Skip to main content
Top
Published in: Critical Care 4/2006

Open Access 01-08-2006 | Research

Effects of descending positive end-expiratory pressure on lung mechanics and aeration in healthy anaesthetized piglets

Authors: Alysson Roncally S Carvalho, Frederico C Jandre, Alexandre V Pino, Fernando A Bozza, Jorge I Salluh, Rosana S Rodrigues, João HN Soares, Antonio Giannella-Neto

Published in: Critical Care | Issue 4/2006

Login to get access

Abstract

Introduction

Atelectasis and distal airway closure are common clinical entities of general anaesthesia. These two phenomena are expected to reduce the ventilation of dependent lung regions and represent major causes of arterial oxygenation impairment in anaesthetic conditions. The behaviour of the elastance of the respiratory system (Ers), as well as the lung aeration assessed by computed tomography (CT) scan, was evaluated during a descendent positive end-expiratory pressure (PEEP) titration. This work sought to evaluate the potential usefulness of Ers monitoring to set the PEEP in order to prevent tidal recruitment and hyperinflation of healthy lungs under general anaesthesia.

Methods

PEEP titration (from 16 to 0 cmH2O, tidal volume of 8 ml/kg) was performed, and at each PEEP, CT scans were obtained during end-expiratory and end-inspiratory pauses in six healthy, anaesthetized and paralyzed piglets. The distribution of lung aeration was determined and the tidal re-aeration was calculated as the difference between end-expiratory and end-inspiratory poorly aerated and normally aerated areas. Similarly, tidal hyperinflation was obtained as the difference between end-inspiratory and end-expiratory hyperinflated areas. Ers was estimated from the equation of motion of the respiratory system during all PEEP titration with the least-squares method.

Results

Hyperinflated areas decreased from PEEP 16 to 0 cmH2O (ranges decreased from 24–62% to 1–7% at end-expiratory pauses and from 44–73% to 4–17% at end-inspiratory pauses) whereas normally aerated areas increased (from 30–66% to 72–83% at end-expiratory pauses and from 19–48% to 73–77% at end-inspiratory pauses). From 16 to 8 cmH2O, Ers decreased with a corresponding reduction in tidal hyperinflation. A flat minimum of Ers was observed from 8 to 4 cmH2O. For PEEP below 4 cmH2O, Ers increased in association with a rise in tidal re-aeration and a flat maximum of the normally aerated areas.

Conclusion

In healthy piglets under a descending PEEP protocol, the PEEP at minimum Ers presented a compromise between maximizing normally aerated areas and minimizing tidal re-aeration and hyperinflation. High levels of PEEP, greater than 8 cmH2O, reduced tidal re-aeration but increased hyperinflation with a concomitant decrease in normally aerated areas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brismar B, Hedenstierna G, Lundquist H, Strandberg A, Tokics L: Pulmonary densities during anesthesia with muscular relaxation – a proposal of atelectasis. Anesthesiology 1985, 62: 422-428.CrossRefPubMed Brismar B, Hedenstierna G, Lundquist H, Strandberg A, Tokics L: Pulmonary densities during anesthesia with muscular relaxation – a proposal of atelectasis. Anesthesiology 1985, 62: 422-428.CrossRefPubMed
2.
go back to reference Hedenstierna G, Edmark L: The effects of anesthesia and muscle paralysis on the respiratory system. Intensive Care Med 2005, 31: 1327-1335. 10.1007/s00134-005-2761-7CrossRefPubMed Hedenstierna G, Edmark L: The effects of anesthesia and muscle paralysis on the respiratory system. Intensive Care Med 2005, 31: 1327-1335. 10.1007/s00134-005-2761-7CrossRefPubMed
3.
go back to reference Froese AB, Bryan AC: Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 1974, 41: 242-255.CrossRefPubMed Froese AB, Bryan AC: Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 1974, 41: 242-255.CrossRefPubMed
4.
go back to reference Reber A, Nylund U, Hedenstierna G: Position and shape of the diaphragm: implications for atelectasis formation. Anesthesia 1998, 53: 1054-1061. 10.1046/j.1365-2044.1998.00569.xCrossRef Reber A, Nylund U, Hedenstierna G: Position and shape of the diaphragm: implications for atelectasis formation. Anesthesia 1998, 53: 1054-1061. 10.1046/j.1365-2044.1998.00569.xCrossRef
5.
go back to reference Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G: Airway closure, atelectasis and gas exchange during general anaesthesia. Br J Anaesth 1998, 81: 681-686.CrossRefPubMed Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G: Airway closure, atelectasis and gas exchange during general anaesthesia. Br J Anaesth 1998, 81: 681-686.CrossRefPubMed
6.
go back to reference Hedenstierna G, Rothen HU: Atelectasis formation during anesthesia: causes and measures to prevent it. J Clin Monit Comput 2000, 16: 329-335. 10.1023/A:1011491231934CrossRefPubMed Hedenstierna G, Rothen HU: Atelectasis formation during anesthesia: causes and measures to prevent it. J Clin Monit Comput 2000, 16: 329-335. 10.1023/A:1011491231934CrossRefPubMed
7.
go back to reference Rouby JJ, Lu Q, Goldstein I: Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2002, 165: 1182-1186.CrossRefPubMed Rouby JJ, Lu Q, Goldstein I: Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2002, 165: 1182-1186.CrossRefPubMed
8.
go back to reference Rouby JJ, Contantin JM, Girardi CRdA, Zhang M, Qin Lu: Mechanical ventilation in patients with acute respiratory distress syndrome. Anesthesiology 2004, 101: 228-234. 10.1097/00000542-200407000-00033CrossRefPubMed Rouby JJ, Contantin JM, Girardi CRdA, Zhang M, Qin Lu: Mechanical ventilation in patients with acute respiratory distress syndrome. Anesthesiology 2004, 101: 228-234. 10.1097/00000542-200407000-00033CrossRefPubMed
9.
go back to reference Ward NS, Lin D, Nelson DL, Houtchens JM, Schwartz WA, Klinger JR, Hill NS, Levy MM: Successful determination of lower inflection point and maximal compliance in a population of patients with acute respiratory distress syndrome. Crit Care Med 2002, 30: 963-968. 10.1097/00003246-200205000-00002CrossRefPubMed Ward NS, Lin D, Nelson DL, Houtchens JM, Schwartz WA, Klinger JR, Hill NS, Levy MM: Successful determination of lower inflection point and maximal compliance in a population of patients with acute respiratory distress syndrome. Crit Care Med 2002, 30: 963-968. 10.1097/00003246-200205000-00002CrossRefPubMed
10.
go back to reference Gattinoni L, Caironi P, Pelosi P, Goodman LR: What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 2001, 164: 1701-1711.CrossRefPubMed Gattinoni L, Caironi P, Pelosi P, Goodman LR: What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 2001, 164: 1701-1711.CrossRefPubMed
11.
go back to reference Vieira SR, Puybasset L, Richecoeur J, Lu Q, Cluzel P, Gusman PB, Coriat P, Rouby JJ: A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med 1998, 158: 1571-1577.CrossRefPubMed Vieira SR, Puybasset L, Richecoeur J, Lu Q, Cluzel P, Gusman PB, Coriat P, Rouby JJ: A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med 1998, 158: 1571-1577.CrossRefPubMed
12.
go back to reference Malbouisson LM, Muller JC, Constantin JM, Qin Lu, Puybasset L, Rouby JJ, CT Scan ARDS Study Group: Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2001, 163: 1444-1450.CrossRefPubMed Malbouisson LM, Muller JC, Constantin JM, Qin Lu, Puybasset L, Rouby JJ, CT Scan ARDS Study Group: Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2001, 163: 1444-1450.CrossRefPubMed
13.
go back to reference Puybasset L, Cluzel P, Chao N, Slutsky A, Coriat P, Rouby JJ, CT Scan ARDS Study Group: A computed tomography scan assessment of regional lung volume in acute lung injury. Am J Respir Crit Care Med 1998, 158: 1644-1655.CrossRefPubMed Puybasset L, Cluzel P, Chao N, Slutsky A, Coriat P, Rouby JJ, CT Scan ARDS Study Group: A computed tomography scan assessment of regional lung volume in acute lung injury. Am J Respir Crit Care Med 1998, 158: 1644-1655.CrossRefPubMed
14.
go back to reference Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ: Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 2000, 26: 857-869. 10.1007/s001340051274CrossRefPubMed Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ: Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 2000, 26: 857-869. 10.1007/s001340051274CrossRefPubMed
15.
go back to reference David M, Karmrodt J, Bletz C, David S, Herweling A, Kauczor HU, Markstaller K: Analysis of atelectasis, ventilated, and hyperinflated lung during mechanical ventilation by dynamic CT. Chest 2005, 128: 3757-3770. 10.1378/chest.128.5.3757CrossRefPubMed David M, Karmrodt J, Bletz C, David S, Herweling A, Kauczor HU, Markstaller K: Analysis of atelectasis, ventilated, and hyperinflated lung during mechanical ventilation by dynamic CT. Chest 2005, 128: 3757-3770. 10.1378/chest.128.5.3757CrossRefPubMed
16.
go back to reference Jandre FC, Pino AV, Lacorte I, Soares JHN, Giannella-Neto A: A closed-loop mechanical ventilation controller with explicit objective functions. IEEE Trans Biomed Eng 2004, 51: 823-831. 10.1109/TBME.2004.826678CrossRefPubMed Jandre FC, Pino AV, Lacorte I, Soares JHN, Giannella-Neto A: A closed-loop mechanical ventilation controller with explicit objective functions. IEEE Trans Biomed Eng 2004, 51: 823-831. 10.1109/TBME.2004.826678CrossRefPubMed
17.
go back to reference Reber A, Engberg G, Sporre B, Kviele L, Rothen HU, Wegenius G, Nylund U, Hedenstierna G: Volumetric analysis of aeration in the lungs during general anaesthesia. Br J Anaesth 1996, 76: 760-766.CrossRefPubMed Reber A, Engberg G, Sporre B, Kviele L, Rothen HU, Wegenius G, Nylund U, Hedenstierna G: Volumetric analysis of aeration in the lungs during general anaesthesia. Br J Anaesth 1996, 76: 760-766.CrossRefPubMed
18.
go back to reference Rouby JJ, Lu Q, Vieira S: Pressure/volume curves and lung computed tomography in acute respiratory distress syndrome. Eur Respir J Suppl 2003, 22: 27s-36. 10.1183/09031936.03.00420503CrossRef Rouby JJ, Lu Q, Vieira S: Pressure/volume curves and lung computed tomography in acute respiratory distress syndrome. Eur Respir J Suppl 2003, 22: 27s-36. 10.1183/09031936.03.00420503CrossRef
19.
go back to reference Vieira S, Nieszkowska A, Qin Lu, Elman M, Sartorius A, Rouby JJ: Low spatial resolution computed tomography underestimates lung overinflation resulting from positive pressure ventilation. Crit Care Med 2005, 33: 741-749. 10.1097/01.CCM.0000155786.53015.E7CrossRefPubMed Vieira S, Nieszkowska A, Qin Lu, Elman M, Sartorius A, Rouby JJ: Low spatial resolution computed tomography underestimates lung overinflation resulting from positive pressure ventilation. Crit Care Med 2005, 33: 741-749. 10.1097/01.CCM.0000155786.53015.E7CrossRefPubMed
20.
go back to reference De Robertis E, Liu JM, Blomquist S, Dahm PL, Thorne J, Jonson B: Elastic properties of the lung and the chest wall in young and adult healthy pigs. Eur Respir J 2001, 17: 703-711. 10.1183/09031936.01.17407030CrossRefPubMed De Robertis E, Liu JM, Blomquist S, Dahm PL, Thorne J, Jonson B: Elastic properties of the lung and the chest wall in young and adult healthy pigs. Eur Respir J 2001, 17: 703-711. 10.1183/09031936.01.17407030CrossRefPubMed
21.
go back to reference Klingstedt C, Hedenstierna G, Baehrendtz S, Lundqvist H, Strandberg A, Tokics L, Brismar B: Ventilation-perfusion relationships and atelectasis formation in the supine and lateral positions during conventional mechanical and differential ventilation. Acta Anaesthesiol Scand 1990, 34: 421-429.CrossRefPubMed Klingstedt C, Hedenstierna G, Baehrendtz S, Lundqvist H, Strandberg A, Tokics L, Brismar B: Ventilation-perfusion relationships and atelectasis formation in the supine and lateral positions during conventional mechanical and differential ventilation. Acta Anaesthesiol Scand 1990, 34: 421-429.CrossRefPubMed
22.
go back to reference Suter PM, Fairley HB, Isenberg MD: Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest 1978, 73: 158-162.CrossRefPubMed Suter PM, Fairley HB, Isenberg MD: Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest 1978, 73: 158-162.CrossRefPubMed
Metadata
Title
Effects of descending positive end-expiratory pressure on lung mechanics and aeration in healthy anaesthetized piglets
Authors
Alysson Roncally S Carvalho
Frederico C Jandre
Alexandre V Pino
Fernando A Bozza
Jorge I Salluh
Rosana S Rodrigues
João HN Soares
Antonio Giannella-Neto
Publication date
01-08-2006
Publisher
BioMed Central
Published in
Critical Care / Issue 4/2006
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc5030

Other articles of this Issue 4/2006

Critical Care 4/2006 Go to the issue