Skip to main content
Top
Published in: BMC Immunology 1/2014

Open Access 01-12-2014 | Research article

Lipid raft-based membrane order is important for antigen-specific clonal expansion of CD4+ T lymphocytes

Published in: BMC Immunology | Issue 1/2014

Login to get access

Abstract

Background

Lipid rafts are cholesterol and saturated lipid-rich, nanometer sized membrane domains that are hypothesized to play an important role in compartmentalization and spatiotemporal regulation of cellular signaling. Lipid rafts contribute to the plasma membrane order and to its spatial asymmetry, as well. The raft nanodomains on the surface of CD4+ T lymphocytes coalesce during their interaction with antigen presenting cells (APCs). Sensing of foreign antigen by the antigen receptor on CD4+ T cells occurs during these cell-cell interactions. In response to foreign antigen the CD4+ T cells proliferate, allowing the expansion of few antigen-specific primary CD4+ T cell clones. Proliferating CD4+ T cells specialize in their function by undergoing differentiation into appropriate effectors tailored to mount an effective adaptive immune response against the invading pathogen.

Results

To investigate the role of lipid raft-based membrane order in the clonal expansion phase of primary CD4+ T cells, we have disrupted membrane order by incorporating an oxysterol, 7-ketocholesterol (7-KC), into the plasma membrane of primary CD4+ T cells expressing a T cell receptor specific to chicken ovalbumin323–339 peptide sequence and tested their antigen-specific response. We report that 7-KC, at concentrations that disrupt lipid rafts, significantly diminish the c-Ovalbumin323–339 peptide-specific clonal expansion of primary CD4+ T cells.

Conclusions

Our findings suggest that lipid raft-based membrane order is important for clonal expansion of CD4+ T cells in response to a model peptide.
Appendix
Available only for authorised users
Literature
1.
go back to reference Singleton KL, Roybal KT, Sun Y, Fu G, Gascoign NR, van Oers NS, Wülfing C: Spatiotemporal patterning during T cell activation is highly diverse. Sci Signal. 2009, 2: ra15-10.1126/scisignal.2000199.PubMedPubMedCentralCrossRef Singleton KL, Roybal KT, Sun Y, Fu G, Gascoign NR, van Oers NS, Wülfing C: Spatiotemporal patterning during T cell activation is highly diverse. Sci Signal. 2009, 2: ra15-10.1126/scisignal.2000199.PubMedPubMedCentralCrossRef
2.
go back to reference Bamezai A: Lipid rafts and signaling. Immunol Endo and Met Agents in Med Chem. 2008, 8: 325-326. 10.2174/187152208787169206.CrossRef Bamezai A: Lipid rafts and signaling. Immunol Endo and Met Agents in Med Chem. 2008, 8: 325-326. 10.2174/187152208787169206.CrossRef
4.
go back to reference Dehmelt L, Bastiaens PI: Spatial organization of intracellular communication: insights from imaging. Nat Rev Mol Cell Biol. 2010, 11: 440-452. 10.1038/nrm2903.PubMedCrossRef Dehmelt L, Bastiaens PI: Spatial organization of intracellular communication: insights from imaging. Nat Rev Mol Cell Biol. 2010, 11: 440-452. 10.1038/nrm2903.PubMedCrossRef
5.
go back to reference Yang G: Bioimage informatics for understanding spatiotemporal dynamics of cellular processes. Wiley Interdiscip Rev Syst Biol Med. 2013, 5: 367-380. 10.1002/wsbm.1214.PubMedCrossRef Yang G: Bioimage informatics for understanding spatiotemporal dynamics of cellular processes. Wiley Interdiscip Rev Syst Biol Med. 2013, 5: 367-380. 10.1002/wsbm.1214.PubMedCrossRef
6.
go back to reference Hinde E, Digman MA, Hahn KM, Gratton E: Millisecond spatiotemporal dynamics of FRET biosensors by the pair correlation function and the phasor approach to FLIM. Proc Natl Acad Sci U S A. 2013, 110: 135-140. 10.1073/pnas.1211882110.PubMedPubMedCentralCrossRef Hinde E, Digman MA, Hahn KM, Gratton E: Millisecond spatiotemporal dynamics of FRET biosensors by the pair correlation function and the phasor approach to FLIM. Proc Natl Acad Sci U S A. 2013, 110: 135-140. 10.1073/pnas.1211882110.PubMedPubMedCentralCrossRef
7.
go back to reference Chentouf M, Ghannam S, Bès C, Troadec S, Cérutti M, Chardès T: Recombinant anti-CD4 antibody 13B8.2 blocks membrane-proximal events by excluding the Zap70 molecule and downstream targets SLP-76, PLC gamma 1, and Vav-1 from the CD4-segregated Brij 98 detergent-resistant raft domains. J Immunol. 2007, 179: 409-420. 10.4049/jimmunol.179.1.409.PubMedCrossRef Chentouf M, Ghannam S, Bès C, Troadec S, Cérutti M, Chardès T: Recombinant anti-CD4 antibody 13B8.2 blocks membrane-proximal events by excluding the Zap70 molecule and downstream targets SLP-76, PLC gamma 1, and Vav-1 from the CD4-segregated Brij 98 detergent-resistant raft domains. J Immunol. 2007, 179: 409-420. 10.4049/jimmunol.179.1.409.PubMedCrossRef
8.
go back to reference Bretscher MS: Asymmetrical lipid bilayer structure for biological membranes. Nat New Biol. 1972, 236: 11-12. 10.1038/newbio236011a0.PubMedCrossRef Bretscher MS: Asymmetrical lipid bilayer structure for biological membranes. Nat New Biol. 1972, 236: 11-12. 10.1038/newbio236011a0.PubMedCrossRef
9.
go back to reference Gordesky SE, Marinetti GV: The asymetric arrangement of phospholipids in the human erythrocyte membrane. Biochem Biophys Res Commun. 1973, 50: 1027-1031. 10.1016/0006-291X(73)91509-X.PubMedCrossRef Gordesky SE, Marinetti GV: The asymetric arrangement of phospholipids in the human erythrocyte membrane. Biochem Biophys Res Commun. 1973, 50: 1027-1031. 10.1016/0006-291X(73)91509-X.PubMedCrossRef
10.
go back to reference Verkleij AJ, Post JA: Membrane phospholipid asymmetry and signal transduction. J Membr Biol. 2000, 178: 1-10. 10.1007/s002320010009.PubMedCrossRef Verkleij AJ, Post JA: Membrane phospholipid asymmetry and signal transduction. J Membr Biol. 2000, 178: 1-10. 10.1007/s002320010009.PubMedCrossRef
11.
12.
go back to reference Leventis PA, Grinstein S: The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys. 2010, 39: 407-427. 10.1146/annurev.biophys.093008.131234.PubMedCrossRef Leventis PA, Grinstein S: The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys. 2010, 39: 407-427. 10.1146/annurev.biophys.093008.131234.PubMedCrossRef
13.
go back to reference Vyas KA, Patel HV, Vyas AA, Schnaar RL: Segregation of gangliosides GM1 and GD3 on cell membranes, isolated membrane rafts, and defined supported lipid monolayers. Biol Chem. 2001, 382: 241-250. 10.1515/BC.2001.031.PubMedCrossRef Vyas KA, Patel HV, Vyas AA, Schnaar RL: Segregation of gangliosides GM1 and GD3 on cell membranes, isolated membrane rafts, and defined supported lipid monolayers. Biol Chem. 2001, 382: 241-250. 10.1515/BC.2001.031.PubMedCrossRef
14.
go back to reference Schade AE, Levine AD: Lipid raft heterogeneity in human peripheral blood T lymphoblasts: a mechanism for regulating the initiation of TCR signal transduction. J Immunol. 2002, 168: 2233-2239. 10.4049/jimmunol.168.5.2233.PubMedCrossRef Schade AE, Levine AD: Lipid raft heterogeneity in human peripheral blood T lymphoblasts: a mechanism for regulating the initiation of TCR signal transduction. J Immunol. 2002, 168: 2233-2239. 10.4049/jimmunol.168.5.2233.PubMedCrossRef
15.
go back to reference Marwali MR, Rey-Ladino J, Dreolini L, Shaw D, Takei F: Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. Blood. 2003, 102: 215-222. 10.1182/blood-2002-10-3195.PubMedCrossRef Marwali MR, Rey-Ladino J, Dreolini L, Shaw D, Takei F: Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. Blood. 2003, 102: 215-222. 10.1182/blood-2002-10-3195.PubMedCrossRef
17.
go back to reference George S, Nelson MD, Dollahon N, Bamezai A: A novel approach to examining compositional heterogeneity of detergent-resistant lipid rafts. Immunol Cell Biol. 2006, 84: 192-202. 10.1111/j.1440-1711.2006.01421.x.PubMedCrossRef George S, Nelson MD, Dollahon N, Bamezai A: A novel approach to examining compositional heterogeneity of detergent-resistant lipid rafts. Immunol Cell Biol. 2006, 84: 192-202. 10.1111/j.1440-1711.2006.01421.x.PubMedCrossRef
18.
go back to reference Jacobson K, Mouritsen OG, Anderson RG: Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol. 2007, 9: 7-14. 10.1038/ncb0107-7.PubMedCrossRef Jacobson K, Mouritsen OG, Anderson RG: Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol. 2007, 9: 7-14. 10.1038/ncb0107-7.PubMedCrossRef
19.
go back to reference Sohn HW, Tolar P, Pierce SK: Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse. J Cell Biol. 2008, 182: 367-379. 10.1083/jcb.200802007.PubMedPubMedCentralCrossRef Sohn HW, Tolar P, Pierce SK: Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse. J Cell Biol. 2008, 182: 367-379. 10.1083/jcb.200802007.PubMedPubMedCentralCrossRef
20.
go back to reference Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD: The concept of lipid domains in membranes. J Cell Biol. 1982, 94: 1-6. 10.1083/jcb.94.1.1.PubMedCrossRef Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD: The concept of lipid domains in membranes. J Cell Biol. 1982, 94: 1-6. 10.1083/jcb.94.1.1.PubMedCrossRef
21.
go back to reference Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010, 327: 46-50. 10.1126/science.1174621.PubMedCrossRef Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010, 327: 46-50. 10.1126/science.1174621.PubMedCrossRef
22.
go back to reference Kenworthy AK, Edidin E: Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J Cell Biol. 1998, 142: 69-84. 10.1083/jcb.142.1.69.PubMedPubMedCentralCrossRef Kenworthy AK, Edidin E: Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J Cell Biol. 1998, 142: 69-84. 10.1083/jcb.142.1.69.PubMedPubMedCentralCrossRef
23.
go back to reference Brown A, London E: Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998, 14: 111-136. 10.1146/annurev.cellbio.14.1.111.PubMedCrossRef Brown A, London E: Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998, 14: 111-136. 10.1146/annurev.cellbio.14.1.111.PubMedCrossRef
24.
go back to reference Sengupta P, Baird B, Holowka D: Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. Semin Cell Dev Biol. 2007, 18: 583-590. 10.1016/j.semcdb.2007.07.010.PubMedPubMedCentralCrossRef Sengupta P, Baird B, Holowka D: Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. Semin Cell Dev Biol. 2007, 18: 583-590. 10.1016/j.semcdb.2007.07.010.PubMedPubMedCentralCrossRef
25.
go back to reference Mazza C, Malissen B: What guides MHC-restricted TCR recognition?. Semin Immunol. 2007, 19: 225-235. 10.1016/j.smim.2007.03.003.PubMedCrossRef Mazza C, Malissen B: What guides MHC-restricted TCR recognition?. Semin Immunol. 2007, 19: 225-235. 10.1016/j.smim.2007.03.003.PubMedCrossRef
26.
go back to reference Rudolph MG, Stanfield RL, Wilson IA: How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006, 24: 419-466. 10.1146/annurev.immunol.23.021704.115658.PubMedCrossRef Rudolph MG, Stanfield RL, Wilson IA: How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006, 24: 419-466. 10.1146/annurev.immunol.23.021704.115658.PubMedCrossRef
28.
go back to reference Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A: Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 1998, 395: 82-86. 10.1038/25764.PubMedCrossRef Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A: Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 1998, 395: 82-86. 10.1038/25764.PubMedCrossRef
29.
go back to reference Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML: The immunological synapse: a molecular machine controlling T cell activation. Science. 1999, 285: 221-227. 10.1126/science.285.5425.221.PubMedCrossRef Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML: The immunological synapse: a molecular machine controlling T cell activation. Science. 1999, 285: 221-227. 10.1126/science.285.5425.221.PubMedCrossRef
30.
go back to reference Burack WR, Lee KH, Holdorf AD, Dustin ML, Shaw AS: Cutting edge: quantitative imaging of raft accumulation in the immunological synapse. J Immunol. 2002, 169: 2837-2841. 10.4049/jimmunol.169.6.2837.PubMedCrossRef Burack WR, Lee KH, Holdorf AD, Dustin ML, Shaw AS: Cutting edge: quantitative imaging of raft accumulation in the immunological synapse. J Immunol. 2002, 169: 2837-2841. 10.4049/jimmunol.169.6.2837.PubMedCrossRef
31.
go back to reference Hiltbold EM, Poloso NJ, Roche PA: MHC class II-peptide complexes and APC lipid rafts accumulate at the immunological synapse. J Immunol. 2003, 170: 1329-1338. 10.4049/jimmunol.170.3.1329.PubMedCrossRef Hiltbold EM, Poloso NJ, Roche PA: MHC class II-peptide complexes and APC lipid rafts accumulate at the immunological synapse. J Immunol. 2003, 170: 1329-1338. 10.4049/jimmunol.170.3.1329.PubMedCrossRef
32.
go back to reference Shirakawa J, Wang Y, Tahara-Hanaoka S, Honda S, Shibuya K, Shibuya A: LFA-1-dependent lipid raft recruitment of DNAM-1 (CD226) in CD4+ T cell. Int Immunol. 2006, 18: 951-957. 10.1093/intimm/dxl031.PubMedCrossRef Shirakawa J, Wang Y, Tahara-Hanaoka S, Honda S, Shibuya K, Shibuya A: LFA-1-dependent lipid raft recruitment of DNAM-1 (CD226) in CD4+ T cell. Int Immunol. 2006, 18: 951-957. 10.1093/intimm/dxl031.PubMedCrossRef
33.
go back to reference Tavano R, Contento RL, Baranda SJ, Soligo M, Tuosto L, Manes S, Viola A: CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol. 2006, 8: 1270-1276. 10.1038/ncb1492.PubMedCrossRef Tavano R, Contento RL, Baranda SJ, Soligo M, Tuosto L, Manes S, Viola A: CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol. 2006, 8: 1270-1276. 10.1038/ncb1492.PubMedCrossRef
34.
go back to reference Van Komen JS, Mishra S, Byrum GR, Chichili JC, Yaciuk A, Farris D, Rodgers W: Early and dynamic polarization of T cell membrane rafts and constituents prior to TCR stop signals. J Immunol. 2007, 179: 6845-6855. 10.4049/jimmunol.179.10.6845.PubMedCrossRef Van Komen JS, Mishra S, Byrum GR, Chichili JC, Yaciuk A, Farris D, Rodgers W: Early and dynamic polarization of T cell membrane rafts and constituents prior to TCR stop signals. J Immunol. 2007, 179: 6845-6855. 10.4049/jimmunol.179.10.6845.PubMedCrossRef
35.
go back to reference Zech T, Ejsing CS, Gaus K, de Wet B, Shevchenko A, Simons K, Harder T: Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J. 2009, 28: 466-476. 10.1038/emboj.2009.6.PubMedPubMedCentralCrossRef Zech T, Ejsing CS, Gaus K, de Wet B, Shevchenko A, Simons K, Harder T: Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J. 2009, 28: 466-476. 10.1038/emboj.2009.6.PubMedPubMedCentralCrossRef
38.
go back to reference Li H, Ayer LM, Lytton J, Deans JP: Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem. 2003, 278: 42427-42434. 10.1074/jbc.M308802200.PubMedCrossRef Li H, Ayer LM, Lytton J, Deans JP: Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem. 2003, 278: 42427-42434. 10.1074/jbc.M308802200.PubMedCrossRef
39.
go back to reference Janes PW, Ley SC, Magee AI, Kabouridis PS: The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol. 2000, 12: 23-34. 10.1006/smim.2000.0204.PubMedCrossRef Janes PW, Ley SC, Magee AI, Kabouridis PS: The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol. 2000, 12: 23-34. 10.1006/smim.2000.0204.PubMedCrossRef
40.
go back to reference Viola A: The amplification of TCR signaling by dynamic membrane microdomains. Trends Immunol. 2001, 22: 322-327. 10.1016/S1471-4906(01)01938-X.PubMedCrossRef Viola A: The amplification of TCR signaling by dynamic membrane microdomains. Trends Immunol. 2001, 22: 322-327. 10.1016/S1471-4906(01)01938-X.PubMedCrossRef
41.
go back to reference Martinez-Seara H, Róg T, Karttunen M, Vattulainen I, Reigada R: Cholesterol induces specific spatial and orientational order in cholesterol/phospholipid membranes. PLoS One. 2010, 5: e11162-10.1371/journal.pone.0011162.PubMedPubMedCentralCrossRef Martinez-Seara H, Róg T, Karttunen M, Vattulainen I, Reigada R: Cholesterol induces specific spatial and orientational order in cholesterol/phospholipid membranes. PLoS One. 2010, 5: e11162-10.1371/journal.pone.0011162.PubMedPubMedCentralCrossRef
42.
go back to reference Kennedy C, Nelson MD, Bamezai AK: Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts. Cell Commun Signal. 2011, 9: e31-10.1186/1478-811X-9-31.CrossRef Kennedy C, Nelson MD, Bamezai AK: Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts. Cell Commun Signal. 2011, 9: e31-10.1186/1478-811X-9-31.CrossRef
43.
go back to reference Xavier R, Brennan T, Li Q, McCormack C, Seed B: Membrane compartmentation is required for efficient T cell activation. Immunity. 1998, 8: 723-732. 10.1016/S1074-7613(00)80577-4.PubMedCrossRef Xavier R, Brennan T, Li Q, McCormack C, Seed B: Membrane compartmentation is required for efficient T cell activation. Immunity. 1998, 8: 723-732. 10.1016/S1074-7613(00)80577-4.PubMedCrossRef
44.
go back to reference Montixi C, Langlet C, Bernard AM, Thimonier J, Dubois C, Wurbel MA, Chauvin JP, Pierres M, He HT: Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 1998, 17: 5334-5348. 10.1093/emboj/17.18.5334.PubMedPubMedCentralCrossRef Montixi C, Langlet C, Bernard AM, Thimonier J, Dubois C, Wurbel MA, Chauvin JP, Pierres M, He HT: Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 1998, 17: 5334-5348. 10.1093/emboj/17.18.5334.PubMedPubMedCentralCrossRef
45.
go back to reference Munro S: Lipid rafts: elusive or illusive?. Cell. 2003, 115: 377-388. 10.1016/S0092-8674(03)00882-1.PubMedCrossRef Munro S: Lipid rafts: elusive or illusive?. Cell. 2003, 115: 377-388. 10.1016/S0092-8674(03)00882-1.PubMedCrossRef
46.
go back to reference Shaw AS: Lipid rafts: now you see them, now you don’t. Nat Immunol. 2006, 7: 1139-1142. 10.1038/ni1405.PubMedCrossRef Shaw AS: Lipid rafts: now you see them, now you don’t. Nat Immunol. 2006, 7: 1139-1142. 10.1038/ni1405.PubMedCrossRef
47.
go back to reference Mahammad S, Parmryd I: Cholesterol homeostasis in T cells. Methyl-beta-cyclodextrin treatment results in equal loss of cholesterol from Triton X-100 soluble and insoluble fractions. Biochim Biophys Acta. 2008, 1778: 1251-1258. 10.1016/j.bbamem.2008.02.010.PubMedCrossRef Mahammad S, Parmryd I: Cholesterol homeostasis in T cells. Methyl-beta-cyclodextrin treatment results in equal loss of cholesterol from Triton X-100 soluble and insoluble fractions. Biochim Biophys Acta. 2008, 1778: 1251-1258. 10.1016/j.bbamem.2008.02.010.PubMedCrossRef
48.
go back to reference Murphy KM, Heimberger AB, Loh DY: Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science. 1990, 250: 1720-1723. 10.1126/science.2125367.PubMedCrossRef Murphy KM, Heimberger AB, Loh DY: Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science. 1990, 250: 1720-1723. 10.1126/science.2125367.PubMedCrossRef
49.
go back to reference Reed J, Branigan P, Bamezai A: Interferon-γ enhances clonal expansion and survival of CD4+ T cells. J Interferon Cytokine Res. 2008, 28: 611-622. 10.1089/jir.2007.0145.PubMedCrossRef Reed J, Branigan P, Bamezai A: Interferon-γ enhances clonal expansion and survival of CD4+ T cells. J Interferon Cytokine Res. 2008, 28: 611-622. 10.1089/jir.2007.0145.PubMedCrossRef
50.
go back to reference Rentero C, Zech T, Quinn CM, Engelhardt K, Williamson D, Grewal T, Jessup W, Harder T, Gaus K: Functional implications of plasma membrane condensation for T cell activation. PLoS One. 2008, 3: e2262-10.1371/journal.pone.0002262.PubMedPubMedCentralCrossRef Rentero C, Zech T, Quinn CM, Engelhardt K, Williamson D, Grewal T, Jessup W, Harder T, Gaus K: Functional implications of plasma membrane condensation for T cell activation. PLoS One. 2008, 3: e2262-10.1371/journal.pone.0002262.PubMedPubMedCentralCrossRef
51.
go back to reference Banning C, Votteler J, Hoffmann D, Koppensteiner H, Warmer M, Reimer R, Kirchhoff F, Schubert U, Hauber J, Schindler M: A Flow Cytometry-Based FRET Assay to Identify and Analyse Protein-Protein Interactions in Living Cells. PLoS One. 2010, 5: e9344-10.1371/journal.pone.0009344.PubMedPubMedCentralCrossRef Banning C, Votteler J, Hoffmann D, Koppensteiner H, Warmer M, Reimer R, Kirchhoff F, Schubert U, Hauber J, Schindler M: A Flow Cytometry-Based FRET Assay to Identify and Analyse Protein-Protein Interactions in Living Cells. PLoS One. 2010, 5: e9344-10.1371/journal.pone.0009344.PubMedPubMedCentralCrossRef
52.
go back to reference Miguel L, Owen DM, Lim C, Liebig C, Evans J, Magee MI, Jury EC: Primary human CD4+ T cells have diverse levels of membrane lipid order that correlate with their function. J Immunol. 2011, 186: 3505-3516. 10.4049/jimmunol.1002980.PubMedCrossRef Miguel L, Owen DM, Lim C, Liebig C, Evans J, Magee MI, Jury EC: Primary human CD4+ T cells have diverse levels of membrane lipid order that correlate with their function. J Immunol. 2011, 186: 3505-3516. 10.4049/jimmunol.1002980.PubMedCrossRef
53.
go back to reference Harder T, Scheiffele P, Verkade P, Simons K: Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol. 1998, 141: 929-942. 10.1083/jcb.141.4.929.PubMedPubMedCentralCrossRef Harder T, Scheiffele P, Verkade P, Simons K: Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol. 1998, 141: 929-942. 10.1083/jcb.141.4.929.PubMedPubMedCentralCrossRef
54.
go back to reference Jin L, Millard AC, Wuskell JP, Clark HA, Loew LM: Cholesterol enriched lipid domains can be visualized by di4ANEPPDHQ with linear and nonlinear optics. Biophys J. 2005, 89: L04-6. 10.1529/biophysj.105.064816.PubMedPubMedCentralCrossRef Jin L, Millard AC, Wuskell JP, Clark HA, Loew LM: Cholesterol enriched lipid domains can be visualized by di4ANEPPDHQ with linear and nonlinear optics. Biophys J. 2005, 89: L04-6. 10.1529/biophysj.105.064816.PubMedPubMedCentralCrossRef
55.
go back to reference Silvius JR: Partitioning of membrane molecules between raft and non-raft domains: insights from model-membrane studies. Biochim Biophys Acta. 2005, 1746: 193-202. 10.1016/j.bbamcr.2005.09.003.PubMedCrossRef Silvius JR: Partitioning of membrane molecules between raft and non-raft domains: insights from model-membrane studies. Biochim Biophys Acta. 2005, 1746: 193-202. 10.1016/j.bbamcr.2005.09.003.PubMedCrossRef
56.
go back to reference Massey JB, Pownall HJ: The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I. Biochemistry. 2005, 44: 10423-10433. 10.1021/bi0506425.PubMedCrossRef Massey JB, Pownall HJ: The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I. Biochemistry. 2005, 44: 10423-10433. 10.1021/bi0506425.PubMedCrossRef
57.
go back to reference Mintzer E, Charles G, Gordon S: Interaction of two oxysterols, 7-ketocholesterol and 25-hydroxycholesterol, with phosphatidylcholine and sphingomyelin in model membranes. Chem Phys Lipids. 2010, 163: 586-593. 10.1016/j.chemphyslip.2010.05.001.PubMedCrossRef Mintzer E, Charles G, Gordon S: Interaction of two oxysterols, 7-ketocholesterol and 25-hydroxycholesterol, with phosphatidylcholine and sphingomyelin in model membranes. Chem Phys Lipids. 2010, 163: 586-593. 10.1016/j.chemphyslip.2010.05.001.PubMedCrossRef
58.
go back to reference Royer MC, Lemaire-Ewing S, Desrumaux C, Monier S, Pais de Barros JP, Athias A, Néel D, Lagrost L: 7-ketocholesterol incorporation into sphingolipid/cholesterol-enriched (lipid raft) domains is impaired by vitamin E: a specific role for alpha-tocopherol with consequences on cell death. J Biol Chem. 2009, 284: 15826-15834. 10.1074/jbc.M808641200.PubMedPubMedCentralCrossRef Royer MC, Lemaire-Ewing S, Desrumaux C, Monier S, Pais de Barros JP, Athias A, Néel D, Lagrost L: 7-ketocholesterol incorporation into sphingolipid/cholesterol-enriched (lipid raft) domains is impaired by vitamin E: a specific role for alpha-tocopherol with consequences on cell death. J Biol Chem. 2009, 284: 15826-15834. 10.1074/jbc.M808641200.PubMedPubMedCentralCrossRef
59.
go back to reference Gao X, Zhang J: Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol Biol Cell. 2008, 19: 4366-4373. 10.1091/mbc.E08-05-0449.PubMedPubMedCentralCrossRef Gao X, Zhang J: Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol Biol Cell. 2008, 19: 4366-4373. 10.1091/mbc.E08-05-0449.PubMedPubMedCentralCrossRef
60.
go back to reference Liu J, Netherland C, Pickle T, Sinensky MS, Thewke DP: Stimulation of Akt poly-ubiquitination and proteasomal degradation in P388D1 cells by 7-ketocholesterol and 25-hydroxycholesterol. Arch Biochem Biophys. 2009, 487: 54-58. 10.1016/j.abb.2009.05.004.PubMedPubMedCentralCrossRef Liu J, Netherland C, Pickle T, Sinensky MS, Thewke DP: Stimulation of Akt poly-ubiquitination and proteasomal degradation in P388D1 cells by 7-ketocholesterol and 25-hydroxycholesterol. Arch Biochem Biophys. 2009, 487: 54-58. 10.1016/j.abb.2009.05.004.PubMedPubMedCentralCrossRef
61.
go back to reference Bauer B, Jenny M, Fresser F, Uberall F, Baier G: AKT1/PKBalpha is recruited to lipid rafts and activated downstream of PKC isotypes in CD3-induced T cell signaling. FEBS Lett. 2003, 541: 155-162. 10.1016/S0014-5793(03)00287-4.PubMedCrossRef Bauer B, Jenny M, Fresser F, Uberall F, Baier G: AKT1/PKBalpha is recruited to lipid rafts and activated downstream of PKC isotypes in CD3-induced T cell signaling. FEBS Lett. 2003, 541: 155-162. 10.1016/S0014-5793(03)00287-4.PubMedCrossRef
62.
go back to reference Lasserre R, Guo XJ, Conchonaud F, Hamon Y, Hawchar O, Bernard AM, Soudja SM, Lenne PF, Rigneault H, Olive D, Bismuth G, Nunès JA, Payrastre B, Marguet D, He HT: Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol. 2008, 4: 538-547.62. 10.1038/nchembio.103.PubMedCrossRef Lasserre R, Guo XJ, Conchonaud F, Hamon Y, Hawchar O, Bernard AM, Soudja SM, Lenne PF, Rigneault H, Olive D, Bismuth G, Nunès JA, Payrastre B, Marguet D, He HT: Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol. 2008, 4: 538-547.62. 10.1038/nchembio.103.PubMedCrossRef
63.
go back to reference Mouritsen OG, Zuckermann MJ: What’s so special about cholesterol?. Lipids. 2004, 39: 1101-1113. 10.1007/s11745-004-1336-x.PubMedCrossRef Mouritsen OG, Zuckermann MJ: What’s so special about cholesterol?. Lipids. 2004, 39: 1101-1113. 10.1007/s11745-004-1336-x.PubMedCrossRef
64.
go back to reference Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA, Shih R, Parks JS, Edwards PA, Jamieson BD, Tontonoz P: LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell. 2008, 134: 97-111. 10.1016/j.cell.2008.04.052.PubMedPubMedCentralCrossRef Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA, Shih R, Parks JS, Edwards PA, Jamieson BD, Tontonoz P: LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell. 2008, 134: 97-111. 10.1016/j.cell.2008.04.052.PubMedPubMedCentralCrossRef
65.
go back to reference Aye IL, Waddell BJ, Mark PJ, Keelan JA: Placental ABCA1 and ABCG1 transporters efflux cholesterol and protect trophoblasts from oxysterol induced toxicity. Biochim Biophys Acta. 2010, 1801: 1013-1024. 10.1016/j.bbalip.2010.05.015.PubMedCrossRef Aye IL, Waddell BJ, Mark PJ, Keelan JA: Placental ABCA1 and ABCG1 transporters efflux cholesterol and protect trophoblasts from oxysterol induced toxicity. Biochim Biophys Acta. 2010, 1801: 1013-1024. 10.1016/j.bbalip.2010.05.015.PubMedCrossRef
Metadata
Title
Lipid raft-based membrane order is important for antigen-specific clonal expansion of CD4+ T lymphocytes
Publication date
01-12-2014
Published in
BMC Immunology / Issue 1/2014
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/s12865-014-0058-8

Other articles of this Issue 1/2014

BMC Immunology 1/2014 Go to the issue

Reviewer acknowledgement

Reviewer acknowledgement 2013