Skip to main content
Top
Published in: Arthritis Research & Therapy 1/1999

01-12-1999 | Review

Janus kinases and signal transducers and activators of transcription: their roles in cytokine signaling, development and immunoregulation

Authors: Robert A Ortmann, Tammy Cheng, Roberta Visconti, David M Frucht, John J O'Shea

Published in: Arthritis Research & Therapy | Issue 1/1999

Login to get access

Abstract

Cytokines play a critical role in the normal development and function of the immune system. On the other hand, many rheumatologic diseases are characterized by poorly controlled responses to or dysregulated production of these mediators. Over the past decade tremendous strides have been made in clarifying how cytokines transmit signals via pathways using the Janus kinase (Jak) protein tyrosine kinases and the Signal transducer and activator of transcription (Stat) proteins. More recently, research has focused on several distinct proteins responsible for inhibiting these pathways. It is hoped that further elucidation of cytokine signaling through these pathways will not only allow for a better comprehension of the etiopathogenesis of rheumatologic illnesses, but may also direct future treatment options.
Literature
1.
go back to reference Darnell JEJ, Kerr IM, Stark GR: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994, 264: 1415-1421.PubMed Darnell JEJ, Kerr IM, Stark GR: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994, 264: 1415-1421.PubMed
2.
go back to reference Pellegrini S, Dusanter-Fourt I: The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur J Biochem. 1997, 248: 615-633.PubMed Pellegrini S, Dusanter-Fourt I: The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur J Biochem. 1997, 248: 615-633.PubMed
3.
go back to reference Ihle JN, Thierfelder W, Teglund S: Signaling by the cytokine receptor superfamily. Ann N Y Acad Sci. 1998, 865: 1-9.PubMed Ihle JN, Thierfelder W, Teglund S: Signaling by the cytokine receptor superfamily. Ann N Y Acad Sci. 1998, 865: 1-9.PubMed
4.
go back to reference O'Shea JJ: Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet?. Immunity. 1997, 7: 1-11.PubMed O'Shea JJ: Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet?. Immunity. 1997, 7: 1-11.PubMed
5.
go back to reference Bach EA, Aguet M, Schreiber RD: The IFN-gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol. 1997, 15: 563-593.PubMed Bach EA, Aguet M, Schreiber RD: The IFN-gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol. 1997, 15: 563-593.PubMed
6.
go back to reference Leonard WJ, O'Shea JJ: Jaks and STATs: biological implications. Annu Rev Immunol. 1998, 16: 293-322.PubMed Leonard WJ, O'Shea JJ: Jaks and STATs: biological implications. Annu Rev Immunol. 1998, 16: 293-322.PubMed
7.
go back to reference Carter-Su C, Smit LS: Signaling via JAK tyrosine kinases: growth hormone receptor as a model system. Recent Prog Horm Res. 1998, 53: 61-82; discussion 82-83.PubMed Carter-Su C, Smit LS: Signaling via JAK tyrosine kinases: growth hormone receptor as a model system. Recent Prog Horm Res. 1998, 53: 61-82; discussion 82-83.PubMed
8.
go back to reference Aringer M, Cheng A, Nelson JW: Janus kinases and their role in growth and disease. Life Sci. 1999, 64: 2173-2186.PubMed Aringer M, Cheng A, Nelson JW: Janus kinases and their role in growth and disease. Life Sci. 1999, 64: 2173-2186.PubMed
9.
go back to reference Hoey T, Grusby MJ: STATs as mediators of cytokine-induced responses. Adv Immunol. 1999, 71: 145-162.PubMed Hoey T, Grusby MJ: STATs as mediators of cytokine-induced responses. Adv Immunol. 1999, 71: 145-162.PubMed
10.
go back to reference Starr R, Hilton DJ: Negative regulation of the JAK/STAT pathway. Bioessays. 1999, 21: 47-52. 10.1002/(SICI)1521-1878(199901)21:1<47::AID-BIES6>3.3.CO;2-E.PubMed Starr R, Hilton DJ: Negative regulation of the JAK/STAT pathway. Bioessays. 1999, 21: 47-52. 10.1002/(SICI)1521-1878(199901)21:1<47::AID-BIES6>3.3.CO;2-E.PubMed
11.
go back to reference Hilton DJ: Negative regulators of cytokine signal transduction. Cell Mol Life Sci. 1999, 55: 1568-1577.PubMed Hilton DJ: Negative regulators of cytokine signal transduction. Cell Mol Life Sci. 1999, 55: 1568-1577.PubMed
12.
go back to reference Baird AM, Gerstein RM, Berg LJ: The role of cytokine receptor signaling in lymphocyte development. Curr Opin Immunol. 1999, 11: 157-166.PubMed Baird AM, Gerstein RM, Berg LJ: The role of cytokine receptor signaling in lymphocyte development. Curr Opin Immunol. 1999, 11: 157-166.PubMed
13.
go back to reference Krolewski JJ, Lee R, Eddy R, Shows TB, Dalla-Favera R: Identification and chromosomal mapping of new human tyrosine kinase genes. Oncogene. 1990, 5: 277-282.PubMed Krolewski JJ, Lee R, Eddy R, Shows TB, Dalla-Favera R: Identification and chromosomal mapping of new human tyrosine kinase genes. Oncogene. 1990, 5: 277-282.PubMed
14.
go back to reference Wilks AF, Harpur AG, Kurban RR: Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol. 1991, 11: 2057-2065.PubMedPubMedCentral Wilks AF, Harpur AG, Kurban RR: Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol. 1991, 11: 2057-2065.PubMedPubMedCentral
15.
go back to reference Harpur AG, Andres AC, Ziemiecki A, Aston RR, Wilks AF: JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene. 1992, 7: 1347-1353.PubMed Harpur AG, Andres AC, Ziemiecki A, Aston RR, Wilks AF: JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene. 1992, 7: 1347-1353.PubMed
16.
go back to reference Kawamura M, McVicar DW, Johnston JA: Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc Natl Acad Sci USA. 1994, 91: 6374-6378.PubMedPubMedCentral Kawamura M, McVicar DW, Johnston JA: Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc Natl Acad Sci USA. 1994, 91: 6374-6378.PubMedPubMedCentral
17.
go back to reference Sofer L, Kampa D, Burnside J: Molecular cloning of a chicken JAK homolog from activated T cells. Gene. 1998, 215: 29-36. 10.1016/S0378-1119(98)00284-4.PubMed Sofer L, Kampa D, Burnside J: Molecular cloning of a chicken JAK homolog from activated T cells. Gene. 1998, 215: 29-36. 10.1016/S0378-1119(98)00284-4.PubMed
18.
go back to reference Harrison DA, Binari R, Nahreini TS, Gilman M, Perrimon N: Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 1995, 14: 2857-2865.PubMedPubMedCentral Harrison DA, Binari R, Nahreini TS, Gilman M, Perrimon N: Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 1995, 14: 2857-2865.PubMedPubMedCentral
19.
go back to reference Binari R, Perrimon N: Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev. 1994, 8: 300-312.PubMed Binari R, Perrimon N: Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev. 1994, 8: 300-312.PubMed
20.
go back to reference Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O: Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol. 1995, 13: 369-398.PubMed Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O: Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol. 1995, 13: 369-398.PubMed
21.
go back to reference Velazquez L, Fellous M, Stark GR, Pellegrini S: A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell. 1992, 70: 313-322.PubMed Velazquez L, Fellous M, Stark GR, Pellegrini S: A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell. 1992, 70: 313-322.PubMed
22.
go back to reference Watling D, Guschin D, Muller M: Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-gamma signal transduction pathway. Nature. 1993, 366: 166-170.PubMed Watling D, Guschin D, Muller M: Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-gamma signal transduction pathway. Nature. 1993, 366: 166-170.PubMed
23.
go back to reference Silvennoinen O, Ihle JN, Schlessinger J, Levy DE: Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature. 1993, 366: 583-585.PubMed Silvennoinen O, Ihle JN, Schlessinger J, Levy DE: Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature. 1993, 366: 583-585.PubMed
24.
go back to reference Witthuhn BA, Quelle FW, Silvennoinen O: JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993, 74: 227-236.PubMed Witthuhn BA, Quelle FW, Silvennoinen O: JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993, 74: 227-236.PubMed
25.
go back to reference Argetsinger LS, Campbell GS, Yang X: Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell. 1993, 74: 237-244.PubMed Argetsinger LS, Campbell GS, Yang X: Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell. 1993, 74: 237-244.PubMed
26.
go back to reference Witthuhn BA, Silvennoinen O, Miura O: Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature. 1994, 370: 153-157.PubMed Witthuhn BA, Silvennoinen O, Miura O: Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature. 1994, 370: 153-157.PubMed
27.
go back to reference Johnston JA, Kawamura M, Kirken RA: Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature. 1994, 370: 151-153.PubMed Johnston JA, Kawamura M, Kirken RA: Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature. 1994, 370: 151-153.PubMed
28.
go back to reference Ihle JN: The Janus protein tyrosine kinase family and its role in cytokine signaling. Adv Immunol. 1995, 60: 1-35.PubMed Ihle JN: The Janus protein tyrosine kinase family and its role in cytokine signaling. Adv Immunol. 1995, 60: 1-35.PubMed
29.
go back to reference Gurniak CB, Berg LJ: Murine JAK3 is preferentially expressed in hematopoietic tissues and lymphocyte precursor cells. Blood. 1996, 87: 3151-3160.PubMed Gurniak CB, Berg LJ: Murine JAK3 is preferentially expressed in hematopoietic tissues and lymphocyte precursor cells. Blood. 1996, 87: 3151-3160.PubMed
30.
go back to reference Sharfe N, Dadi HK, Shahar M, Roifman CM: Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci USA. 1997, 94: 3168-3171.PubMedPubMedCentral Sharfe N, Dadi HK, Shahar M, Roifman CM: Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci USA. 1997, 94: 3168-3171.PubMedPubMedCentral
31.
go back to reference Tortolani PJ, Lal BK, Riva A: Regulation of JAK3 expression and activation in human B cells and B cell malignancies. J Immunol. 1995, 155: 5220-5226.PubMed Tortolani PJ, Lal BK, Riva A: Regulation of JAK3 expression and activation in human B cells and B cell malignancies. J Immunol. 1995, 155: 5220-5226.PubMed
32.
go back to reference Musso T, Johnston JA, Linnekin D: Regulation of JAK3 expression in human monocytes: phosphorylation in response to interleukins 2, 4, and 7. J Exp Med. 1995, 181: 1425-1431.PubMed Musso T, Johnston JA, Linnekin D: Regulation of JAK3 expression in human monocytes: phosphorylation in response to interleukins 2, 4, and 7. J Exp Med. 1995, 181: 1425-1431.PubMed
33.
go back to reference Russell SM, Johnston JA, Noguchi M: Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science. 1994, 266: 1042-1045.PubMed Russell SM, Johnston JA, Noguchi M: Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science. 1994, 266: 1042-1045.PubMed
34.
go back to reference Miyazaki T, Kawahara A, Fujii H: Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science. 1994, 266: 1045-1047.PubMed Miyazaki T, Kawahara A, Fujii H: Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science. 1994, 266: 1045-1047.PubMed
35.
go back to reference Boussiotis VA, Barber DL, Nakarai T: Prevention of T cell anergy by signaling through the gamma c chain of the IL-2 receptor. Science. 1994, 266: 1039-1042.PubMed Boussiotis VA, Barber DL, Nakarai T: Prevention of T cell anergy by signaling through the gamma c chain of the IL-2 receptor. Science. 1994, 266: 1039-1042.PubMed
36.
go back to reference Oakes SA, Candotti F, Johnston JA: Signaling via IL-2 and IL-4 in JAK3-deficient severe combined immunodeficiency lymphocytes: JAK3-dependent and independent pathways. Immunity. 1996, 5: 605-615.PubMed Oakes SA, Candotti F, Johnston JA: Signaling via IL-2 and IL-4 in JAK3-deficient severe combined immunodeficiency lymphocytes: JAK3-dependent and independent pathways. Immunity. 1996, 5: 605-615.PubMed
37.
go back to reference Candotti F, Oakes SA, Johnston JA: In vitro correction of JAK3-deficient severe combined immunodeficiency by retroviral-mediated gene transduction. J Exp Med. 1996, 183: 2687-2692.PubMed Candotti F, Oakes SA, Johnston JA: In vitro correction of JAK3-deficient severe combined immunodeficiency by retroviral-mediated gene transduction. J Exp Med. 1996, 183: 2687-2692.PubMed
38.
go back to reference Macchi P, Villa A, Gillani S: Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995, 377: 65-68.PubMed Macchi P, Villa A, Gillani S: Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995, 377: 65-68.PubMed
39.
go back to reference Russell SM, Tayebi N, Nakajima H: Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science. 1995, 270: 797-800.PubMed Russell SM, Tayebi N, Nakajima H: Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science. 1995, 270: 797-800.PubMed
40.
go back to reference Noguchi M, Yi H, Rosenblatt HM: Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell. 1993, 73: 147-157.PubMed Noguchi M, Yi H, Rosenblatt HM: Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell. 1993, 73: 147-157.PubMed
41.
go back to reference Nosaka T, van Deursen JM, Tripp RA: Defective lymphoid development in mice lacking Jak3. Science. 1995, 270: 800-802.PubMed Nosaka T, van Deursen JM, Tripp RA: Defective lymphoid development in mice lacking Jak3. Science. 1995, 270: 800-802.PubMed
42.
go back to reference Thomis DC, Gurniak CB, Tivol E, Sharpe AH, Berg LJ: Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science. 1995, 270: 794-797.PubMed Thomis DC, Gurniak CB, Tivol E, Sharpe AH, Berg LJ: Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science. 1995, 270: 794-797.PubMed
43.
go back to reference Park SY, Saijo K, Takahashi T: Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity . 1995, 3: 771-782.PubMed Park SY, Saijo K, Takahashi T: Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity . 1995, 3: 771-782.PubMed
44.
go back to reference Thomis DC, Berg LJ: The role of Jak3 in lymphoid development, activation, and signaling. Curr Opin Immunol. 1997, 9: 541-547.PubMed Thomis DC, Berg LJ: The role of Jak3 in lymphoid development, activation, and signaling. Curr Opin Immunol. 1997, 9: 541-547.PubMed
45.
go back to reference Maeurer MJ, Lotze MT: Interleukin-7 (IL-7) knockout mice. Implications for lymphopoiesis and organ-specific immunity. Int Rev Immunol. 1998, 16: 309-322.PubMed Maeurer MJ, Lotze MT: Interleukin-7 (IL-7) knockout mice. Implications for lymphopoiesis and organ-specific immunity. Int Rev Immunol. 1998, 16: 309-322.PubMed
46.
go back to reference Maraskovsky E, Teepe M, Morrissey PJ: Impaired survival and proliferation in IL-7 receptor-deficient peripheral T cells. J Immunol. 1996, 157: 5315-5323.PubMed Maraskovsky E, Teepe M, Morrissey PJ: Impaired survival and proliferation in IL-7 receptor-deficient peripheral T cells. J Immunol. 1996, 157: 5315-5323.PubMed
47.
go back to reference von Freeden-Jeffry U, Vieira P, Lucian LA: Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med. 1995, 181: 1519-1526.PubMed von Freeden-Jeffry U, Vieira P, Lucian LA: Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med. 1995, 181: 1519-1526.PubMed
48.
go back to reference Puel A, Ziegler SF, Buckley RH, Leonard WJ: Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nature Genet. 1998, 20: 394-397.PubMed Puel A, Ziegler SF, Buckley RH, Leonard WJ: Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nature Genet. 1998, 20: 394-397.PubMed
49.
go back to reference Lodolce JP, Boone DL, Chai S: IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity. 1998, 9: 669-676.PubMed Lodolce JP, Boone DL, Chai S: IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity. 1998, 9: 669-676.PubMed
50.
go back to reference Candotti F, Oakes SA, Johnston JA: Structural and functional basis for JAK3-deficient severe combined immunodeficiency. Blood. 1997, 90: 3996-4003.PubMed Candotti F, Oakes SA, Johnston JA: Structural and functional basis for JAK3-deficient severe combined immunodeficiency. Blood. 1997, 90: 3996-4003.PubMed
51.
go back to reference Suzuki H, Kundig TM, Furlonger C: Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science. 1995, 268: 1472-1476.PubMed Suzuki H, Kundig TM, Furlonger C: Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science. 1995, 268: 1472-1476.PubMed
52.
go back to reference Willerford DM, Chen J, Ferry JA: Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995, 3: 521-530.PubMed Willerford DM, Chen J, Ferry JA: Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995, 3: 521-530.PubMed
53.
go back to reference Fujii H, Ogasawara K, Otsuka H: Functional dissection of the cytoplasmic subregions of the IL-2 receptor betac chain in primary lymphocyte populations. EMBO J. 1998, 17: 6551-6557.PubMedPubMedCentral Fujii H, Ogasawara K, Otsuka H: Functional dissection of the cytoplasmic subregions of the IL-2 receptor betac chain in primary lymphocyte populations. EMBO J. 1998, 17: 6551-6557.PubMedPubMedCentral
54.
go back to reference Saijo K, Park SY, Ishida Y, Arase H, Saito T: Crucial role of Jak3 in negative selection of self-reactive T cells. J Exp Med . 1997, 185: 351-356.PubMedPubMedCentral Saijo K, Park SY, Ishida Y, Arase H, Saito T: Crucial role of Jak3 in negative selection of self-reactive T cells. J Exp Med . 1997, 185: 351-356.PubMedPubMedCentral
55.
go back to reference Brugnoni D, Notarangelo LD, Sottini A: Development of autologous, oligoclonal, poorly functioning T lymphocytes in a patient with autosomal recessive severe combined immunodeficiency caused by defects of the Jak3 tyrosine kinase. Blood. 1998, 91: 949-955.PubMed Brugnoni D, Notarangelo LD, Sottini A: Development of autologous, oligoclonal, poorly functioning T lymphocytes in a patient with autosomal recessive severe combined immunodeficiency caused by defects of the Jak3 tyrosine kinase. Blood. 1998, 91: 949-955.PubMed
56.
go back to reference Villa A, Sironi M, Macchi P: Monocyte function in a severe combined immunodeficient patient with a donor splice site mutation in the Jak3 gene. Blood. 1996, 88: 817-823.PubMed Villa A, Sironi M, Macchi P: Monocyte function in a severe combined immunodeficient patient with a donor splice site mutation in the Jak3 gene. Blood. 1996, 88: 817-823.PubMed
57.
go back to reference Colamonici O, Yan H, Domanski P: Direct binding to and tyrosine phosphorylation of the alpha subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol Cell Biol . 1994, 14: 8133-8142.PubMedPubMedCentral Colamonici O, Yan H, Domanski P: Direct binding to and tyrosine phosphorylation of the alpha subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol Cell Biol . 1994, 14: 8133-8142.PubMedPubMedCentral
58.
go back to reference Novick D, Cohen B, Rubinstein M: The human interferon alpha/beta receptor: characterization and molecular cloning. Cell. 1994, 77: 391-400.PubMed Novick D, Cohen B, Rubinstein M: The human interferon alpha/beta receptor: characterization and molecular cloning. Cell. 1994, 77: 391-400.PubMed
59.
go back to reference Abramovich C, Shulman LM, Ratovitski E: Differential tyrosine phosphorylation of the IFNAR chain of the type I interferon receptor and of an associated surface protein in response to IFN-alpha and IFN-beta. EMBO J. 1994, 13: 5871-5877.PubMedPubMedCentral Abramovich C, Shulman LM, Ratovitski E: Differential tyrosine phosphorylation of the IFNAR chain of the type I interferon receptor and of an associated surface protein in response to IFN-alpha and IFN-beta. EMBO J. 1994, 13: 5871-5877.PubMedPubMedCentral
60.
go back to reference Muller M, Briscoe J, Laxton C: The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature. 1993, 366: 129-135.PubMed Muller M, Briscoe J, Laxton C: The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature. 1993, 366: 129-135.PubMed
61.
go back to reference Quelle FW, Sato N, Witthuhn BA: JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol. 1994, 14: 4335-4341.PubMedPubMedCentral Quelle FW, Sato N, Witthuhn BA: JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol. 1994, 14: 4335-4341.PubMedPubMedCentral
62.
go back to reference Stahl N, Boulton TG, Farruggella T: Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science. 1994, 263: 92-95.PubMed Stahl N, Boulton TG, Farruggella T: Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science. 1994, 263: 92-95.PubMed
63.
go back to reference Zou J, Presky DH, Wu CY, Gubler U: Differential associations between the cytoplasmic regions of the interleukin-12 receptor subunits beta1 and beta2 and JAK kinases. J Biol Chem. 1997, 272: 6073-6077.PubMed Zou J, Presky DH, Wu CY, Gubler U: Differential associations between the cytoplasmic regions of the interleukin-12 receptor subunits beta1 and beta2 and JAK kinases. J Biol Chem. 1997, 272: 6073-6077.PubMed
64.
go back to reference Rodig SJ, Meraz MA, White JM: Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998, 93: 373-383.PubMed Rodig SJ, Meraz MA, White JM: Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998, 93: 373-383.PubMed
65.
go back to reference Neubauer H, Cumano A, Muller M: Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998, 93: 397-409.PubMed Neubauer H, Cumano A, Muller M: Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998, 93: 397-409.PubMed
66.
go back to reference Parganas E, Wang D, Stravopodis D: Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998, 93: 385-395.PubMed Parganas E, Wang D, Stravopodis D: Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998, 93: 385-395.PubMed
67.
go back to reference Lacronique V, Boureux A, Valle VD: A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science. 1997, 278: 1309-1312.PubMed Lacronique V, Boureux A, Valle VD: A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science. 1997, 278: 1309-1312.PubMed
68.
go back to reference Peeters P, Raynaud SD, Cools J: Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood. 1997, 90: 2535-2540.PubMed Peeters P, Raynaud SD, Cools J: Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood. 1997, 90: 2535-2540.PubMed
69.
go back to reference Hanissian SH, Geha RS: Jak3 is associated with CD40 and is critical for CD40 induction of gene expression in B cells. Immunity. 1997, 6: 379-387.PubMed Hanissian SH, Geha RS: Jak3 is associated with CD40 and is critical for CD40 induction of gene expression in B cells. Immunity. 1997, 6: 379-387.PubMed
70.
go back to reference Jabara HH, Buckley RH, Roberts JL: Role of JAK3 in CD40-mediated signaling. Blood. 1998, 92: 2435-2440.PubMed Jabara HH, Buckley RH, Roberts JL: Role of JAK3 in CD40-mediated signaling. Blood. 1998, 92: 2435-2440.PubMed
71.
go back to reference Rane SG, Reddy EP: JAK3: a novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene. 1994, 9: 2415-2423.PubMed Rane SG, Reddy EP: JAK3: a novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene. 1994, 9: 2415-2423.PubMed
72.
go back to reference Lai KS, Jin Y, Graham DK: A kinase-deficient splice variant of the human JAK3 is expressed in hematopoietic and epithelial cancer cells. J Biol Chem. 1995, 270: 25028-25036.PubMed Lai KS, Jin Y, Graham DK: A kinase-deficient splice variant of the human JAK3 is expressed in hematopoietic and epithelial cancer cells. J Biol Chem. 1995, 270: 25028-25036.PubMed
73.
go back to reference Hubbard SR, Wei L, Ellis L, Hendrickson WA: Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature. 1994, 372: 746-754.PubMed Hubbard SR, Wei L, Ellis L, Hendrickson WA: Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature. 1994, 372: 746-754.PubMed
74.
go back to reference Gauzzi MC, Velazquez L, McKendry R: Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J Biol Chem. 1996, 271: 20494-20500.PubMed Gauzzi MC, Velazquez L, McKendry R: Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J Biol Chem. 1996, 271: 20494-20500.PubMed
75.
go back to reference Feng J, Witthuhn BA, Matsuda T: Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol. 1997, 17: 2497-2501.PubMedPubMedCentral Feng J, Witthuhn BA, Matsuda T: Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol. 1997, 17: 2497-2501.PubMedPubMedCentral
76.
go back to reference Zhou YJ, Hanson EP, Chen YQ: Distinct tyrosine phosphorylation sites in JAK3 kinase domain positively and negatively regulate its enzymatic activity. Proc Natl Acad Sci USA. 1997, 94: 13850-13855.PubMedPubMedCentral Zhou YJ, Hanson EP, Chen YQ: Distinct tyrosine phosphorylation sites in JAK3 kinase domain positively and negatively regulate its enzymatic activity. Proc Natl Acad Sci USA. 1997, 94: 13850-13855.PubMedPubMedCentral
77.
go back to reference Rui L, Mathews LS, Hotta K, Gustafson TA, Carter-Su C: Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol Cell Biol. 1997, 17: 6633-6644.PubMedPubMedCentral Rui L, Mathews LS, Hotta K, Gustafson TA, Carter-Su C: Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol Cell Biol. 1997, 17: 6633-6644.PubMedPubMedCentral
78.
go back to reference Rui L, Carter-Su C: Identification of SH2-bbeta as a potent cytoplasmic activator of the tyrosine kinase Janus kinase 2. Proc Natl Acad Sci USA. 1999, 96: 7172-7177.PubMedPubMedCentral Rui L, Carter-Su C: Identification of SH2-bbeta as a potent cytoplasmic activator of the tyrosine kinase Janus kinase 2. Proc Natl Acad Sci USA. 1999, 96: 7172-7177.PubMedPubMedCentral
79.
go back to reference Frank SJ, Gilliland G, Kraft AS, Arnold CS: Interaction of the growth hormone receptor cytoplasmic domain with the JAK2 tyrosine kinase. Endocrinology. 1994, 135: 2228-2239.PubMed Frank SJ, Gilliland G, Kraft AS, Arnold CS: Interaction of the growth hormone receptor cytoplasmic domain with the JAK2 tyrosine kinase. Endocrinology. 1994, 135: 2228-2239.PubMed
80.
go back to reference Luo H, Rose P, Barber D: Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol Cell Biol. 1997, 17: 1562-1571.PubMedPubMedCentral Luo H, Rose P, Barber D: Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol Cell Biol. 1997, 17: 1562-1571.PubMedPubMedCentral
81.
go back to reference Fujitani Y, Hibi M, Fukada T: An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT. Oncogene. 1997, 14: 751-761. 10.1038/sj/onc/1200907.PubMed Fujitani Y, Hibi M, Fukada T: An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT. Oncogene. 1997, 14: 751-761. 10.1038/sj/onc/1200907.PubMed
82.
go back to reference Frank SJ, Yi W, Zhao Y: Regions of the JAK2 tyrosine kinase required for coupling to the growth hormone receptor. J Biol Chem. 1995, 270: 14776-14785.PubMed Frank SJ, Yi W, Zhao Y: Regions of the JAK2 tyrosine kinase required for coupling to the growth hormone receptor. J Biol Chem. 1995, 270: 14776-14785.PubMed
83.
go back to reference Zhao Y, Wagner F, Frank SJ, Kraft AS: The amino-terminal portion of the JAK2 protein kinase is necessary for binding and phosphorylation of the granulocyte-macrophage colony-stimulating factor receptor beta c chain. J Biol Chem. 1995, 270: 13814-13818.PubMed Zhao Y, Wagner F, Frank SJ, Kraft AS: The amino-terminal portion of the JAK2 protein kinase is necessary for binding and phosphorylation of the granulocyte-macrophage colony-stimulating factor receptor beta c chain. J Biol Chem. 1995, 270: 13814-13818.PubMed
84.
go back to reference Kohlhuber F, Rogers NC, Watling D: A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol Cell Biol. 1997, 17: 695-706.PubMedPubMedCentral Kohlhuber F, Rogers NC, Watling D: A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol Cell Biol. 1997, 17: 695-706.PubMedPubMedCentral
85.
go back to reference Chen M, Cheng A, Chen YQ: The amino terminus of JAK3 is necessary and sufficient for binding to the common gamma chain and confers the ability to transmit interleukin 2-mediated signals. Proc Natl Acad Sci USA. 1997, 94: 6910-6915.PubMedPubMedCentral Chen M, Cheng A, Chen YQ: The amino terminus of JAK3 is necessary and sufficient for binding to the common gamma chain and confers the ability to transmit interleukin 2-mediated signals. Proc Natl Acad Sci USA. 1997, 94: 6910-6915.PubMedPubMedCentral
86.
go back to reference Cacalano NA, Migone TS, Bazan F: Autosomal SCID caused by a point mutation in the N-terminus of Jak3: mapping of the Jak3-receptor interaction domain. EMBO J. 1999, 18: 1549-1558.PubMedPubMedCentral Cacalano NA, Migone TS, Bazan F: Autosomal SCID caused by a point mutation in the N-terminus of Jak3: mapping of the Jak3-receptor interaction domain. EMBO J. 1999, 18: 1549-1558.PubMedPubMedCentral
87.
go back to reference Yan H, Piazza F, Krishnan K, Pine R, Krolewski JJ: Definition of the interferon-alpha receptor-binding domain on the TYK2 kinase. JBiol Chem. 1998, 273: 4046-4051. Yan H, Piazza F, Krishnan K, Pine R, Krolewski JJ: Definition of the interferon-alpha receptor-binding domain on the TYK2 kinase. JBiol Chem. 1998, 273: 4046-4051.
88.
go back to reference Richter MF, Dumenil G, Uze G, Fellous M, Pellegrini S: Specific contribution of tyk2 JH regions to the binding and the expression of the interferon alpha/beta receptor component IFNAR1. J Biol Chem. 1998, 273: 24723-24729.PubMed Richter MF, Dumenil G, Uze G, Fellous M, Pellegrini S: Specific contribution of tyk2 JH regions to the binding and the expression of the interferon alpha/beta receptor component IFNAR1. J Biol Chem. 1998, 273: 24723-24729.PubMed
89.
go back to reference Takeshita T, Arita T, Higuchi M: STAM, signal transducing adaptor molecule, is associated with Janus kinases and involved in signaling for cell growth and c-myc induction. Immunity. 1997, 6: 449-457.PubMed Takeshita T, Arita T, Higuchi M: STAM, signal transducing adaptor molecule, is associated with Janus kinases and involved in signaling for cell growth and c-myc induction. Immunity. 1997, 6: 449-457.PubMed
90.
go back to reference Asao H, Sasaki Y, Arita T: Hrs is associated with STAM, a signal-transducing adaptor molecule. Its suppressive effect on cytokine-induced cell growth. J Biol Chem. 1997, 272: 32785-32791.PubMed Asao H, Sasaki Y, Arita T: Hrs is associated with STAM, a signal-transducing adaptor molecule. Its suppressive effect on cytokine-induced cell growth. J Biol Chem. 1997, 272: 32785-32791.PubMed
91.
go back to reference Tanaka N, Kaneko K, Asao H: Possible involvement of a novel STAM-associated molecule "AMSH" in intracellular signal transduction mediated by cytokines. J Biol Chem. 1999, 274: 19129-19135.PubMed Tanaka N, Kaneko K, Asao H: Possible involvement of a novel STAM-associated molecule "AMSH" in intracellular signal transduction mediated by cytokines. J Biol Chem. 1999, 274: 19129-19135.PubMed
92.
go back to reference Livnah O, Stura EA, Middleton SA: Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science. 1999, 283: 987-990. 10.1126/science.283.5404.987.PubMed Livnah O, Stura EA, Middleton SA: Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science. 1999, 283: 987-990. 10.1126/science.283.5404.987.PubMed
93.
go back to reference Remy I, Wilson IA, Michnick SW: Erythropoietin receptor activation by a ligand-induced conformation change. Science. 1999, 283: 990-993. 10.1126/science.283.5404.990.PubMed Remy I, Wilson IA, Michnick SW: Erythropoietin receptor activation by a ligand-induced conformation change. Science. 1999, 283: 990-993. 10.1126/science.283.5404.990.PubMed
94.
go back to reference Tibbles LA, Woodgett JR: The stress-activated protein kinase pathways. Cell Mol Life Sci. 1999, 55: 1230-1254.PubMed Tibbles LA, Woodgett JR: The stress-activated protein kinase pathways. Cell Mol Life Sci. 1999, 55: 1230-1254.PubMed
95.
go back to reference Campbell KS: Signal transduction from the B cell antigen-receptor. Curr Opin Immunol. 1999, 11: 256-264.PubMed Campbell KS: Signal transduction from the B cell antigen-receptor. Curr Opin Immunol. 1999, 11: 256-264.PubMed
96.
go back to reference Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE: The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 1999, 17: 701-738.PubMed Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE: The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 1999, 17: 701-738.PubMed
97.
go back to reference Kurosaki T: Genetic analysis of B cell antigen receptor signaling. Annu Rev Immunol. 1999, 17: 555-592.PubMed Kurosaki T: Genetic analysis of B cell antigen receptor signaling. Annu Rev Immunol. 1999, 17: 555-592.PubMed
98.
go back to reference Hardy K, Chaudhri G: Activation and signal transduction via mitogen-activated protein (MAP) kinases in T lymphocytes. Immunol Cell Biol. 1997, 75: 528-545.PubMed Hardy K, Chaudhri G: Activation and signal transduction via mitogen-activated protein (MAP) kinases in T lymphocytes. Immunol Cell Biol. 1997, 75: 528-545.PubMed
99.
go back to reference Su B, Karin M: Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol. 1996, 8: 402-411.PubMed Su B, Karin M: Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol. 1996, 8: 402-411.PubMed
100.
go back to reference Fu XY, Schindler C, Improta T, Aebersold R, Darnell JEJ: The proteins of ISGF-3, the interferon alpha-induced transcriptional activator, define a gene family involved in signal transduction. Proc Natl Acad Sci USA. 1992, 89: 7840-7843.PubMedPubMedCentral Fu XY, Schindler C, Improta T, Aebersold R, Darnell JEJ: The proteins of ISGF-3, the interferon alpha-induced transcriptional activator, define a gene family involved in signal transduction. Proc Natl Acad Sci USA. 1992, 89: 7840-7843.PubMedPubMedCentral
101.
go back to reference Shuai K, Schindler C, Prezioso VR, Darnell JEJ: Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science. 1992, 258: 1808-1812.PubMed Shuai K, Schindler C, Prezioso VR, Darnell JEJ: Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science. 1992, 258: 1808-1812.PubMed
102.
go back to reference Zhong Z, Wen Z, Darnell JEJ: Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proc Natl Acad Sci USA. 1004, 91: 4806-4810. Zhong Z, Wen Z, Darnell JEJ: Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proc Natl Acad Sci USA. 1004, 91: 4806-4810.
103.
go back to reference Akira S, Nishio Y, Inoue M: Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell . 1994, 77: 63-71.PubMed Akira S, Nishio Y, Inoue M: Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell . 1994, 77: 63-71.PubMed
104.
go back to reference Yamamoto K, Quelle FW, Thierfelder WE: Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. Mol Cell Biol. 1994, 14: 4342-4349.PubMedPubMedCentral Yamamoto K, Quelle FW, Thierfelder WE: Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. Mol Cell Biol. 1994, 14: 4342-4349.PubMedPubMedCentral
105.
go back to reference Quelle FW, Shimoda K, Thierfelder W: Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in responses to IL-4 and IL-3 but are not required for mitogenesis. Mol Cell Biol. 1995, 15: 3336-3343.PubMedPubMedCentral Quelle FW, Shimoda K, Thierfelder W: Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in responses to IL-4 and IL-3 but are not required for mitogenesis. Mol Cell Biol. 1995, 15: 3336-3343.PubMedPubMedCentral
106.
go back to reference Hou J, Schindler U, Henzel WJ: An interleukin-4-induced transcription factor: IL-4 Stat. Science . 1994, 265: 1701-1706.PubMed Hou J, Schindler U, Henzel WJ: An interleukin-4-induced transcription factor: IL-4 Stat. Science . 1994, 265: 1701-1706.PubMed
107.
go back to reference Wakao H, Gouilleux F, Groner B: Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J. 1994, 13: 2182-2191.PubMedPubMedCentral Wakao H, Gouilleux F, Groner B: Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J. 1994, 13: 2182-2191.PubMedPubMedCentral
108.
go back to reference Hou J, Schindler U, Henzel WJ, Wong SC, McKnight SL: Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity. 1995, 2: 321-329.PubMed Hou J, Schindler U, Henzel WJ, Wong SC, McKnight SL: Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity. 1995, 2: 321-329.PubMed
109.
go back to reference Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L: Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci USA. 1995, 92: 8831-8835.PubMedPubMedCentral Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L: Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci USA. 1995, 92: 8831-8835.PubMedPubMedCentral
110.
go back to reference Darnell JEJ: STATs and gene regulation. Science. 1997, 277: 1630-1635.PubMed Darnell JEJ: STATs and gene regulation. Science. 1997, 277: 1630-1635.PubMed
111.
go back to reference Schindler C, Fu XY, Improta T, Aebersold R, Darnell JEJ: Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proc Natl Acad Sci USA. 1992, 89: 7836-7839.PubMedPubMedCentral Schindler C, Fu XY, Improta T, Aebersold R, Darnell JEJ: Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proc Natl Acad Sci USA. 1992, 89: 7836-7839.PubMedPubMedCentral
112.
go back to reference Shuai K, Stark GR, Kerr IM, Darnell JEJ: A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science. 1993, 261: 1744-1746.PubMed Shuai K, Stark GR, Kerr IM, Darnell JEJ: A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science. 1993, 261: 1744-1746.PubMed
113.
go back to reference Greenlund AC, Morales MO, Viviano BL: Stat recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity. 1995, 2: 677-687.PubMed Greenlund AC, Morales MO, Viviano BL: Stat recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity. 1995, 2: 677-687.PubMed
114.
go back to reference Schindler U, Wu P, Rothe M, Brasseur M, McKnight SL: Components of a Stat recognition code: evidence for two layers of molecular selectivity. Immunity. 1995, 2: 689-697.PubMed Schindler U, Wu P, Rothe M, Brasseur M, McKnight SL: Components of a Stat recognition code: evidence for two layers of molecular selectivity. Immunity. 1995, 2: 689-697.PubMed
115.
go back to reference Becker S, Groner B, Muller CW: Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature. 1998, 394: 145-151.PubMed Becker S, Groner B, Muller CW: Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature. 1998, 394: 145-151.PubMed
116.
go back to reference Chen X, Vinkemeier U, Zhao Y: Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell. 1998, 93: 827-839.PubMed Chen X, Vinkemeier U, Zhao Y: Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell. 1998, 93: 827-839.PubMed
117.
go back to reference Vinkemeier U, Moarefi I, Darnell JEJ, Kuriyan J: Structure of the amino-terminal protein interaction domain of STAT-4. Science. 1998, 279: 1048-1052.PubMed Vinkemeier U, Moarefi I, Darnell JEJ, Kuriyan J: Structure of the amino-terminal protein interaction domain of STAT-4. Science. 1998, 279: 1048-1052.PubMed
118.
go back to reference Xu X, Sun YL, Hoey T: Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science. 1996, 273: 794-797.PubMed Xu X, Sun YL, Hoey T: Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science. 1996, 273: 794-797.PubMed
119.
go back to reference Mikita T, Campbell D, Wu P, Williamson K, Schindler U: Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol Cell Biol. 1996, 16: 5811-5820.PubMedPubMedCentral Mikita T, Campbell D, Wu P, Williamson K, Schindler U: Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol Cell Biol. 1996, 16: 5811-5820.PubMedPubMedCentral
120.
go back to reference John S, Vinkemeier U, Soldaini E, Darnell JEJ, Leonard WJ: The significance of tetramerization in promoter recruitment by Stat5. Mol Cell Biol. 1999, 19: 1910-1918.PubMedPubMedCentral John S, Vinkemeier U, Soldaini E, Darnell JEJ, Leonard WJ: The significance of tetramerization in promoter recruitment by Stat5. Mol Cell Biol. 1999, 19: 1910-1918.PubMedPubMedCentral
121.
go back to reference Bhattacharya S, Eckner R, Grossman S: Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature. 1996, 383: 344-347.PubMed Bhattacharya S, Eckner R, Grossman S: Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature. 1996, 383: 344-347.PubMed
122.
go back to reference Zhang JJ, Vinkemeier U, Gu W: Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci USA. 1996, 93: 15092-15096.PubMedPubMedCentral Zhang JJ, Vinkemeier U, Gu W: Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci USA. 1996, 93: 15092-15096.PubMedPubMedCentral
123.
go back to reference Horvai AE, Xu L, Korzus E: Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci USA. 1997, 94: 1074-1079.PubMedPubMedCentral Horvai AE, Xu L, Korzus E: Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci USA. 1997, 94: 1074-1079.PubMedPubMedCentral
124.
go back to reference Korzus E, Torchia J, Rose DW: Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science. 1998, 279: 703-707.PubMed Korzus E, Torchia J, Rose DW: Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science. 1998, 279: 703-707.PubMed
125.
go back to reference Pfitzner E, Jahne R, Wissler M, Stoecklin E, Groner B: p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of Stat5, but does not participate in the Stat5-mediated suppression of the glucocorticoid response. Mol Endocrinol . 1998, 12: 1582-1593.PubMed Pfitzner E, Jahne R, Wissler M, Stoecklin E, Groner B: p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of Stat5, but does not participate in the Stat5-mediated suppression of the glucocorticoid response. Mol Endocrinol . 1998, 12: 1582-1593.PubMed
126.
go back to reference Zhu M, John S, Berg M, Leonard WJ: Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNgamma-mediated signaling. Cell. 1999, 96: 121-130.PubMed Zhu M, John S, Berg M, Leonard WJ: Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNgamma-mediated signaling. Cell. 1999, 96: 121-130.PubMed
127.
go back to reference Stocklin E, Wissler M, Gouilleux F, Groner B: Functional interactions between Stat5 and the glucocorticoid receptor. Nature . 1996, 383: 726-728.PubMed Stocklin E, Wissler M, Gouilleux F, Groner B: Functional interactions between Stat5 and the glucocorticoid receptor. Nature . 1996, 383: 726-728.PubMed
128.
go back to reference Moriggl R, Berchtold S, Friedrich K: Comparison of the trans-activation domains of Stat5 and Stat6 in lymphoid cells and mammary epithelial cells. Mol Cell Biol. 1997, 17: 3663-3678.PubMedPubMedCentral Moriggl R, Berchtold S, Friedrich K: Comparison of the trans-activation domains of Stat5 and Stat6 in lymphoid cells and mammary epithelial cells. Mol Cell Biol. 1997, 17: 3663-3678.PubMedPubMedCentral
129.
go back to reference Cella N, Groner B, Hynes NE: Characterization of Stat5a and Stat5b homodimers and heterodimers and their association with the glucocortiocoid receptor in mammary cells. Mol Cell Biol. 1998, 18: 1783-1792.PubMedPubMedCentral Cella N, Groner B, Hynes NE: Characterization of Stat5a and Stat5b homodimers and heterodimers and their association with the glucocortiocoid receptor in mammary cells. Mol Cell Biol. 1998, 18: 1783-1792.PubMedPubMedCentral
130.
go back to reference Look DC, Pelletier MR, Tidwell RM, Roswit WT, Holtzman MJ: Stat1 depends on transcriptional synergy with Sp1. J Biol Chem. 1995, 270: 30264-30267.PubMed Look DC, Pelletier MR, Tidwell RM, Roswit WT, Holtzman MJ: Stat1 depends on transcriptional synergy with Sp1. J Biol Chem. 1995, 270: 30264-30267.PubMed
131.
go back to reference Schaefer TS, Sanders LK, Nathans D: Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci USA. 1995, 92: 9097-9101.PubMedPubMedCentral Schaefer TS, Sanders LK, Nathans D: Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci USA. 1995, 92: 9097-9101.PubMedPubMedCentral
132.
go back to reference Shen CH, Stavnezer J: Interaction of stat6 and NF-kappaB: direct association and synergistic activation of interleukin-4-induced transcription. Mol Cell Biol. 1998, 18: 3395-3404.PubMedPubMedCentral Shen CH, Stavnezer J: Interaction of stat6 and NF-kappaB: direct association and synergistic activation of interleukin-4-induced transcription. Mol Cell Biol. 1998, 18: 3395-3404.PubMedPubMedCentral
133.
go back to reference Wen Z, Zhong Z, Darnell JEJ: Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995, 82: 241-250.PubMed Wen Z, Zhong Z, Darnell JEJ: Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995, 82: 241-250.PubMed
134.
go back to reference Zhang X, Blenis J, Li HC, Schindler C, Chen-Kiang S: Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science. 1995, 267: 1990-1994.PubMed Zhang X, Blenis J, Li HC, Schindler C, Chen-Kiang S: Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science. 1995, 267: 1990-1994.PubMed
135.
go back to reference Wen Z, Darnell JEJ: Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res . 1997, 25: 2062-2067.PubMedPubMedCentral Wen Z, Darnell JEJ: Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res . 1997, 25: 2062-2067.PubMedPubMedCentral
136.
go back to reference Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell JEJ: Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc Natl Acad Sci USA. 1996, 93: 7673-7678.PubMedPubMedCentral Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell JEJ: Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc Natl Acad Sci USA. 1996, 93: 7673-7678.PubMedPubMedCentral
137.
go back to reference Moriggl R, Gouilleux-Gruart V, Jahne R: Deletion of the carboxyl-terminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Mol Cell Biol. 1996, 16: 5691-5700.PubMedPubMedCentral Moriggl R, Gouilleux-Gruart V, Jahne R: Deletion of the carboxyl-terminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Mol Cell Biol. 1996, 16: 5691-5700.PubMedPubMedCentral
138.
go back to reference Cho SS, Bacon CM, Sudarshan C: Activation of STAT4 by IL-12 and IFN-alpha: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J Immunol. 1996, 157: 4781-4789.PubMed Cho SS, Bacon CM, Sudarshan C: Activation of STAT4 by IL-12 and IFN-alpha: evidence for the involvement of ligand-induced tyrosine and serine phosphorylation. J Immunol. 1996, 157: 4781-4789.PubMed
139.
go back to reference Beadling C, Ng J, Babbage JW, Cantrell DA: Interleukin-2 activation of STAT5 requires the convergent action of tyrosine kinases and a serine/threonine kinase pathway distinct from the Raf1/ERK2 MAP kinase pathway. EMBO J. 1996, 15: 1902-1913.PubMedPubMedCentral Beadling C, Ng J, Babbage JW, Cantrell DA: Interleukin-2 activation of STAT5 requires the convergent action of tyrosine kinases and a serine/threonine kinase pathway distinct from the Raf1/ERK2 MAP kinase pathway. EMBO J. 1996, 15: 1902-1913.PubMedPubMedCentral
140.
go back to reference Yamashita H, Xu J, Erwin RA: Differential control of the phosphorylation state of proline-juxtaposed serine residues ser725 of stat5a and ser730 of stat5b in prolactin-sensitive cells. J Biol Chem. 1998, 273: 30218-30224.PubMed Yamashita H, Xu J, Erwin RA: Differential control of the phosphorylation state of proline-juxtaposed serine residues ser725 of stat5a and ser730 of stat5b in prolactin-sensitive cells. J Biol Chem. 1998, 273: 30218-30224.PubMed
141.
go back to reference Woetmann A, Nielsen M, Christensen ST: Inhibition of protein phosphatase 2A induces serine/threonine phosphorylation, subcellular redistribution, and functional inhibition of STAT3. Proc Natl Acad Sci USA. 1999, 96: 10620-10625.PubMedPubMedCentral Woetmann A, Nielsen M, Christensen ST: Inhibition of protein phosphatase 2A induces serine/threonine phosphorylation, subcellular redistribution, and functional inhibition of STAT3. Proc Natl Acad Sci USA. 1999, 96: 10620-10625.PubMedPubMedCentral
142.
go back to reference Zauberman A, Zipori D, Krupsky M, Ben-Levy R: Stress activated protein kinase p38 is involved in IL-6 induced transcriptional activation of STAT3. Oncogene. 1999, 18: 3886-3893. 10.1038/sj/onc/1202738.PubMed Zauberman A, Zipori D, Krupsky M, Ben-Levy R: Stress activated protein kinase p38 is involved in IL-6 induced transcriptional activation of STAT3. Oncogene. 1999, 18: 3886-3893. 10.1038/sj/onc/1202738.PubMed
143.
go back to reference Turkson J, Bowman T, Adnane J: Requirement for Ras/Rac1-mediated p38 and c-Jun N-terminal kinase signaling in stat3 transcriptional activity induced by the src oncoprotein. Mol Cell Biol. 1999, 19: 7519-7528.PubMedPubMedCentral Turkson J, Bowman T, Adnane J: Requirement for Ras/Rac1-mediated p38 and c-Jun N-terminal kinase signaling in stat3 transcriptional activity induced by the src oncoprotein. Mol Cell Biol. 1999, 19: 7519-7528.PubMedPubMedCentral
144.
go back to reference Bode JG, Gatsios P, Ludwig S: The mitogen-activated protein (MAP) kinase p38 and its upstream activator MAP kinase kinase 6 are involved in the activation of signal transducer and activator of transcription by hyperosmolarity. J Biol Chem. 1999, 274: 30222-30227.PubMed Bode JG, Gatsios P, Ludwig S: The mitogen-activated protein (MAP) kinase p38 and its upstream activator MAP kinase kinase 6 are involved in the activation of signal transducer and activator of transcription by hyperosmolarity. J Biol Chem. 1999, 274: 30222-30227.PubMed
145.
go back to reference Goh KC, Haque SJ, Williams BR: p38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation induced by interferons. EMBO J. 1999, 18: 5601-5608.PubMedPubMedCentral Goh KC, Haque SJ, Williams BR: p38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation induced by interferons. EMBO J. 1999, 18: 5601-5608.PubMedPubMedCentral
146.
go back to reference Lim CP, Cao X: Serine phosphorylation and negative regulation of stat3 by JNK. J Biol Chem. 1999, 274: 31055-31061.PubMed Lim CP, Cao X: Serine phosphorylation and negative regulation of stat3 by JNK. J Biol Chem. 1999, 274: 31055-31061.PubMed
147.
go back to reference David M, Petricoin ER, Benjamin C: Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins. Science . 1995, 269: 1721-1723.PubMed David M, Petricoin ER, Benjamin C: Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins. Science . 1995, 269: 1721-1723.PubMed
148.
go back to reference Chung J, Uchida E, Grammer TC, Blenis J: STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol. 1997, 17: 6508-6516.PubMedPubMedCentral Chung J, Uchida E, Grammer TC, Blenis J: STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol. 1997, 17: 6508-6516.PubMedPubMedCentral
149.
go back to reference Sengupta TK, Talbot ES, Scherle PA, Ivashkiv LB: Rapid inhibition of interleukin-6 signaling and stat3 activation mediated by mitogen-activated protein kinases. Proc Natl Acad Sci USA. 1998, 95: 11107-11112.PubMedPubMedCentral Sengupta TK, Talbot ES, Scherle PA, Ivashkiv LB: Rapid inhibition of interleukin-6 signaling and stat3 activation mediated by mitogen-activated protein kinases. Proc Natl Acad Sci USA. 1998, 95: 11107-11112.PubMedPubMedCentral
150.
go back to reference Strehlow I, Schindler C: Amino-terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation. J Biol Chem. 1998, 273: 28049-28056.PubMed Strehlow I, Schindler C: Amino-terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation. J Biol Chem. 1998, 273: 28049-28056.PubMed
151.
go back to reference Sekimoto T, Nakajima K, Tachibana T, Hirano T, Yoneda Y: Interferon-gamma-dependent nuclear import of Stat1 is mediated by the GTPase activity of Ran/TC4. J Biol Chem. 1996, 271: 31017-31020.PubMed Sekimoto T, Nakajima K, Tachibana T, Hirano T, Yoneda Y: Interferon-gamma-dependent nuclear import of Stat1 is mediated by the GTPase activity of Ran/TC4. J Biol Chem. 1996, 271: 31017-31020.PubMed
152.
go back to reference Sekimoto T, Yoneda Y: Nuclear import and export of proteins: the molecular basis for intracellular signaling. Cytokine Growth Factor Rev. 1998, 9: 205-211.PubMed Sekimoto T, Yoneda Y: Nuclear import and export of proteins: the molecular basis for intracellular signaling. Cytokine Growth Factor Rev. 1998, 9: 205-211.PubMed
153.
go back to reference Ullman KS, Powers MA, Forbes DJ: Nuclear export receptors: from importin to exportin. Cell. 1997, 90: 967-970.PubMed Ullman KS, Powers MA, Forbes DJ: Nuclear export receptors: from importin to exportin. Cell. 1997, 90: 967-970.PubMed
155.
go back to reference Subramaniam PS, Mujtaba MG, Paddy MR, Johnson HM: The carboxyl terminus of interferon-gamma contains a functional polybasic nuclear localization sequence. J Biol Chem. 1999, 274: 403-407.PubMed Subramaniam PS, Mujtaba MG, Paddy MR, Johnson HM: The carboxyl terminus of interferon-gamma contains a functional polybasic nuclear localization sequence. J Biol Chem. 1999, 274: 403-407.PubMed
156.
go back to reference Johnson HM, Torres BA, Green MM: Hypothesis: ligand/receptor-assisted nuclear translocation of STATs. Proc Soc Exp Biol Med. 1998, 218: 149-155.PubMed Johnson HM, Torres BA, Green MM: Hypothesis: ligand/receptor-assisted nuclear translocation of STATs. Proc Soc Exp Biol Med. 1998, 218: 149-155.PubMed
157.
go back to reference Car BD, Eng VM, Schnyder B: Interferon gamma receptor deficient mice are resistant to endotoxic shock. J Exp Med . 1994, 179: 1437-1444.PubMed Car BD, Eng VM, Schnyder B: Interferon gamma receptor deficient mice are resistant to endotoxic shock. J Exp Med . 1994, 179: 1437-1444.PubMed
158.
go back to reference Durbin JE, Hackenmiller R, Simon MC, Levy DE: Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell. 1996, 84: 443-450.PubMed Durbin JE, Hackenmiller R, Simon MC, Levy DE: Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell. 1996, 84: 443-450.PubMed
159.
go back to reference Meraz MA, White JM, Sheehan KC: Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell. 1996, 84: 431-442.PubMed Meraz MA, White JM, Sheehan KC: Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell. 1996, 84: 431-442.PubMed
160.
go back to reference Jouanguy E, Lamhamedi-Cherradi S, Lammas D: A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nature Genet. 1999, 21: 370-378.PubMed Jouanguy E, Lamhamedi-Cherradi S, Lammas D: A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nature Genet. 1999, 21: 370-378.PubMed
161.
go back to reference Sahni M, Ambrosetti DC, Mansukhani A: FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 1999, 13: 1361-1366.PubMedPubMedCentral Sahni M, Ambrosetti DC, Mansukhani A: FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 1999, 13: 1361-1366.PubMedPubMedCentral
162.
go back to reference Kaplan DH, Shankaran V, Dighe AS: Demonstration of an interferon gamma-dependent tumor surveillance system in immuno-competent mice. Proc Natl Acad Sci USA. 1998, 95: 7556-7561.PubMedPubMedCentral Kaplan DH, Shankaran V, Dighe AS: Demonstration of an interferon gamma-dependent tumor surveillance system in immuno-competent mice. Proc Natl Acad Sci USA. 1998, 95: 7556-7561.PubMedPubMedCentral
163.
go back to reference Fallarino F, Gajewski TF: Cutting edge: differentiation of antitumor CTL In vivo requires host expression of stat1. J Immunol . 1999, 163: 4109-4113.PubMed Fallarino F, Gajewski TF: Cutting edge: differentiation of antitumor CTL In vivo requires host expression of stat1. J Immunol . 1999, 163: 4109-4113.PubMed
164.
go back to reference Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR: Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science. 1997, 278: 1630-1632.PubMed Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR: Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science. 1997, 278: 1630-1632.PubMed
165.
go back to reference Tanaka N, Sato M, Lamphier MS: Type I interferons are essential mediators of apoptotic death in virally infected cells. Genes Cells. 1998, 3: 29-37. 10.1046/j.1365-2443.1998.00164.x.PubMed Tanaka N, Sato M, Lamphier MS: Type I interferons are essential mediators of apoptotic death in virally infected cells. Genes Cells. 1998, 3: 29-37. 10.1046/j.1365-2443.1998.00164.x.PubMed
166.
go back to reference Bluyssen HA, Levy DE: Stat2 is a transcriptional activator that requires sequence-specific contacts provided by stat1 and p48 for stable interaction with DNA. J Biol Chem. 1997, 272: 4600-4605.PubMed Bluyssen HA, Levy DE: Stat2 is a transcriptional activator that requires sequence-specific contacts provided by stat1 and p48 for stable interaction with DNA. J Biol Chem. 1997, 272: 4600-4605.PubMed
167.
go back to reference Takeda K, Noguchi K, Shi W: Targeted disruption of the mouse Stat3 gene leads to early 'embryonic' lethality. Proc Natl Acad Sci USA. 1997, 94: 3801-3804.PubMedPubMedCentral Takeda K, Noguchi K, Shi W: Targeted disruption of the mouse Stat3 gene leads to early 'embryonic' lethality. Proc Natl Acad Sci USA. 1997, 94: 3801-3804.PubMedPubMedCentral
168.
go back to reference Escary JL, Perreau J, Dumenil D, Ezine S, Brulet P: Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature. 1993, 363: 361-364.PubMed Escary JL, Perreau J, Dumenil D, Ezine S, Brulet P: Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature. 1993, 363: 361-364.PubMed
169.
go back to reference Takeda K, Clausen BE, Kaisho T: Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity. 1999, 10: 39-49.PubMed Takeda K, Clausen BE, Kaisho T: Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity. 1999, 10: 39-49.PubMed
170.
go back to reference Wang KS, Ritz J, Frank DA: IL-2 induces STAT4 activation in primary NK cells and NK cell lines, but not in T cells. J Immunol. 1999, 162: 299-304.PubMed Wang KS, Ritz J, Frank DA: IL-2 induces STAT4 activation in primary NK cells and NK cell lines, but not in T cells. J Immunol. 1999, 162: 299-304.PubMed
171.
go back to reference Kaplan MH, Sun YL, Hoey T, Grusby MJ: Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature. 1996, 382: 174-177.PubMed Kaplan MH, Sun YL, Hoey T, Grusby MJ: Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature. 1996, 382: 174-177.PubMed
172.
go back to reference Magram J, Connaughton SE, Warrier RR: IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity. 1996, 4: 471-481.PubMed Magram J, Connaughton SE, Warrier RR: IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity. 1996, 4: 471-481.PubMed
173.
go back to reference Wu C, Ferrante J, Gately MK, Magram J: Characterization of IL-12 receptor beta1 chain (IL-12Rbeta1)-deficient mice: IL-12Rbeta1 is an essential component of the functional mouse IL-12 receptor. J Immunol. 1997, 159: 1658-1665.PubMed Wu C, Ferrante J, Gately MK, Magram J: Characterization of IL-12 receptor beta1 chain (IL-12Rbeta1)-deficient mice: IL-12Rbeta1 is an essential component of the functional mouse IL-12 receptor. J Immunol. 1997, 159: 1658-1665.PubMed
174.
go back to reference de Jong R, Altare F, Haagen IA: Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science. 1998, 280: 1435-1438.PubMed de Jong R, Altare F, Haagen IA: Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science. 1998, 280: 1435-1438.PubMed
175.
go back to reference Lin JX, Mietz J, Modi WS, John S, Leonard WJ: Cloning of human Stat5B. Reconstitution of interleukin-2-induced Stat5A and Stat5BDNA binding activity in COS-7 cells. J Biol Chem. 1996, 271: 10738-10744.PubMed Lin JX, Mietz J, Modi WS, John S, Leonard WJ: Cloning of human Stat5B. Reconstitution of interleukin-2-induced Stat5A and Stat5BDNA binding activity in COS-7 cells. J Biol Chem. 1996, 271: 10738-10744.PubMed
176.
go back to reference Liu X, Robinson GW, Wagner KU: Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997, 11: 179-186.PubMed Liu X, Robinson GW, Wagner KU: Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997, 11: 179-186.PubMed
177.
go back to reference Udy GB, Towers RP, Snell RG: Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA. 1997, 94: 7239-7244.PubMedPubMedCentral Udy GB, Towers RP, Snell RG: Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA. 1997, 94: 7239-7244.PubMedPubMedCentral
178.
go back to reference Teglund S, McKay C, Schuetz E: STAT5a and STAT5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998, 93: 841-850.PubMed Teglund S, McKay C, Schuetz E: STAT5a and STAT5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998, 93: 841-850.PubMed
179.
go back to reference Moriggl R, Topham DJ, Teglund S: Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity. 1999, 10: 249-259.PubMed Moriggl R, Topham DJ, Teglund S: Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity. 1999, 10: 249-259.PubMed
180.
go back to reference Nakajima H, Liu XW, Wynshaw-Boris A: An indirect effect of Stat5a in IL-2-induced proliferation: a critical role for Stat5a in IL-2-mediated IL-2 receptor alpha chain induction. Immunity. 1997, 7: 691-701.PubMed Nakajima H, Liu XW, Wynshaw-Boris A: An indirect effect of Stat5a in IL-2-induced proliferation: a critical role for Stat5a in IL-2-mediated IL-2 receptor alpha chain induction. Immunity. 1997, 7: 691-701.PubMed
181.
go back to reference Imada K, Bloom ET, Nakajima H: Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J Exp Med. 1998, 188: 2067-2074.PubMedPubMedCentral Imada K, Bloom ET, Nakajima H: Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J Exp Med. 1998, 188: 2067-2074.PubMedPubMedCentral
182.
go back to reference Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF: Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction. Cell. 1999, 98: 181-191.PubMed Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF: Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction. Cell. 1999, 98: 181-191.PubMed
183.
go back to reference Beadling C, Guschin D, Witthuhn BA: Activation of JAK kinases and STAT proteins by interleukin-2 and interferon alpha, but not the T cell antigen receptor, in human T lymphocytes. EMBO J. 1994, 13: 5605-5615.PubMedPubMedCentral Beadling C, Guschin D, Witthuhn BA: Activation of JAK kinases and STAT proteins by interleukin-2 and interferon alpha, but not the T cell antigen receptor, in human T lymphocytes. EMBO J. 1994, 13: 5605-5615.PubMedPubMedCentral
184.
go back to reference Welte T, Leitenberg D, Dittel BN: STAT5 interaction with the T cell receptor complex and stimulation of T cell proliferation. Science. 1999, 283: 222-225. 10.1006/abio.2000.4639.PubMed Welte T, Leitenberg D, Dittel BN: STAT5 interaction with the T cell receptor complex and stimulation of T cell proliferation. Science. 1999, 283: 222-225. 10.1006/abio.2000.4639.PubMed
185.
go back to reference Gerwien J, Nielsen M, Labuda T: Cutting edge: TCR stimulation by antibody and bacterial superantigen induces stat3 activation in human T cells. J Immunol. 1999, 163: 1742-1745.PubMed Gerwien J, Nielsen M, Labuda T: Cutting edge: TCR stimulation by antibody and bacterial superantigen induces stat3 activation in human T cells. J Immunol. 1999, 163: 1742-1745.PubMed
186.
go back to reference Kaplan MH, Schindler U, Smiley ST, Grusby MJ: Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity. 1996, 4: 313-319.PubMed Kaplan MH, Schindler U, Smiley ST, Grusby MJ: Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity. 1996, 4: 313-319.PubMed
187.
go back to reference Takeda K, Tanaka T, Shi W: Essential role of Stat6 in IL-4 signalling. Nature. 1996, 380: 627-630.PubMed Takeda K, Tanaka T, Shi W: Essential role of Stat6 in IL-4 signalling. Nature. 1996, 380: 627-630.PubMed
188.
go back to reference Takeda K, Kamanaka M, Tanaka T, Kishimoto T, Akira S: Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice. JImmunol. 1996, 157: 3220-3222. Takeda K, Kamanaka M, Tanaka T, Kishimoto T, Akira S: Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice. JImmunol. 1996, 157: 3220-3222.
189.
go back to reference Shimoda K, van Jong J, Sangster MY: Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature. 1996, 380: 630-633.PubMed Shimoda K, van Jong J, Sangster MY: Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature. 1996, 380: 630-633.PubMed
190.
go back to reference Akimoto T, Numata F, Tamura M: Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT)6-deficient mice. J Exp Med. 1998, 187: 1537-1542.PubMedPubMedCentral Akimoto T, Numata F, Tamura M: Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT)6-deficient mice. J Exp Med. 1998, 187: 1537-1542.PubMedPubMedCentral
191.
go back to reference Kuperman D, Schofield B, Wills-Karp M, Grusby MJ: Signal transducer and activator of transcription factor 6 (Stat6)- deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med. 1998, 187: 939-948.PubMedPubMedCentral Kuperman D, Schofield B, Wills-Karp M, Grusby MJ: Signal transducer and activator of transcription factor 6 (Stat6)- deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med. 1998, 187: 939-948.PubMedPubMedCentral
192.
go back to reference Miller RL, Eppinger TM, McConnell D, Cunningham-Rundles C, Rothman P: Analysis of cytokine signaling in patients with extrinsic asthma and hyperimmunoglobulin E. J Allergy Clin Immunol. 1998, 102: 503-511.PubMed Miller RL, Eppinger TM, McConnell D, Cunningham-Rundles C, Rothman P: Analysis of cytokine signaling in patients with extrinsic asthma and hyperimmunoglobulin E. J Allergy Clin Immunol. 1998, 102: 503-511.PubMed
193.
go back to reference Miyata S, Matsuyama T, Kodama T: STAT6 deficiency in a mouse model of allergen-induced airways inflammation abolishes eosinophilia but induces infiltration of CD8+ T cells. Clin Exp Allergy. 1999, 29: 114-123. 10.1046/j.1365-2222.1999.00405.x.PubMed Miyata S, Matsuyama T, Kodama T: STAT6 deficiency in a mouse model of allergen-induced airways inflammation abolishes eosinophilia but induces infiltration of CD8+ T cells. Clin Exp Allergy. 1999, 29: 114-123. 10.1046/j.1365-2222.1999.00405.x.PubMed
194.
go back to reference Kaplan MH, Whitfield JR, Boros DL, Grusby MJ: Th2 cells are required for the Schistosoma mansoni egg-induced granulomatous response. J Immunol. 1998, 160: 1850-1856.PubMed Kaplan MH, Whitfield JR, Boros DL, Grusby MJ: Th2 cells are required for the Schistosoma mansoni egg-induced granulomatous response. J Immunol. 1998, 160: 1850-1856.PubMed
195.
go back to reference Morse HCR, McCarty T, Giese NA, Taddesse-Heath L, Grusby MJ: STAT6-deficient mice exhibit normal induction of murine AIDS and expression of immunoglobulin E following infection with LP-BM5 murine leukemia viruses. J Virol. 1999, 73: 7093-7095.PubMedPubMedCentral Morse HCR, McCarty T, Giese NA, Taddesse-Heath L, Grusby MJ: STAT6-deficient mice exhibit normal induction of murine AIDS and expression of immunoglobulin E following infection with LP-BM5 murine leukemia viruses. J Virol. 1999, 73: 7093-7095.PubMedPubMedCentral
196.
go back to reference Kaplan MH, Wurster AL, Grusby MJ: A signal transducer and activator of transcription (Stat)4-independent pathway for the development of T helper type 1 cells. J Exp Med. 1998, 188: 1191-1196.PubMedPubMedCentral Kaplan MH, Wurster AL, Grusby MJ: A signal transducer and activator of transcription (Stat)4-independent pathway for the development of T helper type 1 cells. J Exp Med. 1998, 188: 1191-1196.PubMedPubMedCentral
197.
go back to reference Cantrell D: T cell antigen receptor signal transduction pathways. Annu Rev Immunol. 1996, 14: 259-274.PubMed Cantrell D: T cell antigen receptor signal transduction pathways. Annu Rev Immunol. 1996, 14: 259-274.PubMed
198.
go back to reference David M, Wong L, Flavell R: STAT activation by epidermal growth factor (EGF) and amphiregulin. Requirement for the EGF receptor kinase but not for tyrosine phosphorylation sites or JAK1. J Biol Chem. 1996, 271: 9185-9188.PubMed David M, Wong L, Flavell R: STAT activation by epidermal growth factor (EGF) and amphiregulin. Requirement for the EGF receptor kinase but not for tyrosine phosphorylation sites or JAK1. J Biol Chem. 1996, 271: 9185-9188.PubMed
199.
go back to reference Zhong Z, Wen Z, Darnell JEJ: Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994, 264: 95-98.PubMed Zhong Z, Wen Z, Darnell JEJ: Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994, 264: 95-98.PubMed
200.
go back to reference Leaman DW, Pisharody S, Flickinger TW: Roles of JAKs in activation of STATs and stimulation of c-fos gene expression by epidermal growth factor. Mol Cell Biol. 1996, 16: 369-375.PubMedPubMedCentral Leaman DW, Pisharody S, Flickinger TW: Roles of JAKs in activation of STATs and stimulation of c-fos gene expression by epidermal growth factor. Mol Cell Biol. 1996, 16: 369-375.PubMedPubMedCentral
201.
go back to reference Bhat GJ, Thekkumkara TJ, Thomas WG, Conrad KM, Baker KM: Activation of the STAT pathway by angiotensin II in T3CHO/AT1A cells. Cross-talk between angiotensin II and interleukin-6 nuclear signaling. J Biol Chem. 1995, 270: 19059-19065.PubMed Bhat GJ, Thekkumkara TJ, Thomas WG, Conrad KM, Baker KM: Activation of the STAT pathway by angiotensin II in T3CHO/AT1A cells. Cross-talk between angiotensin II and interleukin-6 nuclear signaling. J Biol Chem. 1995, 270: 19059-19065.PubMed
202.
go back to reference Marrero MB, Schieffer B, Paxton WG: Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature. 1995, 375: 247-250.PubMed Marrero MB, Schieffer B, Paxton WG: Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature. 1995, 375: 247-250.PubMed
203.
go back to reference Mellado M, Rodriguez-Frade JM, Aragay A: The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol. 1998, 161: 805-813.PubMed Mellado M, Rodriguez-Frade JM, Aragay A: The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol. 1998, 161: 805-813.PubMed
204.
go back to reference Kawata T, Shevchenko A, Fukuzawa M: SH2 signaling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in dictyostelium. Cell. 1997, 89: 909-916.PubMed Kawata T, Shevchenko A, Fukuzawa M: SH2 signaling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in dictyostelium. Cell. 1997, 89: 909-916.PubMed
205.
go back to reference Mohanty S, Jermyn KA, Early A: Evidence that the Dictyostelium Dd-STATa protein is a repressor that regulates commitment to stalk cell differentiation and is also required for efficient chemotaxis. Development. 1999, 126: 3391-3405.PubMed Mohanty S, Jermyn KA, Early A: Evidence that the Dictyostelium Dd-STATa protein is a repressor that regulates commitment to stalk cell differentiation and is also required for efficient chemotaxis. Development. 1999, 126: 3391-3405.PubMed
206.
go back to reference Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell JEJ: Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol. 1998, 18: 2553-2558.PubMedPubMedCentral Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell JEJ: Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol. 1998, 18: 2553-2558.PubMedPubMedCentral
207.
go back to reference Bromberg JF, Wrzeszczynska MH, Devgan G: Stat3 as an oncogene. Cell. 1999, 98: 295-303.PubMed Bromberg JF, Wrzeszczynska MH, Devgan G: Stat3 as an oncogene. Cell. 1999, 98: 295-303.PubMed
208.
go back to reference Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF: Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell. 1995, 80: 729-738.PubMed Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF: Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell. 1995, 80: 729-738.PubMed
209.
go back to reference Haque SJ, Harbor P, Tabrizi M, Yi T, Williams BR: Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J Biol Chem. 1998, 273: 33893-33896.PubMed Haque SJ, Harbor P, Tabrizi M, Yi T, Williams BR: Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J Biol Chem. 1998, 273: 33893-33896.PubMed
210.
go back to reference Migone TS, Cacalano NA, Taylor N: Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T-lymphotropic virus type I-transformed T cells. Proc Natl Acad Sci USA. 1998, 95: 3845-3850.PubMedPubMedCentral Migone TS, Cacalano NA, Taylor N: Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T-lymphotropic virus type I-transformed T cells. Proc Natl Acad Sci USA. 1998, 95: 3845-3850.PubMedPubMedCentral
211.
go back to reference Tsui HW, Siminovitch KA, de Souza L, Tsui FW: Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nature Genet. 1993, 4: 124-129.PubMed Tsui HW, Siminovitch KA, de Souza L, Tsui FW: Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nature Genet. 1993, 4: 124-129.PubMed
212.
go back to reference Bignon JS, Siminovitch KA: Identification of PTP1C mutation as the genetic defect in motheaten and viable motheaten mice: a step toward defining the roles of protein tyrosine phosphatases in the regulation of hemopoietic cell differentiation and function. Clin Immunol Immunopathol. 1994, 73: 168-179. 10.1006/clin.1994.1185.PubMed Bignon JS, Siminovitch KA: Identification of PTP1C mutation as the genetic defect in motheaten and viable motheaten mice: a step toward defining the roles of protein tyrosine phosphatases in the regulation of hemopoietic cell differentiation and function. Clin Immunol Immunopathol. 1994, 73: 168-179. 10.1006/clin.1994.1185.PubMed
213.
go back to reference Shultz LD, Schweitzer PA, Rajan TV: Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell. 1993, 73: 1445-1454.PubMed Shultz LD, Schweitzer PA, Rajan TV: Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell. 1993, 73: 1445-1454.PubMed
214.
go back to reference Green MC, Shultz LD: Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J Hered. 1975, 66: 250-258.PubMed Green MC, Shultz LD: Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J Hered. 1975, 66: 250-258.PubMed
215.
go back to reference Aoki K, Didomenico E, Sims NA: The tyrosine phosphatase SHP-1 is a negative regulator of osteoclastogenesis and osteoclast resorbing activity: increased resorption and osteopenia in me(v)/me(v) mutant mice. Bone. 1999, 25: 261-267. 10.1016/S8756-3282(99)00174-X.PubMed Aoki K, Didomenico E, Sims NA: The tyrosine phosphatase SHP-1 is a negative regulator of osteoclastogenesis and osteoclast resorbing activity: increased resorption and osteopenia in me(v)/me(v) mutant mice. Bone. 1999, 25: 261-267. 10.1016/S8756-3282(99)00174-X.PubMed
216.
go back to reference Kim TK, Maniatis T: Regulation of interferon-gamma-activated STAT1 by the ubiquitin-proteasome pathway. Science. 1996, 273: 1717-1719.PubMed Kim TK, Maniatis T: Regulation of interferon-gamma-activated STAT1 by the ubiquitin-proteasome pathway. Science. 1996, 273: 1717-1719.PubMed
217.
go back to reference Yoshimura A, Ohkubo T, Kiguchi T: A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J. 1995, 14: 2816-2826.PubMedPubMedCentral Yoshimura A, Ohkubo T, Kiguchi T: A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J. 1995, 14: 2816-2826.PubMedPubMedCentral
218.
go back to reference Starr R, Willson TA, Viney EM: A family of cytokine-inducible inhibitors of signalling. Nature. 1997, 387: 917-921.PubMed Starr R, Willson TA, Viney EM: A family of cytokine-inducible inhibitors of signalling. Nature. 1997, 387: 917-921.PubMed
219.
go back to reference Endo TA, Masuhara M, Yokouchi M: A new protein containing an SH2 domain that inhibits JAK kinases. Nature. 1997, 387: 921-924.PubMed Endo TA, Masuhara M, Yokouchi M: A new protein containing an SH2 domain that inhibits JAK kinases. Nature. 1997, 387: 921-924.PubMed
220.
go back to reference Naka T, Narazaki M, Hirata M: Structure and function of a new STAT-induced STAT inhibitor. Nature. 1997, 387: 924-929.PubMed Naka T, Narazaki M, Hirata M: Structure and function of a new STAT-induced STAT inhibitor. Nature. 1997, 387: 924-929.PubMed
221.
go back to reference Zhang JG, Farley A, Nicholson SE: The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA. 1999, 96: 2071-2076.PubMedPubMedCentral Zhang JG, Farley A, Nicholson SE: The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA. 1999, 96: 2071-2076.PubMedPubMedCentral
222.
go back to reference Sasaki A, Yasukawa H, Suzuki A: Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells. 1999, 4: 339-351.PubMed Sasaki A, Yasukawa H, Suzuki A: Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells. 1999, 4: 339-351.PubMed
223.
go back to reference Naka T, Matsumoto T, Narazaki M: Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT-induced STAT inhibitor-1) deficient mice. Proc Natl Acad Sci USA. 1998, 95: 15577-15582.PubMedPubMedCentral Naka T, Matsumoto T, Narazaki M: Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT-induced STAT inhibitor-1) deficient mice. Proc Natl Acad Sci USA. 1998, 95: 15577-15582.PubMedPubMedCentral
224.
go back to reference Starr R, Metcalf D, Elefanty AG: Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc Natl Acad Sci USA. 1998, 95: 14395-14399.PubMedPubMedCentral Starr R, Metcalf D, Elefanty AG: Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc Natl Acad Sci USA. 1998, 95: 14395-14399.PubMedPubMedCentral
225.
go back to reference Alexander WS, Starr R, Fenner JE: SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell. 1999, 98: 597-608.PubMed Alexander WS, Starr R, Fenner JE: SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell. 1999, 98: 597-608.PubMed
226.
go back to reference Marine JC, Topham DJ, McKay C: SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell. 1999, 98: 609-616.PubMed Marine JC, Topham DJ, McKay C: SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell. 1999, 98: 609-616.PubMed
227.
go back to reference Adams TE, Hansen JA, Starr R: Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem. 1998, 273: 1285-1287.PubMed Adams TE, Hansen JA, Starr R: Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem. 1998, 273: 1285-1287.PubMed
228.
go back to reference Cohney SJ, Sanden D, Cacalano NA: SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol Cell Biol. 1999, 19: 4980-4988.PubMedPubMedCentral Cohney SJ, Sanden D, Cacalano NA: SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol Cell Biol. 1999, 19: 4980-4988.PubMedPubMedCentral
229.
go back to reference Marine JC, McKay C, Wang D: SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell. 1999, 98: 617-627.PubMed Marine JC, McKay C, Wang D: SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell. 1999, 98: 617-627.PubMed
230.
go back to reference Aman MJ, Migone TS, Sasaki A: CIS associates with the interleukin-2 receptor beta chain and inhibits interleukin-2-dependent signaling. J Biol Chem. 1999, 274: 30266-30272.PubMed Aman MJ, Migone TS, Sasaki A: CIS associates with the interleukin-2 receptor beta chain and inhibits interleukin-2-dependent signaling. J Biol Chem. 1999, 274: 30266-30272.PubMed
231.
go back to reference Matsumoto A, Seki Y, Kubo M: Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice. Mol Cell Biol. 1999, 19: 6396-6407.PubMedPubMedCentral Matsumoto A, Seki Y, Kubo M: Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice. Mol Cell Biol. 1999, 19: 6396-6407.PubMedPubMedCentral
232.
go back to reference Pezet A, Favre H, Kelly PA, Edery M: Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling. J Biol Chem. 1999, 274: 24497-24502.PubMed Pezet A, Favre H, Kelly PA, Edery M: Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling. J Biol Chem. 1999, 274: 24497-24502.PubMed
233.
go back to reference Karlsson H, Gustafsson JA, Mode A: Cis desensitizes GH induced Stat5 signaling in rat liver cells. Mol Cell Endocrinol. 1999, 154: 37-43.PubMed Karlsson H, Gustafsson JA, Mode A: Cis desensitizes GH induced Stat5 signaling in rat liver cells. Mol Cell Endocrinol. 1999, 154: 37-43.PubMed
234.
go back to reference Bjorbaek C, Elmquist JK, El-Haschimi K: Activation of SOCS-3 messenger ribonucleic acid in the hypothalamus by ciliary neurotrophic factor. Endocrinology. 1999, 140: 2035-2043.PubMed Bjorbaek C, Elmquist JK, El-Haschimi K: Activation of SOCS-3 messenger ribonucleic acid in the hypothalamus by ciliary neurotrophic factor. Endocrinology. 1999, 140: 2035-2043.PubMed
235.
go back to reference Liu B, Liao J, Rao X: Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA . 1998, 95: 10626-10631.PubMedPubMedCentral Liu B, Liao J, Rao X: Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA . 1998, 95: 10626-10631.PubMedPubMedCentral
236.
go back to reference Chung CD, Liao J, Liu B: Specific inhibition of Stat3 signal transduction by PIAS3. Science. 1997, 278: 1803-1805.PubMed Chung CD, Liao J, Liu B: Specific inhibition of Stat3 signal transduction by PIAS3. Science. 1997, 278: 1803-1805.PubMed
237.
go back to reference Ye BH, Cattoretti G, Shen Q: The BCL-6 protooncogene controls germinal-centre formation and Th2-type inflammation. Nature Genet. 1997, 16: 161-170.PubMed Ye BH, Cattoretti G, Shen Q: The BCL-6 protooncogene controls germinal-centre formation and Th2-type inflammation. Nature Genet. 1997, 16: 161-170.PubMed
238.
go back to reference Dent AL, Hu-Li J, Paul WE, Staudt LM: T helper type 2 inflammatory disease in the absence of interleukin 4 and transcription factor STAT6. Proc Natl Acad Sci USA. 1998, 95: 13823-13828.PubMedPubMedCentral Dent AL, Hu-Li J, Paul WE, Staudt LM: T helper type 2 inflammatory disease in the absence of interleukin 4 and transcription factor STAT6. Proc Natl Acad Sci USA. 1998, 95: 13823-13828.PubMedPubMedCentral
Metadata
Title
Janus kinases and signal transducers and activators of transcription: their roles in cytokine signaling, development and immunoregulation
Authors
Robert A Ortmann
Tammy Cheng
Roberta Visconti
David M Frucht
John J O'Shea
Publication date
01-12-1999
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/1999
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar66

Other articles of this Issue 1/1999

Arthritis Research & Therapy 1/1999 Go to the issue