Skip to main content
Top
Published in: Breast Cancer Research 3/2005

Open Access 01-06-2005 | Research article

Dendritic cells are defective in breast cancer patients: a potential role for polyamine in this immunodeficiency

Authors: Alban Gervais, Jean Levêque, Françoise Bouet-Toussaint, Florence Burtin, Thierry Lesimple, Laurent Sulpice, Jean-Jacques Patard, Noelle Genetet, Véronique Catros-Quemener

Published in: Breast Cancer Research | Issue 3/2005

Login to get access

Abstract

Introduction

Dendritic cells (DCs) are antigen-presenting cells that are currently employed in cancer clinical trials. However, it is not clear whether their ability to induce tumour-specific immune responses when they are isolated from cancer patients is reduced relative to their ability in vivo. We determined the phenotype and functional activity of DCs from cancer patients and investigated the effect of putrescine, a polyamine molecule that is released in large amounts by cancer cells and has been implicated in metastatic invasion, on DCs.

Methods

The IL-4/GM-CSF (granulocyte–macrophage colony-stimulating factor) procedure for culturing blood monocyte-derived DCs was applied to cells from healthy donors and patients (17 with breast, 7 with colorectal and 10 with renal cell carcinoma). The same peroxide-treated tumour cells (M74 cell line) were used for DC pulsing. We investigated the effects of stimulation of autologous lymphocytes by DCs pulsed with treated tumour cells (DC-Tu), and cytolytic activity of T cells was determined in the same target cells.

Results

Certain differences were observed between donors and breast cancer patients. The yield of DCs was dramatically weaker, and expression of MHC class II was lower and the percentage of HLA-DR-Lin- cells higher in patients. Whatever combination of maturating agents was used, expression of markers of mature DCs was significantly lower in patients. Also, DCs from patients exhibited reduced ability to stimulate cytotoxic T lymphocytes. After DC-Tu stimulation, specific cytolytic activity was enhanced by up to 40% when DCs were from donors but only up to 10% when they were from patients. IFN-γ production was repeatedly found to be enhanced in donors but not in patients. By adding putrescine to DCs from donors, it was possible to enhance the HLA-DR-Lin- cell percentage and to reduce the final cytolytic activity of lymphocytes after DC-Tu stimulation, mimicking defective DC function. These putrescine-induced deficiencies were reversed by treating DCs with all-trans retinoic acid.

Conclusion

These data are consistent with blockade of antigen-presenting cells at an early stage of differentiation in patients with breast cancer. Putrescine released in the microenvironmement of DCs could be involved in this blockade. Use of all-trans retinoic acid treatment to reverse this blockade and favour ex vivo expansion of antigen-specific T lymphocytes is of real interest.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schuler G, Schuler-Thurner B, Steinman RM: The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol. 2003, 15: 138-147. 10.1016/S0952-7915(03)00015-3.CrossRefPubMed Schuler G, Schuler-Thurner B, Steinman RM: The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol. 2003, 15: 138-147. 10.1016/S0952-7915(03)00015-3.CrossRefPubMed
3.
go back to reference Lutz MB, Schuler G: Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?. Trends Immunol. 2002, 23: 445-449. 10.1016/S1471-4906(02)02281-0.CrossRefPubMed Lutz MB, Schuler G: Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?. Trends Immunol. 2002, 23: 445-449. 10.1016/S1471-4906(02)02281-0.CrossRefPubMed
4.
go back to reference Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N: Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med. 2000, 191: 423-433. 10.1084/jem.191.3.423.CrossRefPubMedPubMedCentral Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N: Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med. 2000, 191: 423-433. 10.1084/jem.191.3.423.CrossRefPubMedPubMedCentral
5.
go back to reference Albert ML: Death-defying immunity: do apoptotic cells influence antigen processing and presentation. Nat Rev Immunol. 2004, 4: 223-231. 10.1038/nri11308.CrossRefPubMed Albert ML: Death-defying immunity: do apoptotic cells influence antigen processing and presentation. Nat Rev Immunol. 2004, 4: 223-231. 10.1038/nri11308.CrossRefPubMed
6.
go back to reference Bouet-Toussaint F, Patard J-J, Gervais A, Genetet N, de la Pintière CT, Rioux-Leclercq N, Toutirais O, Thirouard A-S, Ramée M-P, Catros-Quemener V: Cytotoxic effector cells with antitumor activity can be amplified ex vivo from biopsies or blood of patients with renal cell carcinoma for a cell therapy use. Cancer Immunol Immunother. 2003, 52: 699-707. 10.1007/s00262-003-0412-9.CrossRefPubMed Bouet-Toussaint F, Patard J-J, Gervais A, Genetet N, de la Pintière CT, Rioux-Leclercq N, Toutirais O, Thirouard A-S, Ramée M-P, Catros-Quemener V: Cytotoxic effector cells with antitumor activity can be amplified ex vivo from biopsies or blood of patients with renal cell carcinoma for a cell therapy use. Cancer Immunol Immunother. 2003, 52: 699-707. 10.1007/s00262-003-0412-9.CrossRefPubMed
7.
go back to reference Kusmartsev S, Gabrilovich DI: Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother. 2002, 51: 293-298. 10.1007/s00262-002-0280-8.CrossRefPubMed Kusmartsev S, Gabrilovich DI: Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother. 2002, 51: 293-298. 10.1007/s00262-002-0280-8.CrossRefPubMed
8.
go back to reference Almand B, Clark JI, Nikitina E, Beynen Jv, English NR, Knight SC, Carbone DP, Gabrilovich DI: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001, 166: 678-689.CrossRefPubMed Almand B, Clark JI, Nikitina E, Beynen Jv, English NR, Knight SC, Carbone DP, Gabrilovich DI: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001, 166: 678-689.CrossRefPubMed
9.
go back to reference Sallusto F, Lanzavecchia A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994, 179: 1109-1118. 10.1084/jem.179.4.1109.CrossRefPubMed Sallusto F, Lanzavecchia A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994, 179: 1109-1118. 10.1084/jem.179.4.1109.CrossRefPubMed
10.
go back to reference Berger TG, Feuerstein B, Strasser E, Hirsch U, Schreiner D, Schuler G, Schuler-Thurner B: Large-scale generation of mature monocyte-derived dendritic cells for clinical application in cell factories. J Immunol Methods. 2002, 268: 131-140. 10.1016/S0022-1759(02)00189-8.CrossRefPubMed Berger TG, Feuerstein B, Strasser E, Hirsch U, Schreiner D, Schuler G, Schuler-Thurner B: Large-scale generation of mature monocyte-derived dendritic cells for clinical application in cell factories. J Immunol Methods. 2002, 268: 131-140. 10.1016/S0022-1759(02)00189-8.CrossRefPubMed
11.
go back to reference Lennon SV, Martin SJ, Cotter TG: Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 1991, 24: 203-214.CrossRefPubMed Lennon SV, Martin SJ, Cotter TG: Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 1991, 24: 203-214.CrossRefPubMed
12.
go back to reference Spisek R, Chevallier P, Morineau N, Milpied N, Avet-Loiseau H, Harousseau J-L, Meflah K, Gregoire M: Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res. 2002, 62: 2861-2868.PubMed Spisek R, Chevallier P, Morineau N, Milpied N, Avet-Loiseau H, Harousseau J-L, Meflah K, Gregoire M: Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res. 2002, 62: 2861-2868.PubMed
13.
go back to reference Albert ML, Sauter B, Bhardwaj N: Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature. 1998, 392: 86-89. 10.1038/32183.CrossRefPubMed Albert ML, Sauter B, Bhardwaj N: Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature. 1998, 392: 86-89. 10.1038/32183.CrossRefPubMed
14.
go back to reference Cohen SS: A guide to the polyamines. A Guide to the Polyamines. 1998, New York: Oxford University Press, 595- Cohen SS: A guide to the polyamines. A Guide to the Polyamines. 1998, New York: Oxford University Press, 595-
15.
go back to reference Quemener V, Blanchard Y, Chamaillard L, Havouis R, Cipolla B, Moulinoux J-P: Polyamine deprivation : a new tool in cancer treatment. Anticancer Res. 1994, 14: 443-448.PubMed Quemener V, Blanchard Y, Chamaillard L, Havouis R, Cipolla B, Moulinoux J-P: Polyamine deprivation : a new tool in cancer treatment. Anticancer Res. 1994, 14: 443-448.PubMed
16.
go back to reference Seiler N, Atanassov CL: The natural polyamines and the immune system. Prog Drug Res. 1994, 43: 87-141.PubMed Seiler N, Atanassov CL: The natural polyamines and the immune system. Prog Drug Res. 1994, 43: 87-141.PubMed
17.
go back to reference Quemener V, Bansard JY, Delamaire M, Roth S, Havouis R, Desury D, Moulinoux J-P: Red blood cell polyamines, anaemia and tumor growth in the rat. Eur J Cancer. 1996, 32A: 316-321. 10.1016/0959-8049(95)00584-6.CrossRefPubMed Quemener V, Bansard JY, Delamaire M, Roth S, Havouis R, Desury D, Moulinoux J-P: Red blood cell polyamines, anaemia and tumor growth in the rat. Eur J Cancer. 1996, 32A: 316-321. 10.1016/0959-8049(95)00584-6.CrossRefPubMed
18.
go back to reference Chamaillard L, Catros-Quemener V, Delcros J-G, Bansard J-Y, Havouis R, Desury D, Commeurec A, Genetet N, Moulinoux J-P: Polyamine deprivation prevents the development of tumor-induced immune-suppression. Br J Cancer. 1997, 76: 365-370.CrossRefPubMedPubMedCentral Chamaillard L, Catros-Quemener V, Delcros J-G, Bansard J-Y, Havouis R, Desury D, Commeurec A, Genetet N, Moulinoux J-P: Polyamine deprivation prevents the development of tumor-induced immune-suppression. Br J Cancer. 1997, 76: 365-370.CrossRefPubMedPubMedCentral
19.
go back to reference Jonuleit H, Schmitt E, Steinbrink K, Enk AH: Dendritic cells as a tool to induce anergic and regulatory T cells. Trends immunol. 2001, 22: 394-400. 10.1016/S1471-4906(01)01952-4.CrossRefPubMed Jonuleit H, Schmitt E, Steinbrink K, Enk AH: Dendritic cells as a tool to induce anergic and regulatory T cells. Trends immunol. 2001, 22: 394-400. 10.1016/S1471-4906(01)01952-4.CrossRefPubMed
20.
go back to reference Chamaillard L, Quemener V, Havouis R, Moulinoux J-P: Polyamine deprivation stimulates Natural killer cell activity in cancerous mice. Anticancer Res. 1993, 13: 1027-1034.PubMed Chamaillard L, Quemener V, Havouis R, Moulinoux J-P: Polyamine deprivation stimulates Natural killer cell activity in cancerous mice. Anticancer Res. 1993, 13: 1027-1034.PubMed
21.
go back to reference Bonnotte B, Favre N, Moutet M, Fromentin A, Solary E, Martin M, Martin F: Bcl2-mediated inhibition of apoptosis prevents immunogenicity and restores tumorigenicity of spontaneously regressive tumors. J Immunol. 1998, 161: 1433-1438.PubMed Bonnotte B, Favre N, Moutet M, Fromentin A, Solary E, Martin M, Martin F: Bcl2-mediated inhibition of apoptosis prevents immunogenicity and restores tumorigenicity of spontaneously regressive tumors. J Immunol. 1998, 161: 1433-1438.PubMed
22.
go back to reference Menetrier-Caux C, Thomachot MC, Alberti L, Montmain G, Blay J-Y: IL-4 prevents the blockade of dendritic cell differenciation induced by tumor cells. Cancer Res. 2001, 61: 3096-3104.PubMed Menetrier-Caux C, Thomachot MC, Alberti L, Montmain G, Blay J-Y: IL-4 prevents the blockade of dendritic cell differenciation induced by tumor cells. Cancer Res. 2001, 61: 3096-3104.PubMed
23.
go back to reference Satthaporn S, Robins A, Vassanasiri W, El-Sheemy M, Jibril JA, Clark D, Valerio D, Eremin O: Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol Immunother. 2004, 53: 510-518. 10.1007/s00262-003-0485-5.CrossRefPubMed Satthaporn S, Robins A, Vassanasiri W, El-Sheemy M, Jibril JA, Clark D, Valerio D, Eremin O: Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol Immunother. 2004, 53: 510-518. 10.1007/s00262-003-0485-5.CrossRefPubMed
24.
go back to reference Zhang M, Caragine T, Wang H, Cohen P, Botchkina G, Soda K, Bianchi M, Ulrich P, Cerami A, Sherry B, Tracey K: Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. J Exp Med. 1997, 185: 1759-1768. 10.1084/jem.185.10.1759.CrossRefPubMedPubMedCentral Zhang M, Caragine T, Wang H, Cohen P, Botchkina G, Soda K, Bianchi M, Ulrich P, Cerami A, Sherry B, Tracey K: Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. J Exp Med. 1997, 185: 1759-1768. 10.1084/jem.185.10.1759.CrossRefPubMedPubMedCentral
25.
go back to reference Ghiringhelli F, Larmonier L, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F: CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004, 34: 336-344. 10.1002/eji.200324181.CrossRefPubMed Ghiringhelli F, Larmonier L, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F: CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004, 34: 336-344. 10.1002/eji.200324181.CrossRefPubMed
26.
go back to reference Chamaillard L, Catros-Quemener V, Moulinoux J-P: Synergistic activation of macrophage activity by polyamine deprivation and cyclophosphamide. Anticancer Res. 1997, 17: 1059-1066.PubMed Chamaillard L, Catros-Quemener V, Moulinoux J-P: Synergistic activation of macrophage activity by polyamine deprivation and cyclophosphamide. Anticancer Res. 1997, 17: 1059-1066.PubMed
27.
go back to reference Leveque J, Foucher F, Bansard J-Y, Havouis R, Grall J-Y, Moulinoux J-P: Polyamine profiles in tumor, normal tissue of the homologous breast, blood, and urine of breast cancer sufferers. Breast Cancer Res Treat. 2000, 60: 99-105. 10.1023/A:1006319818530.CrossRefPubMed Leveque J, Foucher F, Bansard J-Y, Havouis R, Grall J-Y, Moulinoux J-P: Polyamine profiles in tumor, normal tissue of the homologous breast, blood, and urine of breast cancer sufferers. Breast Cancer Res Treat. 2000, 60: 99-105. 10.1023/A:1006319818530.CrossRefPubMed
28.
go back to reference Mohty M, Morbell S, Isnardon D, Sainty D, Arnoulet C, Gaugler B, Olive D: All-Trans retinoic acid skews monocyte differentiation into interleukin-12 secreting dendritic-like cells. Br J Haematol. 2003, 122: 829-836. 10.1046/j.1365-2141.2003.04489.x.CrossRefPubMed Mohty M, Morbell S, Isnardon D, Sainty D, Arnoulet C, Gaugler B, Olive D: All-Trans retinoic acid skews monocyte differentiation into interleukin-12 secreting dendritic-like cells. Br J Haematol. 2003, 122: 829-836. 10.1046/j.1365-2141.2003.04489.x.CrossRefPubMed
29.
go back to reference Avigan D, Vasir B, Gong J, Borges V, Wu Z, Uhl L, Atkins M, Mier J, McDermott D, Smith T, et al: Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin Cancer Res. 2004, 10: 4699-4708.CrossRefPubMed Avigan D, Vasir B, Gong J, Borges V, Wu Z, Uhl L, Atkins M, Mier J, McDermott D, Smith T, et al: Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin Cancer Res. 2004, 10: 4699-4708.CrossRefPubMed
Metadata
Title
Dendritic cells are defective in breast cancer patients: a potential role for polyamine in this immunodeficiency
Authors
Alban Gervais
Jean Levêque
Françoise Bouet-Toussaint
Florence Burtin
Thierry Lesimple
Laurent Sulpice
Jean-Jacques Patard
Noelle Genetet
Véronique Catros-Quemener
Publication date
01-06-2005
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 3/2005
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1001

Other articles of this Issue 3/2005

Breast Cancer Research 3/2005 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine