Skip to main content
Top
Published in: Breast Cancer Research 3/2000

01-06-2000 | Meeting report

13thGeneral Meeting of The Breast Cancer Linkage Consortium, November 29-December 1, 1999, Amsterdam, The Netherlands

Published in: Breast Cancer Research | Issue 3/2000

Login to get access

Excerpt

It was not particularly noted as an occasion for celebration, but the 13th meeting of the Breast Cancer Linkage Consortium (BCLC) did mark the 10th anniversary of the Consortium. Exactly 10 years ago, in November 1989, a small group of cancer geneticists and epidemiologists convened in Lyon, France, to initiate a joint effort with the aim being to find breast cancer predisposition genes through linkage analysis in multiple case families. Within a year, independent work by Dr King (then at Berkeley University, California, USA) led to the discovery of linkage to the BRCA1 locus [1]. This provided a decisive incentive toward the creation of what is now known as the BCLC database, stimulating scientists to contribute linkage information to replicate this finding [2]. Currently, this database holds pedigree information on 1122 breast cancer families, and includes data on health and carrier status, as well as several thousand person-years of follow up. These pedigrees are from all over the world, and have been submitted to the database by more than 75 research centres. Genetic defects in BRCA1 or BRCA2 have been identified in 522 and 192 families, respectively. Linkage information at polymorphic markers flanking BRCA1 and BRCA2 is available in almost 300 families. This database has allowed cumulative estimates to be made of the cancer risks conferred by mutations in BRCA1 [3] and BRCA2 [4,5]. Furthermore, it has provided estimates of the proportions of families affected by mutations in either gene, given a certain phenotype of the family as defined by the number of patients with breast or ovarian cancer [4]. …
Literature
1.
go back to reference Hall J, Lee M, Newman B, et al: Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990, 250: 1684-1689.CrossRefPubMed Hall J, Lee M, Newman B, et al: Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990, 250: 1684-1689.CrossRefPubMed
2.
go back to reference Easton D, Bishop D, Ford D, et al: Genetic linkage analysis in familial breast and ovarian cancer: results form 214 families. Am J Hum Genet. 1993, 52: 678-701.PubMedPubMedCentral Easton D, Bishop D, Ford D, et al: Genetic linkage analysis in familial breast and ovarian cancer: results form 214 families. Am J Hum Genet. 1993, 52: 678-701.PubMedPubMedCentral
3.
go back to reference Ford D, Easton D, Bishop D, et al: Risks of cancer in BRCA1-mutation carriers. Lancet. 1994, 343: 692-695. 10.1016/S0140-6736(94)91578-4.CrossRefPubMed Ford D, Easton D, Bishop D, et al: Risks of cancer in BRCA1-mutation carriers. Lancet. 1994, 343: 692-695. 10.1016/S0140-6736(94)91578-4.CrossRefPubMed
4.
go back to reference Ford D, Easton DF, Stratton M, et al: Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet. 1998, 62: 676-689. 10.1086/301749.CrossRefPubMedPubMedCentral Ford D, Easton DF, Stratton M, et al: Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet. 1998, 62: 676-689. 10.1086/301749.CrossRefPubMedPubMedCentral
5.
go back to reference Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999, 91: 1310-1316. 10.1093/jnci/91.15.1310. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999, 91: 1310-1316. 10.1093/jnci/91.15.1310.
6.
go back to reference Gayther SA, Warren W, Mazoyer S, et al: Germline mutations of the BRCA 1 gene in breast and ovarian cancer families provide evidence for a genotype-phenotype correlation. Nature Genet. 1995, 11: 428-433.CrossRefPubMed Gayther SA, Warren W, Mazoyer S, et al: Germline mutations of the BRCA 1 gene in breast and ovarian cancer families provide evidence for a genotype-phenotype correlation. Nature Genet. 1995, 11: 428-433.CrossRefPubMed
7.
go back to reference Gayther SA, Mangion J, Russell P, et al: Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nature Genet. 1997, 15: 103-105.CrossRefPubMed Gayther SA, Mangion J, Russell P, et al: Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nature Genet. 1997, 15: 103-105.CrossRefPubMed
9.
go back to reference Phelan CM, Rebbeck TR, Weber BL, et al: Ovarian cancer risk in BRCA1 carriers is modified by the HRAS1 variable number of tandem repeat (VNTR) locus. Nature Genet. 1996, 12: 309-311.CrossRefPubMed Phelan CM, Rebbeck TR, Weber BL, et al: Ovarian cancer risk in BRCA1 carriers is modified by the HRAS1 variable number of tandem repeat (VNTR) locus. Nature Genet. 1996, 12: 309-311.CrossRefPubMed
10.
go back to reference Rebbeck TR, Kantoff PN, Krithivas K, et al: Modification of BRCA1-associated breast cancer risk by the polymorphic androgen-receptor CAG repeat. Am J Hum Genet. 1999, 64: 1371-1377. 10.1086/302366.CrossRefPubMedPubMedCentral Rebbeck TR, Kantoff PN, Krithivas K, et al: Modification of BRCA1-associated breast cancer risk by the polymorphic androgen-receptor CAG repeat. Am J Hum Genet. 1999, 64: 1371-1377. 10.1086/302366.CrossRefPubMedPubMedCentral
11.
go back to reference Peto J, Collins N, Barfoot R, et al: Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. J Natl Cancer Inst. 1999, 91: 943-949. 10.1093/jnci/91.11.943.CrossRefPubMed Peto J, Collins N, Barfoot R, et al: Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. J Natl Cancer Inst. 1999, 91: 943-949. 10.1093/jnci/91.11.943.CrossRefPubMed
12.
go back to reference Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Lancet. 1997, 349: 1505-1510. 10.1016/S0140-6736(96)10109-4. Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Lancet. 1997, 349: 1505-1510. 10.1016/S0140-6736(96)10109-4.
13.
go back to reference Lakhani SR, Jacquemier J, Sloane JP, et al: Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst. 1998, 90: 1138-1145. 10.1093/jnci/90.15.1138.CrossRefPubMed Lakhani SR, Jacquemier J, Sloane JP, et al: Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst. 1998, 90: 1138-1145. 10.1093/jnci/90.15.1138.CrossRefPubMed
14.
go back to reference Dunning AM, Healey CS, Pharoah PD, et al: A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1999, 8: 843-854.PubMed Dunning AM, Healey CS, Pharoah PD, et al: A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1999, 8: 843-854.PubMed
15.
go back to reference Hartmann LC, Schaid DJ, Woods JE, et al: Efficacy of billateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med. 1999, 340: 77-84. 10.1056/NEJM199901143400201.CrossRefPubMed Hartmann LC, Schaid DJ, Woods JE, et al: Efficacy of billateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med. 1999, 340: 77-84. 10.1056/NEJM199901143400201.CrossRefPubMed
Metadata
Title
13thGeneral Meeting of The Breast Cancer Linkage Consortium, November 29-December 1, 1999, Amsterdam, The Netherlands
Publication date
01-06-2000
Published in
Breast Cancer Research / Issue 3/2000
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr58

Other articles of this Issue 3/2000

Breast Cancer Research 3/2000 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine