Skip to main content
Top
Published in: Breast Cancer Research 5/2012

Open Access 01-10-2012 | Research article

A novel function for p21Cip1 and acetyltransferase p/CAF as critical transcriptional regulators of TGFβ-mediated breast cancer cell migration and invasion

Authors: Meiou Dai, Amal A Al-Odaini, Ani Arakelian, Shafaat A Rabbani, Suhad Ali, Jean-Jacques Lebrun

Published in: Breast Cancer Research | Issue 5/2012

Login to get access

Abstract

Introduction

Tumor cell migration and invasion are critical initiation steps in the process of breast cancer metastasis, the primary cause of breast cancer morbidity and death. Here we investigated the role of p21Cip1 (p21), a member of the core cell cycle machinery, in transforming growth factor-beta (TGFβ)-mediated breast cancer cell migration and invasion.

Methods

A mammary fat pad xenograft mouse model was used to assess the mammary tumor growth and local invasion. The triple negative human breast cancer cell lines MDA-MB231 and its sub-progenies SCP2 and SCP25, SUM159PT, SUM149PT, SUM229PE and SUM1315MO2 were treated with 5 ng/ml TGFβ and the protein expression levels were measured by Western blot. Cell migration and invasion were examined using the scratch/wound healing and Transwell assay. TGFβ transcriptional activity was measured by a TGFβ/Smad reporter construct (CAGA12-luc) using luciferase assay. q-PCR was used for assessing TGFβ downstream target genes. The interactions among p21, p/CAF and Smad3 were performed by co-immunoprecipitation. In addition, Smad3 on DNA binding ability was measured by DNA immunoprecipitation using biotinylated Smad binding element DNA probes. Finally, the association among active TGFβ/Smad signaling, p21 and p/CAF with lymph node metastasis was examined by immunohistochemistry in tissue microarray containing 50 invasive ductal breast tumors, 25 of which are lymph node positive.

Results

We found p21 expression to correlate with poor overall and distant metastasis free survival in breast cancer patients. Furthermore, using xenograft animal models and in vitro studies, we found p21 to be essential for tumor cell invasion. The invasive effects of p21 were found to correlate with Smad3, and p/CAF interaction downstream of TGFβ. p21 and p/CAF regulates TGFβ-mediated transcription of pro-metastatic genes by controlling Smad3 acetylation, DNA binding and transcriptional activity. In addition, we found that active TGFβ/Smad signaling correlates with high p21 and p/CAF expression levels and lymph node involvement using tissue microarrays from breast cancer patients.

Conclusions

Together these results highlight an important role for p21 and p/CAF in promoting breast cancer cell migration and invasion at the transcriptional level and may open new avenues for breast cancer therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993, 75:805–816.CrossRefPubMed Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993, 75:805–816.CrossRefPubMed
2.
go back to reference Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D: p21 is a universal inhibitor of cyclin kinases. Nature 1993, 366:701–704.CrossRefPubMed Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D: p21 is a universal inhibitor of cyclin kinases. Nature 1993, 366:701–704.CrossRefPubMed
3.
go back to reference Toyoshima H, Hunter T: p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994, 78:67–74.CrossRefPubMed Toyoshima H, Hunter T: p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994, 78:67–74.CrossRefPubMed
4.
go back to reference Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ: p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 1995, 9:650–662.CrossRefPubMed Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ: p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 1995, 9:650–662.CrossRefPubMed
5.
go back to reference Besson A, Assoian RK, Roberts JM: Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nat Rev Cancer 2004, 4:948–955.CrossRefPubMed Besson A, Assoian RK, Roberts JM: Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nat Rev Cancer 2004, 4:948–955.CrossRefPubMed
6.
go back to reference Besson A, Dowdy SF, Roberts JM: CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008, 14:159–169.CrossRefPubMed Besson A, Dowdy SF, Roberts JM: CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008, 14:159–169.CrossRefPubMed
8.
go back to reference Shiohara M, el-Deiry WS, Wada M, Nakamaki T, Takeuchi S, Yang R, Chen DL, Vogelstein B, Koeffler HP: Absence of WAF1 mutations in a variety of human malignancies. Blood 1994, 84:3781–3784.PubMed Shiohara M, el-Deiry WS, Wada M, Nakamaki T, Takeuchi S, Yang R, Chen DL, Vogelstein B, Koeffler HP: Absence of WAF1 mutations in a variety of human malignancies. Blood 1994, 84:3781–3784.PubMed
9.
go back to reference Deng C, Zhang P, Harper JW, Elledge SJ, Leder P: Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995, 82:675–684.CrossRefPubMed Deng C, Zhang P, Harper JW, Elledge SJ, Leder P: Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995, 82:675–684.CrossRefPubMed
10.
go back to reference Biankin AV, Kench JG, Morey AL, Lee CS, Biankin SA, Head DR, Hugh TB, Henshall SM, Sutherland RL: Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res 2001, 61:8830–8837.PubMed Biankin AV, Kench JG, Morey AL, Lee CS, Biankin SA, Head DR, Hugh TB, Henshall SM, Sutherland RL: Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res 2001, 61:8830–8837.PubMed
11.
go back to reference Cheung TH, Lo KW, Yu MM, Yim SF, Poon CS, Chung TK, Wong YF: Aberrant expression of p21(WAF1/CIP1) and p27(KIP1) in cervical carcinoma. Cancer Lett 2001, 172:93–98.CrossRefPubMed Cheung TH, Lo KW, Yu MM, Yim SF, Poon CS, Chung TK, Wong YF: Aberrant expression of p21(WAF1/CIP1) and p27(KIP1) in cervical carcinoma. Cancer Lett 2001, 172:93–98.CrossRefPubMed
12.
go back to reference Ferrandina G, Stoler A, Fagotti A, Fanfani F, Sacco R, De Pasqua A, Mancuso S, Scambia G: p21WAF1/CIP1 protein expression in primary ovarian cancer. Int J Oncol 2000, 17:1231–1235.PubMed Ferrandina G, Stoler A, Fagotti A, Fanfani F, Sacco R, De Pasqua A, Mancuso S, Scambia G: p21WAF1/CIP1 protein expression in primary ovarian cancer. Int J Oncol 2000, 17:1231–1235.PubMed
13.
go back to reference Aaltomaa S, Lipponen P, Eskelinen M, Ala-Opas M, Kosma VM: Prognostic value and expression of p21(waf1/cip1) protein in prostate cancer. Prostate 1999, 39:8–15.CrossRefPubMed Aaltomaa S, Lipponen P, Eskelinen M, Ala-Opas M, Kosma VM: Prognostic value and expression of p21(waf1/cip1) protein in prostate cancer. Prostate 1999, 39:8–15.CrossRefPubMed
15.
go back to reference Ikushima H, Miyazono K: TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 2010, 10:415–424.CrossRefPubMed Ikushima H, Miyazono K: TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 2010, 10:415–424.CrossRefPubMed
16.
18.
go back to reference Chen CR, Kang Y, Massague J: Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA 2001, 98:992–999.CrossRefPubMedPubMedCentral Chen CR, Kang Y, Massague J: Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA 2001, 98:992–999.CrossRefPubMedPubMedCentral
19.
go back to reference Hannon GJ, Beach D: p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994, 371:257–261.CrossRefPubMed Hannon GJ, Beach D: p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994, 371:257–261.CrossRefPubMed
20.
go back to reference Li CY, Suardet L, Little JB: Potential role of WAF1/Cip1/p21 as a mediator of TGF-beta cytoinhibitory effect. J Biol Chem 1995, 270:4971–4974.CrossRefPubMed Li CY, Suardet L, Little JB: Potential role of WAF1/Cip1/p21 as a mediator of TGF-beta cytoinhibitory effect. J Biol Chem 1995, 270:4971–4974.CrossRefPubMed
21.
go back to reference Derynck R, Akhurst RJ, Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001, 29:117–129.CrossRefPubMed Derynck R, Akhurst RJ, Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001, 29:117–129.CrossRefPubMed
22.
go back to reference Akhurst RJ, Derynck R: TGF-beta signaling in cancer -- a double-edged sword. Trends Cell Biol 2001, 11:S44–51.PubMed Akhurst RJ, Derynck R: TGF-beta signaling in cancer -- a double-edged sword. Trends Cell Biol 2001, 11:S44–51.PubMed
23.
go back to reference Wakefield LM, Roberts AB: TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002, 12:22–29.CrossRefPubMed Wakefield LM, Roberts AB: TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002, 12:22–29.CrossRefPubMed
24.
go back to reference Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM: TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 2003, 112:1116–1124.CrossRefPubMedPubMedCentral Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM: TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 2003, 112:1116–1124.CrossRefPubMedPubMedCentral
25.
go back to reference Humbert L, Neel JC, Lebrun JJ: Targeting TGF-beta signaling in human cancer therapy. Trends Cell Mol Biol 2010, 5:69–107. Humbert L, Neel JC, Lebrun JJ: Targeting TGF-beta signaling in human cancer therapy. Trends Cell Mol Biol 2010, 5:69–107.
26.
go back to reference Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y: A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 1996, 382:319–324.CrossRefPubMed Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y: A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 1996, 382:319–324.CrossRefPubMed
27.
go back to reference Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC: Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 2001, 3:245–252.CrossRefPubMed Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC: Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 2001, 3:245–252.CrossRefPubMed
28.
go back to reference Shechter D, Dormann HL, Allis CD, Hake SB: Extraction, purification and analysis of histones. Nat Protoc 2007, 2:1445–1457.CrossRefPubMed Shechter D, Dormann HL, Allis CD, Hake SB: Extraction, purification and analysis of histones. Nat Protoc 2007, 2:1445–1457.CrossRefPubMed
29.
go back to reference Lonn P, van der Heide LP, Dahl M, Hellman U, Heldin CH, Moustakas A: PARP-1 attenuates Smad-mediated transcription. Mol Cell 2010, 40:521–532.CrossRefPubMed Lonn P, van der Heide LP, Dahl M, Hellman U, Heldin CH, Moustakas A: PARP-1 attenuates Smad-mediated transcription. Mol Cell 2010, 40:521–532.CrossRefPubMed
30.
go back to reference Yang M, Burton DW, Geller J, Hillegonds DJ, Hastings RH, Deftos LJ, Hoffman RM: The bisphosphonate olpadronate inhibits skeletal prostate cancer progression in a green fluorescent protein nude mouse model. Clin Cancer Res 2006, 12:2602–2606.CrossRefPubMed Yang M, Burton DW, Geller J, Hillegonds DJ, Hastings RH, Deftos LJ, Hoffman RM: The bisphosphonate olpadronate inhibits skeletal prostate cancer progression in a green fluorescent protein nude mouse model. Clin Cancer Res 2006, 12:2602–2606.CrossRefPubMed
31.
go back to reference Winters ZE, Hunt NC, Bradburn MJ, Royds JA, Turley H, Harris AL, Norbury CJ: Subcellular localisation of cyclin B, Cdc2 and p21(WAF1/CIP1) in breast cancer. association with prognosis. Eur J Cancer 2001, 37:2405–2412.CrossRefPubMed Winters ZE, Hunt NC, Bradburn MJ, Royds JA, Turley H, Harris AL, Norbury CJ: Subcellular localisation of cyclin B, Cdc2 and p21(WAF1/CIP1) in breast cancer. association with prognosis. Eur J Cancer 2001, 37:2405–2412.CrossRefPubMed
32.
go back to reference Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y, Zhou BP, Hung MC: Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 2004, 10:3815–3824.CrossRefPubMed Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y, Zhou BP, Hung MC: Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 2004, 10:3815–3824.CrossRefPubMed
33.
go back to reference Winters ZE, Leek RD, Bradburn MJ, Norbury CJ, Harris AL: Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/neu in breast cancer and is an independent predictor of prognosis. Breast Cancer Res 2003, 5:R242–249.CrossRefPubMedPubMedCentral Winters ZE, Leek RD, Bradburn MJ, Norbury CJ, Harris AL: Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/neu in breast cancer and is an independent predictor of prognosis. Breast Cancer Res 2003, 5:R242–249.CrossRefPubMedPubMedCentral
34.
go back to reference Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z: An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010, 123:725–731.CrossRefPubMed Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z: An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010, 123:725–731.CrossRefPubMed
35.
go back to reference Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL, Massague J: Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 2005, 102:13909–13914.CrossRefPubMedPubMedCentral Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL, Massague J: Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 2005, 102:13909–13914.CrossRefPubMedPubMedCentral
36.
go back to reference Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 2009, 137:1032–1046.CrossRefPubMedPubMedCentral Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 2009, 137:1032–1046.CrossRefPubMedPubMedCentral
37.
go back to reference Fidler IJ: The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 2003, 3:453–458.CrossRefPubMed Fidler IJ: The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 2003, 3:453–458.CrossRefPubMed
38.
go back to reference Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, Foekens JA, Massague J: Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 2009, 16:67–78.CrossRefPubMedPubMedCentral Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, Foekens JA, Massague J: Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 2009, 16:67–78.CrossRefPubMedPubMedCentral
39.
go back to reference Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF: Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 1995, 92:5545–5549.CrossRefPubMedPubMedCentral Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF: Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 1995, 92:5545–5549.CrossRefPubMedPubMedCentral
40.
go back to reference Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J: Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 2005, 115:44–55.CrossRefPubMedPubMedCentral Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J: Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 2005, 115:44–55.CrossRefPubMedPubMedCentral
41.
go back to reference Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006, 10:515–527.CrossRefPubMedPubMedCentral Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006, 10:515–527.CrossRefPubMedPubMedCentral
42.
go back to reference Tsapara A, Luthert P, Greenwood J, Hill CS, Matter K, Balda MS: The RhoA activator GEF-H1/Lfc is a transforming growth factor-beta target gene and effector that regulates alpha-smooth muscle actin expression and cell migration. Mol Biol Cell 2010, 21:860–870.CrossRefPubMedPubMedCentral Tsapara A, Luthert P, Greenwood J, Hill CS, Matter K, Balda MS: The RhoA activator GEF-H1/Lfc is a transforming growth factor-beta target gene and effector that regulates alpha-smooth muscle actin expression and cell migration. Mol Biol Cell 2010, 21:860–870.CrossRefPubMedPubMedCentral
43.
go back to reference Starostina NG, Simpliciano JM, McGuirk MA, Kipreos ET: CRL2(LRR-1) targets a CDK inhibitor for cell cycle control in C. elegans and actin-based motility regulation in human cells. Dev Cell 2010, 19:753–764.CrossRefPubMedPubMedCentral Starostina NG, Simpliciano JM, McGuirk MA, Kipreos ET: CRL2(LRR-1) targets a CDK inhibitor for cell cycle control in C. elegans and actin-based motility regulation in human cells. Dev Cell 2010, 19:753–764.CrossRefPubMedPubMedCentral
44.
go back to reference Lee S, Helfman DM: Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem 2004, 279:1885–1891.CrossRefPubMed Lee S, Helfman DM: Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem 2004, 279:1885–1891.CrossRefPubMed
45.
go back to reference Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV, Roninson IB: Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci USA 2000, 97:4291–4296.CrossRefPubMedPubMedCentral Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV, Roninson IB: Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci USA 2000, 97:4291–4296.CrossRefPubMedPubMedCentral
46.
go back to reference Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. Nature 2008, 454:436–444.CrossRefPubMed Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. Nature 2008, 454:436–444.CrossRefPubMed
47.
go back to reference Snowden AW, Anderson LA, Webster GA, Perkins ND: A novel transcriptional repression domain mediates p21(WAF1/CIP1) induction of p300 transactivation. Mol Cell Biol 2000, 20:2676–2686.CrossRefPubMedPubMedCentral Snowden AW, Anderson LA, Webster GA, Perkins ND: A novel transcriptional repression domain mediates p21(WAF1/CIP1) induction of p300 transactivation. Mol Cell Biol 2000, 20:2676–2686.CrossRefPubMedPubMedCentral
48.
go back to reference Fritah A, Saucier C, Mester J, Redeuilh G, Sabbah M: p21WAF1/CIP1 selectively controls the transcriptional activity of estrogen receptor alpha. Mol Cell Biol 2005, 25:2419–2430.CrossRefPubMedPubMedCentral Fritah A, Saucier C, Mester J, Redeuilh G, Sabbah M: p21WAF1/CIP1 selectively controls the transcriptional activity of estrogen receptor alpha. Mol Cell Biol 2005, 25:2419–2430.CrossRefPubMedPubMedCentral
49.
go back to reference Nagy Z, Tora L: Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 2007, 26:5341–5357.CrossRefPubMed Nagy Z, Tora L: Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 2007, 26:5341–5357.CrossRefPubMed
50.
go back to reference Itoh S, Ericsson J, Nishikawa J, Heldin CH, Ten Dijke P: The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acids Res 2000, 28:4291–4298.CrossRefPubMedPubMedCentral Itoh S, Ericsson J, Nishikawa J, Heldin CH, Ten Dijke P: The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acids Res 2000, 28:4291–4298.CrossRefPubMedPubMedCentral
51.
go back to reference Simonsson M, Kanduri M, Gronroos E, Heldin CH, Ericsson J: The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem 2006, 281:39870–39880.CrossRefPubMed Simonsson M, Kanduri M, Gronroos E, Heldin CH, Ericsson J: The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem 2006, 281:39870–39880.CrossRefPubMed
52.
go back to reference Cocolakis E, Dai M, Drevet L, Ho J, Haines E, Ali S, Lebrun JJ: Smad signaling antagonizes STAT5-mediated gene transcription and mammary epithelial cell differentiation. J Biol Chem 2008, 283:1293–1307.CrossRefPubMed Cocolakis E, Dai M, Drevet L, Ho J, Haines E, Ali S, Lebrun JJ: Smad signaling antagonizes STAT5-mediated gene transcription and mammary epithelial cell differentiation. J Biol Chem 2008, 283:1293–1307.CrossRefPubMed
53.
go back to reference de Boer M, van Deurzen CH, van Dijck JA, Borm GF, van Diest PJ, Adang EM, Nortier JW, Rutgers EJ, Seynaeve C, Menke-Pluymers MB, Bult P, Tjan-Heijnen VC: Micrometastases or isolated tumor cells and the outcome of breast cancer. N Engl J Med 2009, 361:653–663.CrossRefPubMed de Boer M, van Deurzen CH, van Dijck JA, Borm GF, van Diest PJ, Adang EM, Nortier JW, Rutgers EJ, Seynaeve C, Menke-Pluymers MB, Bult P, Tjan-Heijnen VC: Micrometastases or isolated tumor cells and the outcome of breast cancer. N Engl J Med 2009, 361:653–663.CrossRefPubMed
54.
go back to reference Dalal BI, Keown PA, Greenberg AH: Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 1993, 143:381–389.PubMedPubMedCentral Dalal BI, Keown PA, Greenberg AH: Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 1993, 143:381–389.PubMedPubMedCentral
55.
go back to reference Tanaka H, Yamashita T, Asada M, Mizutani S, Yoshikawa H, Tohyama M: Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity. J Cell Biol 2002, 158:321–329.CrossRefPubMedPubMedCentral Tanaka H, Yamashita T, Asada M, Mizutani S, Yoshikawa H, Tohyama M: Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity. J Cell Biol 2002, 158:321–329.CrossRefPubMedPubMedCentral
56.
go back to reference Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113:685–700.CrossRefPubMed Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113:685–700.CrossRefPubMed
57.
go back to reference Tian F, DaCosta Byfield S, Parks WT, Yoo S, Felici A, Tang B, Piek E, Wakefield LM, Roberts AB: Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2003, 63:8284–8292.PubMed Tian F, DaCosta Byfield S, Parks WT, Yoo S, Felici A, Tang B, Piek E, Wakefield LM, Roberts AB: Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2003, 63:8284–8292.PubMed
58.
go back to reference Petersen M, Pardali E, van der Horst G, Cheung H, van den Hoogen C, van der Pluijm G, Ten Dijke P: Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 29:1351–1361. Petersen M, Pardali E, van der Horst G, Cheung H, van den Hoogen C, van der Pluijm G, Ten Dijke P: Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 29:1351–1361.
Metadata
Title
A novel function for p21Cip1 and acetyltransferase p/CAF as critical transcriptional regulators of TGFβ-mediated breast cancer cell migration and invasion
Authors
Meiou Dai
Amal A Al-Odaini
Ani Arakelian
Shafaat A Rabbani
Suhad Ali
Jean-Jacques Lebrun
Publication date
01-10-2012
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 5/2012
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr3322

Other articles of this Issue 5/2012

Breast Cancer Research 5/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine