Skip to main content
Top
Published in: European Review of Aging and Physical Activity 1/2018

Open Access 01-12-2018 | Research Article

The effect of aging on pacing strategies of cross-country skiers and the role of performance level

Authors: Pantelis Theodoros Nikolaidis, Elias Villiger, Thomas Rosemann, Beat Knechtle

Published in: European Review of Aging and Physical Activity | Issue 1/2018

Login to get access

Abstract

Background

The participation of master cross-country (XC) skiers in training and competition has increased during the last decades; however, little is known yet about whether these athletes differ from their younger counterparts in aspects of performance such as pacing. Therefore, the aim of the present study was to examine the combined effect of age and performance (race time) on pacing in cross-country (XC) skiing. We analyzed all finishers (n = 79,722) in ‘Vasaloppet’ from 2012 to 2017, the largest cross-country skiing race in the world, classified according to their race time into 10 groups: 3-4 h, 4-5 h, ..., 12-13 h.

Results

A trivial main effect of sex on total pace range was observed (p < 0.001, η2 = 0.002), where women (44.1 ± 10.2%) had larger total pace range than men (40.9 ± 11.8%). A large main effect of performance group on total pace range was shown (p < 0.001, η2 = 0.160), where the smallest total pace range was 21.8 ± 1.9% (3-4 h group) and the largest 50.1 ± 9.9% (10-11 h group). A trivial sex×performance group interaction on total pace range was found (p < 0.001, η2 = 0.001) with the largest sex difference in pacing shown in 9-10 h group. A trivial and small main effect of age was found in women (p < 0.001, η2 = 0.005) and men (p < 0.001, η2 = 0.011), respectively, where the masters had smaller total pace range than their younger counterparts. A trivial age group×performance group interaction on total pace range was observed in both women (p < 0.001, η2 = 0.008) and men (p < 0.001, η2 = 0.006) with smaller differences among age groups in the faster performance groups.

Conclusions

In summary, master XC skiers adopted a relatively even pacing independently from their race time and the differences in pacing from the younger XC skiers were more pronounced in the slower masters. These findings suggest that exercise attenuates the decline of performance in master XC skiers as shown by the similar pacing strategies between fast master XC skiers and their younger counterparts.
Literature
1.
go back to reference Nikolaidis PT, Knechtle B. Pacing profiles in age group cross-country skiers in the Vasaloppet 2012–2016. Chin J Physiol. 2017;60(5):293–300.CrossRefPubMed Nikolaidis PT, Knechtle B. Pacing profiles in age group cross-country skiers in the Vasaloppet 2012–2016. Chin J Physiol. 2017;60(5):293–300.CrossRefPubMed
2.
go back to reference Nikolaidis PT, Knechtle B. The age-related performance decline in marathon cross-country skiing – the Engadin ski marathon. J Sports Sci. 2018;36(6):599–604.CrossRefPubMed Nikolaidis PT, Knechtle B. The age-related performance decline in marathon cross-country skiing – the Engadin ski marathon. J Sports Sci. 2018;36(6):599–604.CrossRefPubMed
3.
go back to reference Knechtle B, Nikolaidis PT. The age of peak marathon performance in cross-country skiing – the ‘Engadin ski marathon’. J Strength Cond Res. 2018;32(4):1131–6.CrossRefPubMed Knechtle B, Nikolaidis PT. The age of peak marathon performance in cross-country skiing – the ‘Engadin ski marathon’. J Strength Cond Res. 2018;32(4):1131–6.CrossRefPubMed
4.
go back to reference Carlsson M, Assarsson H, Carlsson T. The influence of sex, age, and race experience on pacing profiles during the 90 km Vasaloppet ski race. Open Access J Sports Med. 2016;7:11–9.CrossRefPubMedPubMedCentral Carlsson M, Assarsson H, Carlsson T. The influence of sex, age, and race experience on pacing profiles during the 90 km Vasaloppet ski race. Open Access J Sports Med. 2016;7:11–9.CrossRefPubMedPubMedCentral
5.
go back to reference Abbiss CR, Laursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38(3):239–52.CrossRefPubMed Abbiss CR, Laursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38(3):239–52.CrossRefPubMed
6.
go back to reference Edwards A, Polman R. Pacing in sport and exercise: a psychophysiological perspective. Hauppauge, NY: Nova Science Publishers; 2012. Edwards A, Polman R. Pacing in sport and exercise: a psychophysiological perspective. Hauppauge, NY: Nova Science Publishers; 2012.
7.
go back to reference Baron B, Moullan F, Deruelle F, Noakes TD. The role of emotions on pacing strategies and performance in middle and long duration sport events. Br J Sports Med. 2011;45(6):511–7.CrossRefPubMed Baron B, Moullan F, Deruelle F, Noakes TD. The role of emotions on pacing strategies and performance in middle and long duration sport events. Br J Sports Med. 2011;45(6):511–7.CrossRefPubMed
8.
go back to reference Thiel C, Foster C, Banzer W, de Koning J. Pacing in Olympic track races: competitive tactics versus best performance strategy. J Sports Sci. 2012;30(11):1107–15.CrossRefPubMed Thiel C, Foster C, Banzer W, de Koning J. Pacing in Olympic track races: competitive tactics versus best performance strategy. J Sports Sci. 2012;30(11):1107–15.CrossRefPubMed
9.
go back to reference Losnegard T, Kjeldsen K, Skattebo Ø. An analysis of the pacing strategies adopted by elite cross-country skiers. J Strength Cond Res. 2016;30(11):3256–60.CrossRefPubMed Losnegard T, Kjeldsen K, Skattebo Ø. An analysis of the pacing strategies adopted by elite cross-country skiers. J Strength Cond Res. 2016;30(11):3256–60.CrossRefPubMed
11.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988. Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.
12.
go back to reference Rust CA, Rosemann T, Zingg MA, Knechtle B. Do non-elite older runners slow down more than younger runners in a 100 km ultra-marathon? BMC Sports Sci Med Rehab. 2015;7:1.CrossRef Rust CA, Rosemann T, Zingg MA, Knechtle B. Do non-elite older runners slow down more than younger runners in a 100 km ultra-marathon? BMC Sports Sci Med Rehab. 2015;7:1.CrossRef
14.
go back to reference Tonnessen E, Haugen TA, Hem E, Leirstein S, Seiler S. Maximal aerobic capacity in the winter-Olympics endurance disciplines: Olympic-medal benchmarks for the time period 1990-2013. Int J Sports Physiol Perform. 2015;10(7):835–9.CrossRefPubMed Tonnessen E, Haugen TA, Hem E, Leirstein S, Seiler S. Maximal aerobic capacity in the winter-Olympics endurance disciplines: Olympic-medal benchmarks for the time period 1990-2013. Int J Sports Physiol Perform. 2015;10(7):835–9.CrossRefPubMed
15.
go back to reference Rogers MA, Hagberg JM, Martin WH 3rd, Ehsani AA, Holloszy JO. Decline in VO2max with aging in master athletes and sedentary men. J Appl Physiol. 1990;68(5):2195–9.CrossRefPubMed Rogers MA, Hagberg JM, Martin WH 3rd, Ehsani AA, Holloszy JO. Decline in VO2max with aging in master athletes and sedentary men. J Appl Physiol. 1990;68(5):2195–9.CrossRefPubMed
16.
go back to reference Rosen MJ, Sorkin JD, Goldberg AP, Hagberg JM, Katzel LI. Predictors of age-associated decline in maximal aerobic capacity: a comparison of four statistical models. J Appl Physiol. 1998;84(6):2163–70.CrossRefPubMed Rosen MJ, Sorkin JD, Goldberg AP, Hagberg JM, Katzel LI. Predictors of age-associated decline in maximal aerobic capacity: a comparison of four statistical models. J Appl Physiol. 1998;84(6):2163–70.CrossRefPubMed
17.
go back to reference Kusy K, Zielinski J. Aerobic capacity in speed-power athletes aged 20-90 years vs endurance runners and untrained participants. Scand J Med Sci Sports. 2014;24(1):68–79.CrossRefPubMed Kusy K, Zielinski J. Aerobic capacity in speed-power athletes aged 20-90 years vs endurance runners and untrained participants. Scand J Med Sci Sports. 2014;24(1):68–79.CrossRefPubMed
18.
go back to reference Padilla J, Eguía Lis MC, Licea J, Taylor AW. Maximal aerobic capacity and sports activity in Mexicans from 13 to 56. Arch Inst Cardiol Mex. 1998;68(3):224–31.PubMed Padilla J, Eguía Lis MC, Licea J, Taylor AW. Maximal aerobic capacity and sports activity in Mexicans from 13 to 56. Arch Inst Cardiol Mex. 1998;68(3):224–31.PubMed
19.
go back to reference Levin O, Netz Y, Ziv G. The beneficial effects of different types of exercise interventions on motor and cognitive functions in older age: a systematic review. Eur Rev Aging Phys Act. 2017;14(1):20.CrossRefPubMedPubMedCentral Levin O, Netz Y, Ziv G. The beneficial effects of different types of exercise interventions on motor and cognitive functions in older age: a systematic review. Eur Rev Aging Phys Act. 2017;14(1):20.CrossRefPubMedPubMedCentral
20.
go back to reference Pimentel AE, Gentile CL, Tanaka H, Seals DR, Gates PE. Greater rate of decline in maximal aerobic capacity with age in endurance-trained than in sedentary men. J Appl Physiol. 2003;94(6):2406–13.CrossRefPubMed Pimentel AE, Gentile CL, Tanaka H, Seals DR, Gates PE. Greater rate of decline in maximal aerobic capacity with age in endurance-trained than in sedentary men. J Appl Physiol. 2003;94(6):2406–13.CrossRefPubMed
21.
go back to reference Trubee NW, Vanderburgh PM, Diestelkamp WS, Jackson KJ. Effects of heat stress and sex on pacing in marathon runners. J Strength Cond Res. 2014;28(6):1673–8.CrossRefPubMed Trubee NW, Vanderburgh PM, Diestelkamp WS, Jackson KJ. Effects of heat stress and sex on pacing in marathon runners. J Strength Cond Res. 2014;28(6):1673–8.CrossRefPubMed
22.
go back to reference Renfree A, Crivoi do Carmo E, Martin L. The influence of performance level, age and gender on pacing strategy during a 100-km ultramarathon. Eur J Sport Sci. 2016;16(4):409–15.CrossRefPubMed Renfree A, Crivoi do Carmo E, Martin L. The influence of performance level, age and gender on pacing strategy during a 100-km ultramarathon. Eur J Sport Sci. 2016;16(4):409–15.CrossRefPubMed
23.
go back to reference Bjorklund G, Alricsson M, Svantesson U. Using bilateral functional and anthropometric tests to define symmetry in cross-country skiers. J Hum Kinet. 2017;60:9–18.CrossRefPubMedPubMedCentral Bjorklund G, Alricsson M, Svantesson U. Using bilateral functional and anthropometric tests to define symmetry in cross-country skiers. J Hum Kinet. 2017;60:9–18.CrossRefPubMedPubMedCentral
24.
go back to reference Østerås S, Welde B, Danielsen J, Van Den Tillaar R, Ettema G, Sandbakk O. Contribution of upper-body strength, body composition, and maximal oxygen uptake to predict double poling power and overall performance in female cross-country skiers. J Strength Cond Res. 2016;30(9):2557–64.CrossRefPubMed Østerås S, Welde B, Danielsen J, Van Den Tillaar R, Ettema G, Sandbakk O. Contribution of upper-body strength, body composition, and maximal oxygen uptake to predict double poling power and overall performance in female cross-country skiers. J Strength Cond Res. 2016;30(9):2557–64.CrossRefPubMed
25.
go back to reference Santos-Lozano A, Collado PS, Foster C, Lucia A, Garatachea N. Influence of sex and level on marathon pacing strategy. Insights from the new York City race. Int J Sports Med. 2014;35(11):933–8.CrossRefPubMed Santos-Lozano A, Collado PS, Foster C, Lucia A, Garatachea N. Influence of sex and level on marathon pacing strategy. Insights from the new York City race. Int J Sports Med. 2014;35(11):933–8.CrossRefPubMed
Metadata
Title
The effect of aging on pacing strategies of cross-country skiers and the role of performance level
Authors
Pantelis Theodoros Nikolaidis
Elias Villiger
Thomas Rosemann
Beat Knechtle
Publication date
01-12-2018
Publisher
BioMed Central
Published in
European Review of Aging and Physical Activity / Issue 1/2018
Print ISSN: 1813-7253
Electronic ISSN: 1861-6909
DOI
https://doi.org/10.1186/s11556-018-0193-y

Other articles of this Issue 1/2018

European Review of Aging and Physical Activity 1/2018 Go to the issue