference Manca C, Reed MB, Freeman S, Mathema B, Kreis-Wirth B, Barry 3rd CE, et al. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect Immun. 2004;72:5511–4.PubMedCentralPubMedCrossRef Manca C, Reed MB, Freeman S, Mathema B, Kreis-Wirth B, Barry 3rd CE, et al. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect Immun. 2004;72:5511–4.PubMedCentralPubMedCrossRef
4.
go back to reference Mahon RN, Rojas RE, Fulton SA, Franko JL, Harding CV, Boom WH. Mycobacterium tuberculosis cell wall glycolipids directly inhibit CD4+ T-cell activation by interfering with proximal T-cell-receptor signaling. Infect Immun. 2009;77:4574–83.PubMedCentralPubMedCrossRef Mahon RN, Rojas RE, Fulton SA, Franko JL, Harding CV, Boom WH. Mycobacterium tuberculosis cell wall glycolipids directly inhibit CD4+ T-cell activation by interfering with proximal T-cell-receptor signaling. Infect Immun. 2009;77:4574–83.PubMedCentralPubMedCrossRef
5.
go back to reference Fortune SM, Solache A, Jaeger A, Hill PJ, Belisle JT, Bloom BR, et al. Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and -independent mechanisms. J Immunol. 2004;172:6272–80.PubMedCrossRef Fortune SM, Solache A, Jaeger A, Hill PJ, Belisle JT, Bloom BR, et al. Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and -independent mechanisms. J Immunol. 2004;172:6272–80.PubMedCrossRef
6.
go back to reference Hunter RL, Olsen MR, Jagannath C, Actor JK. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci. 2006;36:371–86.PubMed Hunter RL, Olsen MR, Jagannath C, Actor JK. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann Clin Lab Sci. 2006;36:371–86.PubMed
7.
go back to reference Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2005;102:4033–8.PubMedCentralPubMedCrossRef Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2005;102:4033–8.PubMedCentralPubMedCrossRef
8.
go back to reference Saavedra R, Segura E, Tenorio EP, López-Marín LM. Mycobacterial trehalose-containing glycolipid with immunomodulatory activity on human CD4+ and CD8+ T-cells. Microbes Infect. 2006;8:533–40.PubMedCrossRef Saavedra R, Segura E, Tenorio EP, López-Marín LM. Mycobacterial trehalose-containing glycolipid with immunomodulatory activity on human CD4+ and CD8+ T-cells. Microbes Infect. 2006;8:533–40.PubMedCrossRef
9.
go back to reference Chesne-Seck ML, Barilone N, Boudou F, Gonzalo Asencio J, Kolattukudy PE, Martín C, et al. A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra. J Bateriol. 2008;190(4):1329–34.CrossRef Chesne-Seck ML, Barilone N, Boudou F, Gonzalo Asencio J, Kolattukudy PE, Martín C, et al. A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra. J Bateriol. 2008;190(4):1329–34.CrossRef
10.
go back to reference Gautier N, López-Marín LM, Lanéelle MA. Daffé. Structure of mycoside F, a family of trehalose-containing glycolipids of Mycobacterium fortuitum. FEMS Microbiol Lett. 1992;77:81–7.PubMedCrossRef Gautier N, López-Marín LM, Lanéelle MA. Daffé. Structure of mycoside F, a family of trehalose-containing glycolipids of Mycobacterium fortuitum. FEMS Microbiol Lett. 1992;77:81–7.PubMedCrossRef
11.
go back to reference Escamilla L, Mancilla R, Glender W, Lopez-Marin LM. Mycobacterium fortuitum glycolipids for the serodiagnosis of pulmonary tuberculosis. Amer J Resp Crit Care Med. 1996;154:1864–7.CrossRef Escamilla L, Mancilla R, Glender W, Lopez-Marin LM. Mycobacterium fortuitum glycolipids for the serodiagnosis of pulmonary tuberculosis. Amer J Resp Crit Care Med. 1996;154:1864–7.CrossRef
12.
go back to reference MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective lo cus against tuberculosis. Proc Natl Acad Sci U S A. 1997;94:5243–8.PubMedCentralPubMedCrossRef MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective lo cus against tuberculosis. Proc Natl Acad Sci U S A. 1997;94:5243–8.PubMedCentralPubMedCrossRef
13.
go back to reference Axelrod S, Oschkinat H, Enders J, Schlegel B, Brinkmann V, Kaufmann SH, et al. Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol. 2008;10:1530–45.PubMedCrossRef Axelrod S, Oschkinat H, Enders J, Schlegel B, Brinkmann V, Kaufmann SH, et al. Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol. 2008;10:1530–45.PubMedCrossRef
14.
go back to reference Rich EA, Torres M, Sada E, Finegan CK, Hamilton BD, Toossi Z. Mycobacterium tuberculosis (MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. Tuber Lung Dis. 1997;78:247–55.PubMedCrossRef Rich EA, Torres M, Sada E, Finegan CK, Hamilton BD, Toossi Z. Mycobacterium tuberculosis (MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. Tuber Lung Dis. 1997;78:247–55.PubMedCrossRef
15.
go back to reference Nicholson S, Bonecini-Almeida Mda G, Silva JR LE, Nathan C, Xie QW, Mumford R, et al. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med. 1996;183:2293–302.PubMedCrossRef Nicholson S, Bonecini-Almeida Mda G, Silva JR LE, Nathan C, Xie QW, Mumford R, et al. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med. 1996;183:2293–302.PubMedCrossRef
16.
go back to reference Wang CH, Liu CY, Lin HC, Yu CT, Chung KF, Kuo HP. Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J. 1998;11:809–15.PubMedCrossRef Wang CH, Liu CY, Lin HC, Yu CT, Chung KF, Kuo HP. Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J. 1998;11:809–15.PubMedCrossRef
17.
go back to reference Facchetti F, Vermi W, Fiorentini S, Chilosi M, Caruso A, Duse M, et al. Expression of inducible nitric oxide synthase in human granulomas and histiocytic reactions. Am J Pathol. 1999;154:145–52.PubMedCentralPubMedCrossRef Facchetti F, Vermi W, Fiorentini S, Chilosi M, Caruso A, Duse M, et al. Expression of inducible nitric oxide synthase in human granulomas and histiocytic reactions. Am J Pathol. 1999;154:145–52.PubMedCentralPubMedCrossRef
18.
go back to reference Pereira-Suárez AL, Estrada-Chávez C, Arriaga-Díaz C, Espinosa-Cueto P, Mancilla R. Coexpression of NRAMP1, iNOS, and nitrotyrosine in bovine tuberculosis. Vet Pathol. 2006;43:709–17.PubMedCrossRef Pereira-Suárez AL, Estrada-Chávez C, Arriaga-Díaz C, Espinosa-Cueto P, Mancilla R. Coexpression of NRAMP1, iNOS, and nitrotyrosine in bovine tuberculosis. Vet Pathol. 2006;43:709–17.PubMedCrossRef
19.
go back to reference Gómez LM, Anaya JM, Vilchez JR, Cadena J, Hinojosa R, Vélez L, et al. A polymorphism in the inducible nitric oxide synthase gene is associated with tuberculosis. Tuberculosis. 2007;87(4):288–94.PubMedCrossRef Gómez LM, Anaya JM, Vilchez JR, Cadena J, Hinojosa R, Vélez L, et al. A polymorphism in the inducible nitric oxide synthase gene is associated with tuberculosis. Tuberculosis. 2007;87(4):288–94.PubMedCrossRef
20.
go back to reference Brugmann WB, Firmani MA. Low concentrations of nitric oxide exert a hormetic effect on Mycobacterium tuberculosis in vitro. J Clin Microbiol. 2005;43:4844–6.PubMedCentralPubMedCrossRef Brugmann WB, Firmani MA. Low concentrations of nitric oxide exert a hormetic effect on Mycobacterium tuberculosis in vitro. J Clin Microbiol. 2005;43:4844–6.PubMedCentralPubMedCrossRef
21.
go back to reference Rhee KY, Erdjument-Bromage H, Tempst P, Nathan CF. S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci U S A. 2005;102:467–72.PubMedCentralPubMedCrossRef Rhee KY, Erdjument-Bromage H, Tempst P, Nathan CF. S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci U S A. 2005;102:467–72.PubMedCentralPubMedCrossRef
22.
go back to reference Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science. 2003;302:1963–6.PubMedCrossRef Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science. 2003;302:1963–6.PubMedCrossRef
23.
go back to reference Muñoz M, Lanéelle MA, Luquin M, Torrelles J, Julián E, Ausina V, et al. Occurrence of an antigenic triacyl trehalose in clinical isolates and reference strains of Mycobacterium tuberculosis. FEMS Microbiol Lett. 1997;157:251–9.PubMedCrossRef Muñoz M, Lanéelle MA, Luquin M, Torrelles J, Julián E, Ausina V, et al. Occurrence of an antigenic triacyl trehalose in clinical isolates and reference strains of Mycobacterium tuberculosis. FEMS Microbiol Lett. 1997;157:251–9.PubMedCrossRef
24.
go back to reference Minnikin DE, Kremer L, Dover LG, Besra GS. The methyl-branched fortifications of Mycobacterium tuberculosis. Chemistry Biol. 2002;9:545–53.CrossRef Minnikin DE, Kremer L, Dover LG, Besra GS. The methyl-branched fortifications of Mycobacterium tuberculosis. Chemistry Biol. 2002;9:545–53.CrossRef
Metadata
Title
Mycobacterial glycolipids di-O-acylated trehalose and tri-O-acylated trehalose downregulate inducible nitric oxide synthase and nitric oxide production in macrophages
Authors
Patricia Espinosa-Cueto
Marina Escalera-Zamudio
Alejandro Magallanes-Puebla
Luz María López-Marín
Erika Segura-Salinas
Raúl Mancilla
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2015
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/s12865-015-0102-3

Other articles of this Issue 1/2015

BMC Immunology 1/2015 Go to the issue