Skip to main content
Top
Published in: Breast Cancer Research 2/2012

Open Access 01-04-2012 | Research article

In vivo breast cancer characterization imaging using two monoclonal antibodies activatably labeled with near infrared fluorophores

Authors: Kohei Sano, Makoto Mitsunaga, Takahito Nakajima, Peter L Choyke, Hisataka Kobayashi

Published in: Breast Cancer Research | Issue 2/2012

Login to get access

Abstract

Introduction

The gene expression profiles of cancer cells are closely related to their aggressiveness and metastatic potential. Antibody-based immunohistochemistry (IHC) of tissue specimens is a common method of identifying expressed proteins in cancer cells and increasingly inform treatment decisions. Molecular imaging is a potential method of performing similar IHC studies in vivo without the requirement for biopsy or tumor excision. To date, antibody-based imaging has been limited by high background levels related to slow clearance, making such imaging practical. However, optically activatable imaging agents, which are only fluorescent when bound to their cognate receptor, open the possibility of doing in vivo multi-color IHC.

Methods

We describe the use of activatable, near infrared fluorescence-labeled AlexaFluor680 (Alexa680) conjugated panitumumab (Pan) targeted against human epidermal growth factor receptor (EGFR) (Pan-Alexa680) and Indocyanine Green (ICG) conjugated trastuzumab (Tra) targeted against human epidermal growth factor receptor type 2 (HER2) (Tra-ICG) were synthesized and evaluated in cells in vitro and in an orthotopic breast cancer mouse model in vivo.

Results

Pan-Alexa680 (self-quenched; SQ) and Tra-ICG were initially quenched but demonstrated a 5.2- and 50-fold dequenching capacity under detergent treatment, respectively. In vitro microscopy and flow cytometry using MDA-MB-468 (EGFR+/HER2-) and 3T3/HER2 cells (EGFR-/HER2+), demonstrated specific fluorescence signal for each cell type based on binding to Pan-Alexa680(SQ) or Tra-ICG. An in vivo imaging study employing a cocktail of Pan-Alexa680(SQ) and Tra-ICG (each 50 μg) was injected into mice with orthotopic MDA-MB-468 and 3T3/HER2 tumors in the breast. Each probe visualized only the target-specific breast tumor.

Conclusions

Multi-color target-specific fluorescence breast cancer imaging can be achieved in vivo by employing two activatable fluorescent probes administered as a cocktail. The images allowed us to see a specific receptor expression in each breast tumor without post-image processing.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wu AM, Senter PD: Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005, 23: 1137-1146. 10.1038/nbt1141.CrossRefPubMed Wu AM, Senter PD: Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005, 23: 1137-1146. 10.1038/nbt1141.CrossRefPubMed
2.
go back to reference Kobayashi H, Longmire MR, Ogawa M, Choyke PL: Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev. 2011, 40: 4626-4648. 10.1039/c1cs15077d.CrossRefPubMedPubMedCentral Kobayashi H, Longmire MR, Ogawa M, Choyke PL: Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev. 2011, 40: 4626-4648. 10.1039/c1cs15077d.CrossRefPubMedPubMedCentral
3.
go back to reference Kobayashi H, Longmire MR, Ogawa M, Choyke PL, Kawamoto S: Multiplexed imaging in cancer diagnosis: applications and future advances. Lancet Oncol. 2010, 11: 589-595. 10.1016/S1470-2045(10)70009-7.CrossRefPubMedPubMedCentral Kobayashi H, Longmire MR, Ogawa M, Choyke PL, Kawamoto S: Multiplexed imaging in cancer diagnosis: applications and future advances. Lancet Oncol. 2010, 11: 589-595. 10.1016/S1470-2045(10)70009-7.CrossRefPubMedPubMedCentral
4.
go back to reference Barrett T, Koyama Y, Hama Y, Ravizzini G, Shin IS, Jang BS, Paik CH, Urano Y, Choyke PL, Kobayashi H: In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res. 2007, 13: 6639-6648. 10.1158/1078-0432.CCR-07-1119.CrossRefPubMed Barrett T, Koyama Y, Hama Y, Ravizzini G, Shin IS, Jang BS, Paik CH, Urano Y, Choyke PL, Kobayashi H: In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res. 2007, 13: 6639-6648. 10.1158/1078-0432.CCR-07-1119.CrossRefPubMed
5.
go back to reference Koyama Y, Barrett T, Hama Y, Ravizzini G, Choyke PL, Kobayashi H: In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies. Neoplasia. 2007, 9: 1021-1029. 10.1593/neo.07787.CrossRefPubMedPubMedCentral Koyama Y, Barrett T, Hama Y, Ravizzini G, Choyke PL, Kobayashi H: In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies. Neoplasia. 2007, 9: 1021-1029. 10.1593/neo.07787.CrossRefPubMedPubMedCentral
6.
go back to reference Kobayashi H, Choyke PL: Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc Chem Res. 2011, 44: 83-90. 10.1021/ar1000633.CrossRefPubMed Kobayashi H, Choyke PL: Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc Chem Res. 2011, 44: 83-90. 10.1021/ar1000633.CrossRefPubMed
7.
go back to reference Ogawa M, Kosaka N, Choyke PL, Kobayashi H: In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res. 2009, 69: 1268-1272. 10.1158/0008-5472.CAN-08-3116.CrossRefPubMedPubMedCentral Ogawa M, Kosaka N, Choyke PL, Kobayashi H: In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res. 2009, 69: 1268-1272. 10.1158/0008-5472.CAN-08-3116.CrossRefPubMedPubMedCentral
8.
go back to reference Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y: New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010, 110: 2620-2640. 10.1021/cr900263j.CrossRefPubMedPubMedCentral Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y: New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010, 110: 2620-2640. 10.1021/cr900263j.CrossRefPubMedPubMedCentral
9.
go back to reference Ogawa M, Kosaka N, Longmire MR, Urano Y, Choyke PL, Kobayashi H: Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases. Mol Pharm. 2009, 6: 386-395. 10.1021/mp800115t.CrossRefPubMedPubMedCentral Ogawa M, Kosaka N, Longmire MR, Urano Y, Choyke PL, Kobayashi H: Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases. Mol Pharm. 2009, 6: 386-395. 10.1021/mp800115t.CrossRefPubMedPubMedCentral
10.
go back to reference Ogawa M, Regino CA, Choyke PL, Kobayashi H: In vivo target-specific activatable near-infrared optical labeling of humanized monoclonal antibodies. Mol Cancer Ther. 2009, 8: 232-239. 10.1158/1535-7163.MCT-08-0862.CrossRefPubMedPubMedCentral Ogawa M, Regino CA, Choyke PL, Kobayashi H: In vivo target-specific activatable near-infrared optical labeling of humanized monoclonal antibodies. Mol Cancer Ther. 2009, 8: 232-239. 10.1158/1535-7163.MCT-08-0862.CrossRefPubMedPubMedCentral
11.
go back to reference Maihle NJ, Baron AT, Barrette BA, Boardman CH, Christensen TA, Cora EM, Faupel-Badger JM, Greenwood T, Juneja SC, Lafky JM, Lee H, Reiter JL, Podratz KC: EGF/ErbB receptor family in ovarian cancer. Cancer Treat Res. 2002, 107: 247-258.PubMed Maihle NJ, Baron AT, Barrette BA, Boardman CH, Christensen TA, Cora EM, Faupel-Badger JM, Greenwood T, Juneja SC, Lafky JM, Lee H, Reiter JL, Podratz KC: EGF/ErbB receptor family in ovarian cancer. Cancer Treat Res. 2002, 107: 247-258.PubMed
12.
go back to reference Hoffman RM: Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs. 1999, 17: 343-359. 10.1023/A:1006326203858.CrossRefPubMed Hoffman RM: Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs. 1999, 17: 343-359. 10.1023/A:1006326203858.CrossRefPubMed
13.
go back to reference Kishimoto H, Aki R, Urata Y, Bouvet M, Momiyama M, Tanaka N, Fujiwara T, Hoffman RM: Tumor-selective, adenoviral-mediated GFP genetic labeling of human cancer in the live mouse reports future recurrence after resection. Cell Cycle. 2011, 10: 2737-2741. 10.4161/cc.10.16.16756.CrossRefPubMedPubMedCentral Kishimoto H, Aki R, Urata Y, Bouvet M, Momiyama M, Tanaka N, Fujiwara T, Hoffman RM: Tumor-selective, adenoviral-mediated GFP genetic labeling of human cancer in the live mouse reports future recurrence after resection. Cell Cycle. 2011, 10: 2737-2741. 10.4161/cc.10.16.16756.CrossRefPubMedPubMedCentral
14.
go back to reference Kishimoto H, Urata Y, Tanaka N, Fujiwara T, Hoffman RM: Selective metastatic tumor labeling with green fluorescent protein and killing by systemic administration of telomerase-dependent adenoviruses. Mol Cancer Ther. 2009, 8: 3001-3008. 10.1158/1535-7163.MCT-09-0556.CrossRefPubMed Kishimoto H, Urata Y, Tanaka N, Fujiwara T, Hoffman RM: Selective metastatic tumor labeling with green fluorescent protein and killing by systemic administration of telomerase-dependent adenoviruses. Mol Cancer Ther. 2009, 8: 3001-3008. 10.1158/1535-7163.MCT-09-0556.CrossRefPubMed
15.
go back to reference Kishimoto H, Zhao M, Hayashi K, Urata Y, Tanaka N, Fujiwara T, Penman S, Hoffman RM: In vivo internal tumor illumination by telomerase-dependent adenoviral GFP for precise surgical navigation. Proc Natl Acad Sci USA. 2009, 106: 14514-14517. 10.1073/pnas.0906388106.CrossRefPubMedPubMedCentral Kishimoto H, Zhao M, Hayashi K, Urata Y, Tanaka N, Fujiwara T, Penman S, Hoffman RM: In vivo internal tumor illumination by telomerase-dependent adenoviral GFP for precise surgical navigation. Proc Natl Acad Sci USA. 2009, 106: 14514-14517. 10.1073/pnas.0906388106.CrossRefPubMedPubMedCentral
16.
go back to reference Gullick WJ, Marsden JJ, Whittle N, Ward B, Bobrow L, Waterfield MD: Expression of epidermal growth factor receptors on human cervical, ovarian, and vulval carcinomas. Cancer Res. 1986, 46: 285-292.PubMed Gullick WJ, Marsden JJ, Whittle N, Ward B, Bobrow L, Waterfield MD: Expression of epidermal growth factor receptors on human cervical, ovarian, and vulval carcinomas. Cancer Res. 1986, 46: 285-292.PubMed
17.
go back to reference Salomon DS, Brandt R, Ciardiello F, Normanno N: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995, 19: 183-232. 10.1016/1040-8428(94)00144-I.CrossRefPubMed Salomon DS, Brandt R, Ciardiello F, Normanno N: Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995, 19: 183-232. 10.1016/1040-8428(94)00144-I.CrossRefPubMed
18.
go back to reference Souder C, Leitzel K, Ali SM, Demers L, Evans DB, Chaudri-Ross HA, Hackl W, Hamer P, Carney W, Lipton A: Serum epidermal growth factor receptor/HER-2 predicts poor survival in patients with metastatic breast cancer. Cancer. 2006, 107: 2337-2345. 10.1002/cncr.22255.CrossRefPubMed Souder C, Leitzel K, Ali SM, Demers L, Evans DB, Chaudri-Ross HA, Hackl W, Hamer P, Carney W, Lipton A: Serum epidermal growth factor receptor/HER-2 predicts poor survival in patients with metastatic breast cancer. Cancer. 2006, 107: 2337-2345. 10.1002/cncr.22255.CrossRefPubMed
Metadata
Title
In vivo breast cancer characterization imaging using two monoclonal antibodies activatably labeled with near infrared fluorophores
Authors
Kohei Sano
Makoto Mitsunaga
Takahito Nakajima
Peter L Choyke
Hisataka Kobayashi
Publication date
01-04-2012
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 2/2012
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr3167

Other articles of this Issue 2/2012

Breast Cancer Research 2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine