Skip to main content
Top
Published in: The Journal of Headache and Pain 1/2015

Open Access 01-12-2016 | Research article

Altered serum levels of kynurenine metabolites in patients affected by cluster headache

Authors: Martina Curto, Luana Lionetto, Andrea Negro, Matilde Capi, Francesca Perugino, Francesco Fazio, Maria Adele Giamberardino, Maurizio Simmaco, Ferdinando Nicoletti, Paolo Martelletti

Published in: The Journal of Headache and Pain | Issue 1/2015

Login to get access

Abstract

Background

The reported efficacy of memantine in the treatment of patients with cluster headache (CH) suggests that NMDA receptors are involved in mechanisms of nociceptive sensitization within the trigeminal system associated with CH. NMDA receptors are activated or inhibited by neuroactive compounds generated by tryptophan metabolism through the kynurenine pathway. In the accompanying manuscript, we have found that serum levels of all kynurenine metabolites are altered in patients with chronic migraine. Here, we have extended the study to patients affected by episodic or chronic CH as compared to healthy controls.

Method

We assessed serum levels of kynurenine (KYN), kynurenic Acid (KYNA), anthranilic acid (ANA), 3-hydroxy-anthranilic acid (3-HANA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA), quinolinic acid (QUINA), tryptophan (Trp) and 5-hydroxyindolacetic acid (5-HIAA) by means of a liquid chromatography/tandem mass spectrometry (LC/MS-MS) method in 21 patients affected by CH (15 with episodic and 6 with chronic CH), and 35 age-matched healthy subjects. Patients with psychiatric co-morbidities, systemic inflammatory, endocrine or neurological disorders, and mental retardation were excluded.

Results

LC/MS-MS analysis of kynurenine metabolites showed significant reductions in the levels of KYN (-36 %), KYNA (-34 %), 3-HK (-51 %), 3-HANA (-54 %), XA (-25 %), 5-HIAA (-39 %) and QUINA (-43 %) in the serum of the overall population of patients affected by CH, as compared to healthy controls. Serum levels of Trp and ANA were instead significantly increased in CH patients (+18 % and +54 %, respectively). There was no difference in levels of any metabolite between patients affected by episodic and chronic CH, with the exception of KYN levels, which were higher in patients with chronic CH.

Conclusion

The reduced levels of KYNA (an NMDA receptor antagonist) support the hypothesis that NMDA receptors are overactive in CH. A similar reduction in KYNA levels was shown in the accompanying manuscript in patients affected by chronic migraine. The reduced levels of XA, a putative analgesic compound, may contribute to explain the severity of pain attacks in CH. These data, associated with the data reported in the accompanying manuscript, supports a role for the kynurenine pathway in the pathophysiology of chronic headache disorders.
Literature
1.
go back to reference Headache Classification Committee of the International Headache Society (IHS) (2013) The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 33:629–808CrossRef Headache Classification Committee of the International Headache Society (IHS) (2013) The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 33:629–808CrossRef
5.
go back to reference Ashkenazi A, Schwedt T (2011) Cluster headache--acute and prophylactic therapy. Headache 51:272–286CrossRefPubMed Ashkenazi A, Schwedt T (2011) Cluster headache--acute and prophylactic therapy. Headache 51:272–286CrossRefPubMed
6.
7.
go back to reference Waldenlind E, Gustafsson SA, Ekbom K, Wetterberg L (1987) Circadian secretion of cortisol and melatonin in cluster headache during active cluster periods and remission. J Neurol Neurosurg Psychiatry 50:207–213CrossRefPubMedPubMedCentral Waldenlind E, Gustafsson SA, Ekbom K, Wetterberg L (1987) Circadian secretion of cortisol and melatonin in cluster headache during active cluster periods and remission. J Neurol Neurosurg Psychiatry 50:207–213CrossRefPubMedPubMedCentral
8.
go back to reference Chazot G, Claustrat B, Brun J, Jordan D, Sassolas G, Schott B (1984) A chronobiological study of melatonin, cortisol growth hormone and prolactin secretion in cluster headache. Cephalalgia 4:213–220CrossRefPubMed Chazot G, Claustrat B, Brun J, Jordan D, Sassolas G, Schott B (1984) A chronobiological study of melatonin, cortisol growth hormone and prolactin secretion in cluster headache. Cephalalgia 4:213–220CrossRefPubMed
9.
go back to reference Polleri A, Nappi G, Murialdo G, Bono G, Martignoni E, Savoldi F (1982) Changes in the 24-hour prolactin pattern in cluster headache. Cephalalgia 2:1–7CrossRefPubMed Polleri A, Nappi G, Murialdo G, Bono G, Martignoni E, Savoldi F (1982) Changes in the 24-hour prolactin pattern in cluster headache. Cephalalgia 2:1–7CrossRefPubMed
10.
go back to reference Sánchez del Rio M, Alvarez Linera J (2004) Functional neuroimaging of headaches. Lancet Neurol 3:645–651CrossRefPubMed Sánchez del Rio M, Alvarez Linera J (2004) Functional neuroimaging of headaches. Lancet Neurol 3:645–651CrossRefPubMed
11.
12.
go back to reference Gasparini CF, Griffiths LR (2013) The biology of the glutamatergic system and potential role in migraine. Int J Biomed Sci 9:1–8PubMedPubMedCentral Gasparini CF, Griffiths LR (2013) The biology of the glutamatergic system and potential role in migraine. Int J Biomed Sci 9:1–8PubMedPubMedCentral
13.
go back to reference Venturelli E, Rao R, Charles A (2010) Memantine for prevention of cluster headache: a possible new treatment? J Headache Pain 11(suppl 1):S63 Venturelli E, Rao R, Charles A (2010) Memantine for prevention of cluster headache: a possible new treatment? J Headache Pain 11(suppl 1):S63
14.
go back to reference Vécsei L, Szalárdy L, Fülöp F, Toldi J (2013) Kynurenines in the CNS:recent advances and new questions. Nat Rev Drug Discov 12:64–82CrossRefPubMed Vécsei L, Szalárdy L, Fülöp F, Toldi J (2013) Kynurenines in the CNS:recent advances and new questions. Nat Rev Drug Discov 12:64–82CrossRefPubMed
15.
go back to reference Curto M, Lionetto L, Fazio F, Mitsikostas DD, Martelletti P (2015) Fathoming the kynurenine pathway in migraine: why understanding the enzymatic cascades is still critically important. Intern Emerg Med 10:413–421CrossRefPubMed Curto M, Lionetto L, Fazio F, Mitsikostas DD, Martelletti P (2015) Fathoming the kynurenine pathway in migraine: why understanding the enzymatic cascades is still critically important. Intern Emerg Med 10:413–421CrossRefPubMed
16.
17.
go back to reference Fazio F, Lionetto L, Curto M, Iacovelli L, Cavallari M, Zappulla C, Ulivieri M, Napoletano F, Capi M, Corigliano V, Scaccianoce S, Caruso A, Miele J, De Fusco A, Di Menna L, Comparelli A, De Carolis A, Gradini R, Nisticò R, de Blasi A, Girardi P, Bruno V, Battaglia G, Nicoletti F, Simmaco M (2015) Xanthurenic Acid Activates mGlu2/3 Metabotropic Glutamate Receptors and is a Potential Trait Marker for Schizophrenia. Sci Rep 5:17799CrossRefPubMedPubMedCentral Fazio F, Lionetto L, Curto M, Iacovelli L, Cavallari M, Zappulla C, Ulivieri M, Napoletano F, Capi M, Corigliano V, Scaccianoce S, Caruso A, Miele J, De Fusco A, Di Menna L, Comparelli A, De Carolis A, Gradini R, Nisticò R, de Blasi A, Girardi P, Bruno V, Battaglia G, Nicoletti F, Simmaco M (2015) Xanthurenic Acid Activates mGlu2/3 Metabotropic Glutamate Receptors and is a Potential Trait Marker for Schizophrenia. Sci Rep 5:17799CrossRefPubMedPubMedCentral
18.
go back to reference Knyihar-Csillik E, Toldi J, Mihály A, Krisztin-Péva B, Chadaide Z, Németh H, Fenyo R, Vécsei L (2007) Kynurenine in combination with probenecid mitigates the stimulation-induced increase of c-fos immunoreactivity of the rat caudal trigeminal nucleus in an experimental migraine model. J Neural Transm 114:417–421CrossRefPubMed Knyihar-Csillik E, Toldi J, Mihály A, Krisztin-Péva B, Chadaide Z, Németh H, Fenyo R, Vécsei L (2007) Kynurenine in combination with probenecid mitigates the stimulation-induced increase of c-fos immunoreactivity of the rat caudal trigeminal nucleus in an experimental migraine model. J Neural Transm 114:417–421CrossRefPubMed
19.
go back to reference Knyihar-Csillik E, Toldi J, Krisztin-Péva B, Chadaide Z, Németh H, Fenyo R, Vécsei L (2007) Prevention of electrical stimulation-induced increase of c-fos immunoreaction in the caudal trigeminal nucleus by kynurenine combined with probenecid. Neurosci Lett 418:122–126CrossRefPubMed Knyihar-Csillik E, Toldi J, Krisztin-Péva B, Chadaide Z, Németh H, Fenyo R, Vécsei L (2007) Prevention of electrical stimulation-induced increase of c-fos immunoreaction in the caudal trigeminal nucleus by kynurenine combined with probenecid. Neurosci Lett 418:122–126CrossRefPubMed
20.
go back to reference Knyihar-Csillik E, Mihaly A, Krisztin-Peva B, Robotka H, Szatmari I, Fulop F, Toldi J, Csillik B, Vecsei L (2008) The kynurenate analog SZR-72 prevents the nitroglycerol-induced increase of c-fos immunoreactivity in the rat caudal trigeminal nucleus: comparative studies of the effects of SZR-72 and kynurenic acid. Neurosci Res 61:429–432CrossRefPubMed Knyihar-Csillik E, Mihaly A, Krisztin-Peva B, Robotka H, Szatmari I, Fulop F, Toldi J, Csillik B, Vecsei L (2008) The kynurenate analog SZR-72 prevents the nitroglycerol-induced increase of c-fos immunoreactivity in the rat caudal trigeminal nucleus: comparative studies of the effects of SZR-72 and kynurenic acid. Neurosci Res 61:429–432CrossRefPubMed
21.
go back to reference Vamos E, Párdutz A, Varga H, Bohár Z, Tajti J, Fülöp F, Toldi J, Vécsei L (2009) L-kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology 57:425–429CrossRefPubMed Vamos E, Párdutz A, Varga H, Bohár Z, Tajti J, Fülöp F, Toldi J, Vécsei L (2009) L-kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology 57:425–429CrossRefPubMed
22.
go back to reference Vamos E, Fejes A, Koch J, Tajti J, Fülöp F, Toldi J, Párdutz A, Vécsei L (2010) Kynurenate derivative attenuates the nitroglycerin-induced CamKIIα and CGRP expression changes. Headache 50:834–843CrossRefPubMed Vamos E, Fejes A, Koch J, Tajti J, Fülöp F, Toldi J, Párdutz A, Vécsei L (2010) Kynurenate derivative attenuates the nitroglycerin-induced CamKIIα and CGRP expression changes. Headache 50:834–843CrossRefPubMed
23.
go back to reference Guo S, Vecsei L, Ashina M (2011) The L-kynurenine signalling pathway in trigeminal pain processing: a potential therapeutic target in migraine? Cephalalgia 31:1029–1038CrossRefPubMed Guo S, Vecsei L, Ashina M (2011) The L-kynurenine signalling pathway in trigeminal pain processing: a potential therapeutic target in migraine? Cephalalgia 31:1029–1038CrossRefPubMed
24.
go back to reference Zhang YQ, Ji GC, Wu GC, Zhao ZV (2003) Kynurenic acid enhances electroacupuncture analgesia in normal and carrageenan-injected rats. Brain Res 966:300–307CrossRefPubMed Zhang YQ, Ji GC, Wu GC, Zhao ZV (2003) Kynurenic acid enhances electroacupuncture analgesia in normal and carrageenan-injected rats. Brain Res 966:300–307CrossRefPubMed
25.
go back to reference Ennis M, Aston-Jones G, Shiekhattar R (1992) Activation of locus coeruleus neurons by nucleus paragigantocellularis or noxious sensory stimulation is mediated by intracoerulear excitatory amino acid neurotransmission. Brain Res 598:185–195CrossRefPubMed Ennis M, Aston-Jones G, Shiekhattar R (1992) Activation of locus coeruleus neurons by nucleus paragigantocellularis or noxious sensory stimulation is mediated by intracoerulear excitatory amino acid neurotransmission. Brain Res 598:185–195CrossRefPubMed
26.
go back to reference Jiang M, Behbehani MM (2001) Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray. Pain 94:139–147CrossRefPubMed Jiang M, Behbehani MM (2001) Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray. Pain 94:139–147CrossRefPubMed
27.
go back to reference Murphy AZ, Behbehani MM (1993) Electrophysiological characterization of the projection from the nucleus raphe magnus to the lateral reticular nucleus: possible role of an excitatory amino acid in synaptic activation. Brain Res 606:68–78CrossRefPubMed Murphy AZ, Behbehani MM (1993) Electrophysiological characterization of the projection from the nucleus raphe magnus to the lateral reticular nucleus: possible role of an excitatory amino acid in synaptic activation. Brain Res 606:68–78CrossRefPubMed
28.
go back to reference Kristensen JD, Post C, Gordh T Jr et al (1993) Spinal cord morphology and antinociception after chronic intrathecal administration of excitatory amino acid antagonists in the rat. Pain 54:309–316CrossRefPubMed Kristensen JD, Post C, Gordh T Jr et al (1993) Spinal cord morphology and antinociception after chronic intrathecal administration of excitatory amino acid antagonists in the rat. Pain 54:309–316CrossRefPubMed
29.
go back to reference Copeland CS, Neale SA, Salt TE (2013) Actions of Xanthurenic acid, a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus. Neuropharmacology 66:133–142CrossRefPubMed Copeland CS, Neale SA, Salt TE (2013) Actions of Xanthurenic acid, a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus. Neuropharmacology 66:133–142CrossRefPubMed
30.
go back to reference Neale SA, Copeland CS, Uebele VN, Thomson FJ, Salt TE (2013) Modulation of hippocampal synaptic transmission by the kynurenine pathway member xanthurenic acid and other VGLUT inhibitors. Neuropsychopharmacol 38:1060–1067CrossRef Neale SA, Copeland CS, Uebele VN, Thomson FJ, Salt TE (2013) Modulation of hippocampal synaptic transmission by the kynurenine pathway member xanthurenic acid and other VGLUT inhibitors. Neuropsychopharmacol 38:1060–1067CrossRef
31.
go back to reference Chiechio S, Copani A, Zammataro M, Battaglia G, Gereau RW 4th, Nicoletti F (2010) Transcriptional regulation of type-2 metabotropic glutamate receptors: an epigenetic path to novel treatments for chronic pain. Trends Pharmacol Sci 31:153–160CrossRefPubMed Chiechio S, Copani A, Zammataro M, Battaglia G, Gereau RW 4th, Nicoletti F (2010) Transcriptional regulation of type-2 metabotropic glutamate receptors: an epigenetic path to novel treatments for chronic pain. Trends Pharmacol Sci 31:153–160CrossRefPubMed
33.
go back to reference Kuhn E, Rysánek K, Brodan V (1968) Alterations of tryptophan metabolism induced by sleep deprivation. Experientia 24:901–902CrossRefPubMed Kuhn E, Rysánek K, Brodan V (1968) Alterations of tryptophan metabolism induced by sleep deprivation. Experientia 24:901–902CrossRefPubMed
Metadata
Title
Altered serum levels of kynurenine metabolites in patients affected by cluster headache
Authors
Martina Curto
Luana Lionetto
Andrea Negro
Matilde Capi
Francesca Perugino
Francesco Fazio
Maria Adele Giamberardino
Maurizio Simmaco
Ferdinando Nicoletti
Paolo Martelletti
Publication date
01-12-2016
Publisher
Springer Milan
Published in
The Journal of Headache and Pain / Issue 1/2015
Print ISSN: 1129-2369
Electronic ISSN: 1129-2377
DOI
https://doi.org/10.1186/s10194-016-0620-2

Other articles of this Issue 1/2015

The Journal of Headache and Pain 1/2015 Go to the issue