Skip to main content
Top
Published in: Breast Cancer Research 5/2010

Open Access 01-10-2010 | Research article

17-allyamino-17-demethoxygeldanamycin treatment results in a magnetic resonance spectroscopy-detectable elevation in choline-containing metabolites associated with increased expression of choline transporter SLC44A1 and phospholipase A2

Authors: Alissa H Brandes, Christopher S Ward, Sabrina M Ronen

Published in: Breast Cancer Research | Issue 5/2010

Login to get access

Abstract

Introduction

17-allyamino-17-demethoxygeldanamycin (17-AAG), a small molecule inhibitor of Hsp90, is currently in clinical trials in breast cancer. However, 17-AAG treatment often results in inhibition of tumor growth rather than shrinkage, making detection of response a challenge. Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are noninvasive imaging methods than can be used to monitor metabolic biomarkers of drug-target modulation. This study set out to examine the MRS-detectable metabolic consequences of Hsp90 inhibition in a breast cancer model.

Methods

MCF-7 breast cancer cells were investigated, and MRS studies were performed both on live cells and on cell extracts. 31P and 1H MRS were used to determine total cellular metabolite concentrations and 13C MRS was used to probe the metabolism of [1,2-13C]-choline. To explain the MRS metabolic findings, microarray and RT-PCR were used to analyze gene expression, and in vitro activity assays were performed to determine changes in enzymatic activity following 17-AAG treatment.

Results

Treatment of MCF-7 cells with 17-AAG for 48 hours caused a significant increase in intracellular levels of choline (to 266 ± 18% of control, P = 0.05) and phosphocholine (PC; to 181 ± 10% of control, P = 0.001) associated with an increase in expression of choline transporter SLC44A1 and an elevation in the de novo synthesis of PC. We also detected an increase in intracellular levels of glycerophosphocholine (GPC; to 176 ± 38% of control, P = 0.03) associated with an increase in PLA2 expression and activity.

Conclusions

This study determined that in the MCF-7 breast cancer model inhibition of Hsp90 by 17-AAG results in a significant MRS-detectable increase in choline, PC and GPC, which is likely due to an increase in choline transport into the cell and phospholipase activation. 1H MRSI can be used in the clinical setting to detect levels of total choline-containing metabolite (t-Cho, composed of intracellular choline, PC and GPC). As Hsp90 inhibitors enter routine clinical use, t-Cho could thus provide an easily detectable, noninvasive metabolic biomarker of Hsp90 inhibition in breast cancer patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Engelman JA: Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009, 9: 550-562. 10.1038/nrc2664.CrossRefPubMed Engelman JA: Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009, 9: 550-562. 10.1038/nrc2664.CrossRefPubMed
2.
go back to reference Solit DB, Rosen N: Hsp90: a novel target for cancer therapy. Curr Top Med Chem. 2006, 6: 1205-1214. 10.2174/156802606777812068.CrossRefPubMed Solit DB, Rosen N: Hsp90: a novel target for cancer therapy. Curr Top Med Chem. 2006, 6: 1205-1214. 10.2174/156802606777812068.CrossRefPubMed
3.
go back to reference Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, Kluger HM: High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 2007, 67: 2932-2937. 10.1158/0008-5472.CAN-06-4511.CrossRefPubMed Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, Kluger HM: High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 2007, 67: 2932-2937. 10.1158/0008-5472.CAN-06-4511.CrossRefPubMed
4.
go back to reference Banerji U: Heat shock protein 90 as a drug target: some like it hot. Clin Cancer Res. 2009, 15: 9-14. 10.1158/1078-0432.CCR-08-0132.CrossRefPubMed Banerji U: Heat shock protein 90 as a drug target: some like it hot. Clin Cancer Res. 2009, 15: 9-14. 10.1158/1078-0432.CCR-08-0132.CrossRefPubMed
5.
go back to reference Gimenez Ortiz A, Montalar Salcedo J: Heat shock proteins as targets in oncology. Clin Transl Oncol. 2010, 12: 166-173. 10.1007/s12094-010-0486-8.CrossRefPubMed Gimenez Ortiz A, Montalar Salcedo J: Heat shock proteins as targets in oncology. Clin Transl Oncol. 2010, 12: 166-173. 10.1007/s12094-010-0486-8.CrossRefPubMed
6.
go back to reference Song D, Chaerkady R, Tan AC, Garcia-Garcia E, Nalli A, Suarez-Gauthier A, Lopez-Rios F, Zhang XF, Solomon A, Tong J, Read M, Fritz C, Jimeno A, Pandey A, Hidalgo M: Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer. Mol Cancer Ther. 2008, 7: 3275-3284. 10.1158/1535-7163.MCT-08-0508.CrossRefPubMed Song D, Chaerkady R, Tan AC, Garcia-Garcia E, Nalli A, Suarez-Gauthier A, Lopez-Rios F, Zhang XF, Solomon A, Tong J, Read M, Fritz C, Jimeno A, Pandey A, Hidalgo M: Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer. Mol Cancer Ther. 2008, 7: 3275-3284. 10.1158/1535-7163.MCT-08-0508.CrossRefPubMed
7.
go back to reference Lang SA, Klein D, Moser C, Gaumann A, Glockzin G, Dahlke MH, Dietmaier W, Bolder U, Schlitt HJ, Geissler EK, Stoeltzing O: Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Mol Cancer Ther. 2007, 6: 1123-1132. 10.1158/1535-7163.MCT-06-0628.CrossRefPubMed Lang SA, Klein D, Moser C, Gaumann A, Glockzin G, Dahlke MH, Dietmaier W, Bolder U, Schlitt HJ, Geissler EK, Stoeltzing O: Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Mol Cancer Ther. 2007, 6: 1123-1132. 10.1158/1535-7163.MCT-06-0628.CrossRefPubMed
8.
go back to reference Banerji U, Walton M, Raynaud F, Grimshaw R, Kelland L, Valenti M, Judson I, Workman P: Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models. Clin Cancer Res. 2005, 11: 7023-7032. 10.1158/1078-0432.CCR-05-0518.CrossRefPubMed Banerji U, Walton M, Raynaud F, Grimshaw R, Kelland L, Valenti M, Judson I, Workman P: Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models. Clin Cancer Res. 2005, 11: 7023-7032. 10.1158/1078-0432.CCR-05-0518.CrossRefPubMed
9.
go back to reference Beckonert O, Monnerjahn J, Bonk U, Leibfritz D: Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed. 2003, 16: 1-11. 10.1002/nbm.797.CrossRefPubMed Beckonert O, Monnerjahn J, Bonk U, Leibfritz D: Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed. 2003, 16: 1-11. 10.1002/nbm.797.CrossRefPubMed
10.
go back to reference Glunde K, Jie C, Bhujwalla ZM: Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res. 2004, 64: 4270-4276. 10.1158/0008-5472.CAN-03-3829.CrossRefPubMed Glunde K, Jie C, Bhujwalla ZM: Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res. 2004, 64: 4270-4276. 10.1158/0008-5472.CAN-03-3829.CrossRefPubMed
11.
go back to reference Choline kinase activation is a critical requirement for the proliferation of primary human mammary epithelial cells and breast tumor progression. Cancer Res. 2004, 64: 6732-6739. 10.1158/0008-5472.CAN-04-0489. Choline kinase activation is a critical requirement for the proliferation of primary human mammary epithelial cells and breast tumor progression. Cancer Res. 2004, 64: 6732-6739. 10.1158/0008-5472.CAN-04-0489.
12.
go back to reference Glunde K, Jacobs MA, Pathak AP, Artemov D, Bhujwalla ZM: Molecular and functional imaging of breast cancer. NMR Biomed. 2009, 22: 92-103. 10.1002/nbm.1269.CrossRefPubMed Glunde K, Jacobs MA, Pathak AP, Artemov D, Bhujwalla ZM: Molecular and functional imaging of breast cancer. NMR Biomed. 2009, 22: 92-103. 10.1002/nbm.1269.CrossRefPubMed
13.
go back to reference Ting YL, Sherr D, Degani H: Variations in energy and phospholipid metabolism in normal and cancer human mammary epithelial cells. Anticancer Res. 1996, 16: 1381-1388.PubMed Ting YL, Sherr D, Degani H: Variations in energy and phospholipid metabolism in normal and cancer human mammary epithelial cells. Anticancer Res. 1996, 16: 1381-1388.PubMed
15.
go back to reference Aboagye EO, Bhujwalla ZM: Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999, 59: 80-84.PubMed Aboagye EO, Bhujwalla ZM: Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999, 59: 80-84.PubMed
16.
go back to reference Eliyahu G, Kreizman T, Degani H: Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int J Cancer. 2007, 120: 1721-1730. 10.1002/ijc.22293.CrossRefPubMed Eliyahu G, Kreizman T, Degani H: Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int J Cancer. 2007, 120: 1721-1730. 10.1002/ijc.22293.CrossRefPubMed
17.
go back to reference Bhujwalla ZM: Molecular and functional imaging of cancer. Conf Proc IEEE Eng Med Biol Soc. 2009, 47-49. Bhujwalla ZM: Molecular and functional imaging of cancer. Conf Proc IEEE Eng Med Biol Soc. 2009, 47-49.
18.
go back to reference Beloueche-Babari M, Chung YL, Al-Saffar NM, Falck-Miniotis M, Leach MO: Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy. Br J Cancer. 2010, 102: 1-7. 10.1038/sj.bjc.6605457.CrossRefPubMed Beloueche-Babari M, Chung YL, Al-Saffar NM, Falck-Miniotis M, Leach MO: Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy. Br J Cancer. 2010, 102: 1-7. 10.1038/sj.bjc.6605457.CrossRefPubMed
19.
go back to reference Gottschalk S, Anderson N, Hainz C, Eckhardt SG, Serkova NJ: Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res. 2004, 10: 6661-6668. 10.1158/1078-0432.CCR-04-0039.CrossRefPubMed Gottschalk S, Anderson N, Hainz C, Eckhardt SG, Serkova NJ: Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res. 2004, 10: 6661-6668. 10.1158/1078-0432.CCR-04-0039.CrossRefPubMed
20.
go back to reference Jordan BF, Black K, Robey IF, Runquist M, Powis G, Gillies RJ: Metabolite changes in HT-29 xenograft tumors following HIF-1alpha inhibition with PX-478 as studied by MR spectroscopy in vivo and ex vivo. NMR Biomed. 2005, 18: 430-439. 10.1002/nbm.977.CrossRefPubMed Jordan BF, Black K, Robey IF, Runquist M, Powis G, Gillies RJ: Metabolite changes in HT-29 xenograft tumors following HIF-1alpha inhibition with PX-478 as studied by MR spectroscopy in vivo and ex vivo. NMR Biomed. 2005, 18: 430-439. 10.1002/nbm.977.CrossRefPubMed
21.
go back to reference Beloueche-Babari M, Jackson LE, Al-Saffar NM, Workman P, Leach MO, Ronen SM: Magnetic resonance spectroscopy monitoring of mitogen-activated protein kinase signaling inhibition. Cancer Res. 2005, 65: 3356-3363.PubMed Beloueche-Babari M, Jackson LE, Al-Saffar NM, Workman P, Leach MO, Ronen SM: Magnetic resonance spectroscopy monitoring of mitogen-activated protein kinase signaling inhibition. Cancer Res. 2005, 65: 3356-3363.PubMed
22.
go back to reference Al-Saffar NM, Troy H, Ramirez de Molina A, Jackson LE, Madhu B, Griffiths JR, Leach MO, Workman P, Lacal JC, Judson IR, Chung YL: Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res. 2006, 66: 427-434. 10.1158/0008-5472.CAN-05-1338.CrossRefPubMed Al-Saffar NM, Troy H, Ramirez de Molina A, Jackson LE, Madhu B, Griffiths JR, Leach MO, Workman P, Lacal JC, Judson IR, Chung YL: Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res. 2006, 66: 427-434. 10.1158/0008-5472.CAN-05-1338.CrossRefPubMed
23.
go back to reference Beloueche-Babari M, Jackson LE, Al-Saffar NM, Eccles SA, Raynaud FI, Workman P, Leach MO, Ronen SM: Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells. Mol Cancer Ther. 2006, 5: 187-196. 10.1158/1535-7163.MCT-03-0220.CrossRefPubMed Beloueche-Babari M, Jackson LE, Al-Saffar NM, Eccles SA, Raynaud FI, Workman P, Leach MO, Ronen SM: Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells. Mol Cancer Ther. 2006, 5: 187-196. 10.1158/1535-7163.MCT-03-0220.CrossRefPubMed
24.
go back to reference Kominsky DJ, Klawitter J, Brown JL, Boros LG, Melo JV, Eckhardt SG, Serkova NJ: Abnormalities in glucose uptake and metabolism in imatinib-resistant human BCR-ABL-positive cells. Clin Cancer Res. 2009, 15: 3442-3450. 10.1158/1078-0432.CCR-08-3291.CrossRefPubMed Kominsky DJ, Klawitter J, Brown JL, Boros LG, Melo JV, Eckhardt SG, Serkova NJ: Abnormalities in glucose uptake and metabolism in imatinib-resistant human BCR-ABL-positive cells. Clin Cancer Res. 2009, 15: 3442-3450. 10.1158/1078-0432.CCR-08-3291.CrossRefPubMed
25.
go back to reference Ward CS, Venkatesh HS, Chaumeil MM, Brandes AH, Vancriekinge M, Dafni H, Sukumar S, Nelson SJ, Vigneron DB, Kurhanewicz J, James CD, Haas-Kogan DA, Ronen SM: Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Cancer Res. 2010, 70: 1296-1305. 10.1158/0008-5472.CAN-09-2251.CrossRefPubMedPubMedCentral Ward CS, Venkatesh HS, Chaumeil MM, Brandes AH, Vancriekinge M, Dafni H, Sukumar S, Nelson SJ, Vigneron DB, Kurhanewicz J, James CD, Haas-Kogan DA, Ronen SM: Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Cancer Res. 2010, 70: 1296-1305. 10.1158/0008-5472.CAN-09-2251.CrossRefPubMedPubMedCentral
26.
go back to reference Ross J, Najjar AM, Sankaranarayanapillai M, Tong WP, Kaluarachchi K, Ronen SM: Fatty acid synthase inhibition results in a magnetic resonance-detectable drop in phosphocholine. Mol Cancer Ther. 2008, 7: 2556-2565. 10.1158/1535-7163.MCT-08-0015.CrossRefPubMedPubMedCentral Ross J, Najjar AM, Sankaranarayanapillai M, Tong WP, Kaluarachchi K, Ronen SM: Fatty acid synthase inhibition results in a magnetic resonance-detectable drop in phosphocholine. Mol Cancer Ther. 2008, 7: 2556-2565. 10.1158/1535-7163.MCT-08-0015.CrossRefPubMedPubMedCentral
27.
go back to reference Muruganandham M, Alfieri AA, Matei C, Chen Y, Sukenick G, Schemainda I, Hasmann M, Saltz LB, Koutcher JA: Metabolic signatures associated with a NAD synthesis inhibitor-induced tumor apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy. Clin Cancer Res. 2005, 11: 3503-3513. 10.1158/1078-0432.CCR-04-1399.CrossRefPubMed Muruganandham M, Alfieri AA, Matei C, Chen Y, Sukenick G, Schemainda I, Hasmann M, Saltz LB, Koutcher JA: Metabolic signatures associated with a NAD synthesis inhibitor-induced tumor apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy. Clin Cancer Res. 2005, 11: 3503-3513. 10.1158/1078-0432.CCR-04-1399.CrossRefPubMed
28.
go back to reference Glunde K, Jie C, Bhujwalla ZM: Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006, 8: 758-771. 10.1593/neo.06187.CrossRefPubMedPubMedCentral Glunde K, Jie C, Bhujwalla ZM: Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006, 8: 758-771. 10.1593/neo.06187.CrossRefPubMedPubMedCentral
29.
go back to reference Chung YL, Troy H, Banerji U, Jackson LE, Walton MI, Stubbs M, Griffiths JR, Judson IR, Leach MO, Workman P, Ronen SM: Magnetic resonance spectroscopic pharmacodynamic markers of the heat shock protein 90 inhibitor 17-allylamino,17-demethoxygeldanamycin (17AAG) in human colon cancer models. J Natl Cancer Inst. 2003, 95: 1624-1633.CrossRefPubMed Chung YL, Troy H, Banerji U, Jackson LE, Walton MI, Stubbs M, Griffiths JR, Judson IR, Leach MO, Workman P, Ronen SM: Magnetic resonance spectroscopic pharmacodynamic markers of the heat shock protein 90 inhibitor 17-allylamino,17-demethoxygeldanamycin (17AAG) in human colon cancer models. J Natl Cancer Inst. 2003, 95: 1624-1633.CrossRefPubMed
30.
go back to reference Monazzam A, Razifar P, Ide S, Rugaard Jensen M, Josephsson R, Blomqvist C, Langstrom B, Bergstrom M: Evaluation of the Hsp90 inhibitor NVP-AUY922 in multicellular tumour spheroids with respect to effects on growth and PET tracer uptake. Nucl Med Biol. 2009, 36: 335-342. 10.1016/j.nucmedbio.2008.12.009.CrossRefPubMed Monazzam A, Razifar P, Ide S, Rugaard Jensen M, Josephsson R, Blomqvist C, Langstrom B, Bergstrom M: Evaluation of the Hsp90 inhibitor NVP-AUY922 in multicellular tumour spheroids with respect to effects on growth and PET tracer uptake. Nucl Med Biol. 2009, 36: 335-342. 10.1016/j.nucmedbio.2008.12.009.CrossRefPubMed
31.
go back to reference Delikatny E, Roman S, Hancock R, Jeitner T, Lander C, Rideout D, Mountford C: Tetraphenylphosphonium chloride induced MR-visible lipid accumulation in a malignant human breast cell line. Int J Cancer. 1996, 67: 72-79. 10.1002/(SICI)1097-0215(19960703)67:1<72::AID-IJC13>3.0.CO;2-E.CrossRefPubMed Delikatny E, Roman S, Hancock R, Jeitner T, Lander C, Rideout D, Mountford C: Tetraphenylphosphonium chloride induced MR-visible lipid accumulation in a malignant human breast cell line. Int J Cancer. 1996, 67: 72-79. 10.1002/(SICI)1097-0215(19960703)67:1<72::AID-IJC13>3.0.CO;2-E.CrossRefPubMed
32.
go back to reference Milkevitch M, Shim H, Pilatus U, Pickup S, Wehrle J, Samid D, Poptani H, Glickson J, Delikatny E: Increases in NMR-visible lipid and glycerophosphocholine during phenylbutyrate-induced apoptosis in human prostate cancer cells. Biochim Biophys Acta. 2005, 1734: 1-12.CrossRefPubMed Milkevitch M, Shim H, Pilatus U, Pickup S, Wehrle J, Samid D, Poptani H, Glickson J, Delikatny E: Increases in NMR-visible lipid and glycerophosphocholine during phenylbutyrate-induced apoptosis in human prostate cancer cells. Biochim Biophys Acta. 2005, 1734: 1-12.CrossRefPubMed
33.
go back to reference Liimatainen T, Erkkila A, Valonen P, Vidgren H, Lakso M, Wong G, Grohn O, Yla-Herttuala S, Hakumaki J: 1H MR spectroscopic imaging of phospholipase-mediated membrane lipid release in apoptotic rat glioma in vivo. Magn Reson Med. 2008, 59: 1232-1238. 10.1002/mrm.21607.CrossRefPubMed Liimatainen T, Erkkila A, Valonen P, Vidgren H, Lakso M, Wong G, Grohn O, Yla-Herttuala S, Hakumaki J: 1H MR spectroscopic imaging of phospholipase-mediated membrane lipid release in apoptotic rat glioma in vivo. Magn Reson Med. 2008, 59: 1232-1238. 10.1002/mrm.21607.CrossRefPubMed
34.
go back to reference Koepsell H, Endou H: The SLC22 drug transporter family. Pflugers Arch. 2004, 447: 666-676. 10.1007/s00424-003-1089-9.CrossRefPubMed Koepsell H, Endou H: The SLC22 drug transporter family. Pflugers Arch. 2004, 447: 666-676. 10.1007/s00424-003-1089-9.CrossRefPubMed
35.
go back to reference Koepsell H, Schmitt BM, Gorboulev V: Organic cation transporters. Rev Physiol Biochem Pharmacol. 2003, 150: 36-90. full_text.PubMed Koepsell H, Schmitt BM, Gorboulev V: Organic cation transporters. Rev Physiol Biochem Pharmacol. 2003, 150: 36-90. full_text.PubMed
36.
go back to reference Sundler R, Akesson B: Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J Biol Chem. 1975, 250: 3359-3367.PubMed Sundler R, Akesson B: Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J Biol Chem. 1975, 250: 3359-3367.PubMed
37.
go back to reference Ronen SM, Rushkin E, Degani H: Lipid metabolism in T47D human breast cancer cells: 31P and 13C-NMR studies of choline and ethanolamine uptake. Biochim Biophys Acta. 1991, 1095: 5-16. 10.1016/0167-4889(91)90038-Y.CrossRefPubMed Ronen SM, Rushkin E, Degani H: Lipid metabolism in T47D human breast cancer cells: 31P and 13C-NMR studies of choline and ethanolamine uptake. Biochim Biophys Acta. 1991, 1095: 5-16. 10.1016/0167-4889(91)90038-Y.CrossRefPubMed
38.
go back to reference Ronen SM, DiStefano F, McCoy CL, Robertson D, Smith TA, Al-Saffar NM, Titley J, Cunningham DC, Griffiths JR, Leach MO, Clarke PA: Magnetic resonance detects metabolic changes associated with chemotherapy-induced apoptosis. Br J Cancer. 1999, 80: 1035-1041. 10.1038/sj.bjc.6690459.CrossRefPubMedPubMedCentral Ronen SM, DiStefano F, McCoy CL, Robertson D, Smith TA, Al-Saffar NM, Titley J, Cunningham DC, Griffiths JR, Leach MO, Clarke PA: Magnetic resonance detects metabolic changes associated with chemotherapy-induced apoptosis. Br J Cancer. 1999, 80: 1035-1041. 10.1038/sj.bjc.6690459.CrossRefPubMedPubMedCentral
39.
go back to reference Tyagi RK, Azrad A, Degani H, Salomon Y: Simultaneous extraction of cellular lipids and water-soluble metabolites: evaluation by NMR spectroscopy. Magn Reson Med. 1996, 35: 194-200. 10.1002/mrm.1910350210.CrossRefPubMed Tyagi RK, Azrad A, Degani H, Salomon Y: Simultaneous extraction of cellular lipids and water-soluble metabolites: evaluation by NMR spectroscopy. Magn Reson Med. 1996, 35: 194-200. 10.1002/mrm.1910350210.CrossRefPubMed
40.
go back to reference Iorio E, Mezzanzanica D, Alberti P, Spadaro F, Ramoni C, D'Ascenzo S, Millimaggi D, Pavan A, Dolo V, Canevari S, Podo F: Alterations of choline phospholipid metabolism in ovarian tumor progression. Cancer Res. 2005, 65: 9369-9376. 10.1158/0008-5472.CAN-05-1146.CrossRefPubMed Iorio E, Mezzanzanica D, Alberti P, Spadaro F, Ramoni C, D'Ascenzo S, Millimaggi D, Pavan A, Dolo V, Canevari S, Podo F: Alterations of choline phospholipid metabolism in ovarian tumor progression. Cancer Res. 2005, 65: 9369-9376. 10.1158/0008-5472.CAN-05-1146.CrossRefPubMed
41.
go back to reference Vance DE, Pelech SD, Choy PC: CTP: phosphocholine cytidylyltransferase from rat liver. Methods Enzymol. 1981, 71 (C): 576-581. full_text.CrossRefPubMed Vance DE, Pelech SD, Choy PC: CTP: phosphocholine cytidylyltransferase from rat liver. Methods Enzymol. 1981, 71 (C): 576-581. full_text.CrossRefPubMed
42.
go back to reference Savendahl L, Mar MH, Underwood LE, Zeisel SH: Prolonged fasting in humans results in diminished plasma choline concentrations but does not cause liver dysfunction. Am J Clin Nutr. 1997, 66: 622-625.PubMed Savendahl L, Mar MH, Underwood LE, Zeisel SH: Prolonged fasting in humans results in diminished plasma choline concentrations but does not cause liver dysfunction. Am J Clin Nutr. 1997, 66: 622-625.PubMed
43.
go back to reference Zeisel SH, Growdon JH, Wurtman RJ, Magil SG, Logue M: Normal plasma choline responses to ingested lecithin. Neurology. 1980, 30: 1226-1229.CrossRefPubMed Zeisel SH, Growdon JH, Wurtman RJ, Magil SG, Logue M: Normal plasma choline responses to ingested lecithin. Neurology. 1980, 30: 1226-1229.CrossRefPubMed
44.
go back to reference Michel V, Yuan Z, Ramsubir S, Bakovic M: Choline transport for phospholipid synthesis. Exp Biol Med (Maywood). 2006, 231: 490-504. Michel V, Yuan Z, Ramsubir S, Bakovic M: Choline transport for phospholipid synthesis. Exp Biol Med (Maywood). 2006, 231: 490-504.
45.
go back to reference Blusztajn JK, Wurtman RJ: Choline and cholinergic neurons. Science. 1983, 221: 614-620. 10.1126/science.6867732.CrossRefPubMed Blusztajn JK, Wurtman RJ: Choline and cholinergic neurons. Science. 1983, 221: 614-620. 10.1126/science.6867732.CrossRefPubMed
46.
go back to reference Wille S, Szekeres A, Majdic O, Prager E, Staffler G, Stockl J, Kunthalert D, Prieschl EE, Baumruker T, Burtscher H, Zlabinger GJ, Knapp W, Stockinger H: Characterization of CDw92 as a member of the choline transporter-like protein family regulated specifically on dendritic cells. J Immunol. 2001, 167: 5795-5804.CrossRefPubMed Wille S, Szekeres A, Majdic O, Prager E, Staffler G, Stockl J, Kunthalert D, Prieschl EE, Baumruker T, Burtscher H, Zlabinger GJ, Knapp W, Stockinger H: Characterization of CDw92 as a member of the choline transporter-like protein family regulated specifically on dendritic cells. J Immunol. 2001, 167: 5795-5804.CrossRefPubMed
47.
go back to reference Machova E, O'Regan S, Newcombe J, Meunier FM, Prentice J, Dove R, Lisa V, Dolezal V: Detection of choline transporter-like 1 protein CTL1 in neuroblastoma x glioma cells and in the CNS, and its role in choline uptake. J Neurochem. 2009, 110: 1297-1309. 10.1111/j.1471-4159.2009.06218.x.CrossRefPubMed Machova E, O'Regan S, Newcombe J, Meunier FM, Prentice J, Dove R, Lisa V, Dolezal V: Detection of choline transporter-like 1 protein CTL1 in neuroblastoma x glioma cells and in the CNS, and its role in choline uptake. J Neurochem. 2009, 110: 1297-1309. 10.1111/j.1471-4159.2009.06218.x.CrossRefPubMed
48.
go back to reference Michel V, Bakovic M: The solute carrier 44A1 is a mitochondrial protein and mediates choline transport. FASEB J. 2009, 23: 2749-2758. 10.1096/fj.08-121491.CrossRefPubMed Michel V, Bakovic M: The solute carrier 44A1 is a mitochondrial protein and mediates choline transport. FASEB J. 2009, 23: 2749-2758. 10.1096/fj.08-121491.CrossRefPubMed
49.
go back to reference Katz-Brull R, Degani H: Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res. 1996, 16: 1375-1380.PubMed Katz-Brull R, Degani H: Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res. 1996, 16: 1375-1380.PubMed
50.
51.
go back to reference Fullerton MD, Wagner L, Yuan Z, Bakovic M: Impaired trafficking of choline transporter-like protein-1 at plasma membrane and inhibition of choline transport in THP-1 monocyte-derived macrophages. Am J Physiol Cell Physiol. 2006, 290: C1230-1238. 10.1152/ajpcell.00255.2005.CrossRefPubMed Fullerton MD, Wagner L, Yuan Z, Bakovic M: Impaired trafficking of choline transporter-like protein-1 at plasma membrane and inhibition of choline transport in THP-1 monocyte-derived macrophages. Am J Physiol Cell Physiol. 2006, 290: C1230-1238. 10.1152/ajpcell.00255.2005.CrossRefPubMed
52.
go back to reference Yuan Z, Tie A, Tarnopolsky M, Bakovic M: Genomic organization, promoter activity, and expression of the human choline transporter-like protein 1. Physiol Genomics. 2006, 26: 76-90. 10.1152/physiolgenomics.00107.2005.CrossRefPubMed Yuan Z, Tie A, Tarnopolsky M, Bakovic M: Genomic organization, promoter activity, and expression of the human choline transporter-like protein 1. Physiol Genomics. 2006, 26: 76-90. 10.1152/physiolgenomics.00107.2005.CrossRefPubMed
53.
go back to reference Wang SA, Chuang JY, Yeh SH, Wang YT, Liu YW, Chang WC, Hung JJ: Heat shock protein 90 is important for Sp1 stability during mitosis. J Mol Biol. 2009, 387: 1106-1119. 10.1016/j.jmb.2009.02.040.CrossRefPubMed Wang SA, Chuang JY, Yeh SH, Wang YT, Liu YW, Chang WC, Hung JJ: Heat shock protein 90 is important for Sp1 stability during mitosis. J Mol Biol. 2009, 387: 1106-1119. 10.1016/j.jmb.2009.02.040.CrossRefPubMed
54.
go back to reference Nakamura T, Fujiwara R, Ishiguro N, Oyabu M, Nakanishi T, Shirasaka Y, Maeda T, Tamai I: Involvement of choline transporter-like proteins, CTL1 and CTL2, in glucocorticoid-induced acceleration of phosphatidylcholine synthesis via increased choline uptake. Biol Pharm Bull. 2010, 33: 691-696. 10.1248/bpb.33.691.CrossRefPubMed Nakamura T, Fujiwara R, Ishiguro N, Oyabu M, Nakanishi T, Shirasaka Y, Maeda T, Tamai I: Involvement of choline transporter-like proteins, CTL1 and CTL2, in glucocorticoid-induced acceleration of phosphatidylcholine synthesis via increased choline uptake. Biol Pharm Bull. 2010, 33: 691-696. 10.1248/bpb.33.691.CrossRefPubMed
55.
go back to reference Kang KI, Meng X, Devin-Leclerc J, Bouhouche I, Chadli A, Cadepond F, Baulieu EE, Catelli MG: The molecular chaperone Hsp90 can negatively regulate the activity of a glucocorticosteroid-dependent promoter. Proc Natl Acad Sci USA. 1999, 96: 1439-1444. 10.1073/pnas.96.4.1439.CrossRefPubMedPubMedCentral Kang KI, Meng X, Devin-Leclerc J, Bouhouche I, Chadli A, Cadepond F, Baulieu EE, Catelli MG: The molecular chaperone Hsp90 can negatively regulate the activity of a glucocorticosteroid-dependent promoter. Proc Natl Acad Sci USA. 1999, 96: 1439-1444. 10.1073/pnas.96.4.1439.CrossRefPubMedPubMedCentral
56.
go back to reference Jackowski S, Fagone P: CTP: Phosphocholine cytidylyltransferase: paving the way from gene to membrane. J Biol Chem. 2005, 280: 853-856. 10.1074/jbc.R400031200.CrossRefPubMed Jackowski S, Fagone P: CTP: Phosphocholine cytidylyltransferase: paving the way from gene to membrane. J Biol Chem. 2005, 280: 853-856. 10.1074/jbc.R400031200.CrossRefPubMed
57.
go back to reference Le HC, Lupu M, Kotedia K, Rosen N, Solit D, Koutcher JA: Proton MRS detects metabolic changes in hormone sensitive and resistant human prostate cancer models CWR22 and CWR22r. Magn Reson Med. 2009, 62: 1112-1119. 10.1002/mrm.22137.CrossRefPubMedPubMedCentral Le HC, Lupu M, Kotedia K, Rosen N, Solit D, Koutcher JA: Proton MRS detects metabolic changes in hormone sensitive and resistant human prostate cancer models CWR22 and CWR22r. Magn Reson Med. 2009, 62: 1112-1119. 10.1002/mrm.22137.CrossRefPubMedPubMedCentral
58.
go back to reference Liu D, Hutchinson OC, Osman S, Price P, Workman P, Aboagye EO: Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin. Br J Cancer. 2002, 87: 783-789. 10.1038/sj.bjc.6600558.CrossRefPubMedPubMedCentral Liu D, Hutchinson OC, Osman S, Price P, Workman P, Aboagye EO: Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin. Br J Cancer. 2002, 87: 783-789. 10.1038/sj.bjc.6600558.CrossRefPubMedPubMedCentral
59.
go back to reference Widakowich C, Dinh P, de Azambuja E, Awada A, Piccart-Gebhart M: HER-2 positive breast cancer: what else beyond trastuzumab-based therapy?. Anticancer Agents Med Chem. 2008, 8: 488-496.CrossRefPubMed Widakowich C, Dinh P, de Azambuja E, Awada A, Piccart-Gebhart M: HER-2 positive breast cancer: what else beyond trastuzumab-based therapy?. Anticancer Agents Med Chem. 2008, 8: 488-496.CrossRefPubMed
60.
go back to reference Dean-Colomb W, Esteva FJ: Emerging agents in the treatment of anthracycline- and taxane-refractory metastatic breast cancer. Semin Oncol. 2008, 35: S31-38. 10.1053/j.seminoncol.2008.02.008. quiz S40CrossRefPubMed Dean-Colomb W, Esteva FJ: Emerging agents in the treatment of anthracycline- and taxane-refractory metastatic breast cancer. Semin Oncol. 2008, 35: S31-38. 10.1053/j.seminoncol.2008.02.008. quiz S40CrossRefPubMed
61.
go back to reference Powers MV, Workman P: Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer. 2006, 13 (1): S125-135. 10.1677/erc.1.01324.CrossRefPubMed Powers MV, Workman P: Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer. 2006, 13 (1): S125-135. 10.1677/erc.1.01324.CrossRefPubMed
62.
go back to reference Sinha S, Sinha U: Recent advances in breast MRI and MRS. NMR Biomed. 2009, 22: 3-16. 10.1002/nbm.1270.CrossRefPubMed Sinha S, Sinha U: Recent advances in breast MRI and MRS. NMR Biomed. 2009, 22: 3-16. 10.1002/nbm.1270.CrossRefPubMed
63.
go back to reference Bolan PJ, Nelson MT, Yee D, Garwood M: Imaging in breast cancer: magnetic resonance spectroscopy. Breast Cancer Res. 2005, 7: 149-152. 10.1186/bcr1202.CrossRefPubMedPubMedCentral Bolan PJ, Nelson MT, Yee D, Garwood M: Imaging in breast cancer: magnetic resonance spectroscopy. Breast Cancer Res. 2005, 7: 149-152. 10.1186/bcr1202.CrossRefPubMedPubMedCentral
Metadata
Title
17-allyamino-17-demethoxygeldanamycin treatment results in a magnetic resonance spectroscopy-detectable elevation in choline-containing metabolites associated with increased expression of choline transporter SLC44A1 and phospholipase A2
Authors
Alissa H Brandes
Christopher S Ward
Sabrina M Ronen
Publication date
01-10-2010
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 5/2010
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr2729

Other articles of this Issue 5/2010

Breast Cancer Research 5/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine