Skip to main content
Top
Published in: Arthritis Research & Therapy 5/2013

Open Access 01-10-2013 | Research article

The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model

Authors: Hui Yin Nam, Puvanan Karunanithi, Wagner Cheng Poh Loo, Sangeetha Vasudevaraj Naveen, Hui Cheng Chen, Paisal Hussin, Lucy Chan, Tunku Kamarul

Published in: Arthritis Research & Therapy | Issue 5/2013

Login to get access

Abstract

Introduction

Treatment of chondral injuries remains a major issue despite the many advances made in cartilage repair techniques. Although it has been postulated that the use of marrow stimulation in combination with cell-based therapy may provide superior outcome, this has yet to be demonstrated. A pilot study was thus conducted to determine if bone marrow derived mesenchymal stromal cells (BM-MSCs) have modulatory effects on the repair outcomes of bone marrow stimulation (BMS) techniques.

Methods

Two full-thickness chondral 5 mm diameter defects were created in tandem on the medial condyle of left stifle joints of 18 Boer caprine (N = 18). Goats were then divided equally into three groups. Simultaneously, bone marrow aspirates were taken from the iliac crests from the goats in Group 1 and were sent for BM-MSC isolation and expansion in vitro. Six weeks later, BMS surgery, which involves subchondral drilling at the defect sites, was performed. After two weeks, the knees in Group 1 were given autologous intra-articular BM-MSCs (N = 6). In Group 2, although BMS was performed there were no supplementations provided. In Group 3, no intervention was administered. The caprines were sacrificed after six months. Repairs were evaluated using macroscopic assessment through the International Cartilage Repair Society (ICRS) scoring, histologic grading by O’Driscoll score, biochemical assays for glycosaminoglycans (GAGs) and gene expressions for aggrecan, collagen II and Sox9.

Results

Histological and immunohistochemical analyses demonstrated hyaline-like cartilage regeneration in the transplanted sites particularly in Group 1. In contrast, tissues in Groups 2 and 3 demonstrated mainly fibrocartilage. The highest ICRS and O’Driscoll scorings was also observed in Group 1, while the lowest score was seen in Group 3. Similarly, the total GAG/total protein as well as chondrogenic gene levels were expressed in the same order, that is highest in Group 1 while the lowest in Group three. Significant differences between these 3 groups were observed (P <0.05).

Conclusions

This study suggests that supplementing intra-articular injections of BM-MSCs following BMS knee surgery provides superior cartilage repair outcomes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH: Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc. 2010, 42: 1795-1801. 10.1249/MSS.0b013e3181d9eea0.CrossRefPubMed Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH: Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc. 2010, 42: 1795-1801. 10.1249/MSS.0b013e3181d9eea0.CrossRefPubMed
2.
go back to reference Messner K, Gillquist J: Cartilage repair. A critical review. Acta Orthop Scand. 1996, 67: 523-529. 10.3109/17453679608996682.CrossRefPubMed Messner K, Gillquist J: Cartilage repair. A critical review. Acta Orthop Scand. 1996, 67: 523-529. 10.3109/17453679608996682.CrossRefPubMed
3.
go back to reference Mierisch CM, Wilson HA, Turner MA, Milbrandt TA, Berthoux L, Hammarskjöld ML, Rekosh D, Balian G, Diduch DR: Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. J Bone Joint Surg Am. 2003, 85-A: 1757-1767.PubMed Mierisch CM, Wilson HA, Turner MA, Milbrandt TA, Berthoux L, Hammarskjöld ML, Rekosh D, Balian G, Diduch DR: Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. J Bone Joint Surg Am. 2003, 85-A: 1757-1767.PubMed
4.
go back to reference Buckwalter JA, Mankin HJ: Articular cartilage repair and transplantation. Arthritis Rheum. 1998, 41: 1331-1342. 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J.CrossRefPubMed Buckwalter JA, Mankin HJ: Articular cartilage repair and transplantation. Arthritis Rheum. 1998, 41: 1331-1342. 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J.CrossRefPubMed
5.
go back to reference Hunziker EB: Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable?. Osteoarthritis Cartilage. 1999, 7: 15-28. 10.1053/joca.1998.0159.CrossRefPubMed Hunziker EB: Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable?. Osteoarthritis Cartilage. 1999, 7: 15-28. 10.1053/joca.1998.0159.CrossRefPubMed
6.
go back to reference Strauss E, Schachter A, Frenkel S, Rosen J: The efficacy of intra-articular hyaluronan injection after the microfracture technique for the treatment of articular cartilage lesions. Am J Sport Med. 2009, 37: 720-726. 10.1177/0363546508328415.CrossRef Strauss E, Schachter A, Frenkel S, Rosen J: The efficacy of intra-articular hyaluronan injection after the microfracture technique for the treatment of articular cartilage lesions. Am J Sport Med. 2009, 37: 720-726. 10.1177/0363546508328415.CrossRef
7.
go back to reference Steadman JR, Miller BS, Karas SG, Schlegel TF, Briggs KK, Hawkins RJ: The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg. 2003, 16: 83-86.PubMed Steadman JR, Miller BS, Karas SG, Schlegel TF, Briggs KK, Hawkins RJ: The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg. 2003, 16: 83-86.PubMed
8.
go back to reference Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG: Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003, 19: 477-484. 10.1053/jars.2003.50112.CrossRefPubMed Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG: Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003, 19: 477-484. 10.1053/jars.2003.50112.CrossRefPubMed
9.
go back to reference Weissman IL: Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000, 287: 1442-1446. 10.1126/science.287.5457.1442.CrossRefPubMed Weissman IL: Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000, 287: 1442-1446. 10.1126/science.287.5457.1442.CrossRefPubMed
10.
go back to reference Suhaeb AM, Naveen S, Mansor A, Kamarul T: Hyaluronic acid with or without bone marrow derived-mesenchymal stem cells improves osteoarthritic knee changes in rat model: a preliminary report. Indian J Exp Biol. 2012, 50: 383-390.PubMed Suhaeb AM, Naveen S, Mansor A, Kamarul T: Hyaluronic acid with or without bone marrow derived-mesenchymal stem cells improves osteoarthritic knee changes in rat model: a preliminary report. Indian J Exp Biol. 2012, 50: 383-390.PubMed
11.
go back to reference McIlwraith CW, Frisbie DD, Rodkey WG, Kisiday JD, Werpy NM, Kawcak CE, Steadman JR: Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthroscopy. 2011, 27: 1552-1561. 10.1016/j.arthro.2011.06.002.CrossRefPubMed McIlwraith CW, Frisbie DD, Rodkey WG, Kisiday JD, Werpy NM, Kawcak CE, Steadman JR: Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthroscopy. 2011, 27: 1552-1561. 10.1016/j.arthro.2011.06.002.CrossRefPubMed
12.
go back to reference Saw KY, Hussin P, Loke SC, Azam M, Chen HC, Tay YG, Low S, Wallin KL, Ragavanaidu K: Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthroscopy. 2009, 25: 1391-1400. 10.1016/j.arthro.2009.07.011.CrossRefPubMed Saw KY, Hussin P, Loke SC, Azam M, Chen HC, Tay YG, Low S, Wallin KL, Ragavanaidu K: Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthroscopy. 2009, 25: 1391-1400. 10.1016/j.arthro.2009.07.011.CrossRefPubMed
13.
go back to reference Brittberg M, Nilsson A, Lindahl A, Ohlsson C, Peterson L: Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res. 1996, 326: 270-283.CrossRefPubMed Brittberg M, Nilsson A, Lindahl A, Ohlsson C, Peterson L: Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res. 1996, 326: 270-283.CrossRefPubMed
14.
go back to reference O’Driscoll SW, Marx RG, Beaton DE, Miura Y, Gallay SH, Fitzsimmons JS: Validation of a simple histological-histochemical cartilage scoring system. Tissue Eng. 2001, 7: 313-320. 10.1089/10763270152044170.CrossRefPubMed O’Driscoll SW, Marx RG, Beaton DE, Miura Y, Gallay SH, Fitzsimmons JS: Validation of a simple histological-histochemical cartilage scoring system. Tissue Eng. 2001, 7: 313-320. 10.1089/10763270152044170.CrossRefPubMed
15.
go back to reference Boo L, Selvaratnam L, Tai CC, Ahmad TS, Kamarul T: Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture. J Mater Sci Mater Med. 2011, 22: 1343-1356. 10.1007/s10856-011-4294-7.CrossRefPubMed Boo L, Selvaratnam L, Tai CC, Ahmad TS, Kamarul T: Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture. J Mater Sci Mater Med. 2011, 22: 1343-1356. 10.1007/s10856-011-4294-7.CrossRefPubMed
16.
go back to reference Tan SL, Ahmad TS, Selvaratnam L, Kamarul T: Isolation, characterization and the multi-lineage differentiation potential of rabbit bone marrow-derived mesenchymal stem cells. J Anat. 2013, 222: 437-450. 10.1111/joa.12032.PubMedCentralCrossRefPubMed Tan SL, Ahmad TS, Selvaratnam L, Kamarul T: Isolation, characterization and the multi-lineage differentiation potential of rabbit bone marrow-derived mesenchymal stem cells. J Anat. 2013, 222: 437-450. 10.1111/joa.12032.PubMedCentralCrossRefPubMed
17.
go back to reference Saw KY, Anz A, Siew-Yoke Jee C, Merican S, Ching-Soong Ng R, Roohi SA, Ragavanaidu K: Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013, 29: 684-694. 10.1016/j.arthro.2012.12.008.CrossRefPubMed Saw KY, Anz A, Siew-Yoke Jee C, Merican S, Ching-Soong Ng R, Roohi SA, Ragavanaidu K: Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013, 29: 684-694. 10.1016/j.arthro.2012.12.008.CrossRefPubMed
18.
go back to reference Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH: Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010, 38: 1110-1116. 10.1177/0363546509359067.CrossRefPubMed Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH: Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010, 38: 1110-1116. 10.1177/0363546509359067.CrossRefPubMed
19.
go back to reference Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A: Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000, 374: 212-234.CrossRefPubMed Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A: Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000, 374: 212-234.CrossRefPubMed
20.
go back to reference Lee KB, Hui JH, Song IC, Ardany L, Lee EH: Injectable mesenchymal stem cell therapy for large cartilage defects - a porcine model. Stem Cells. 2007, 25: 2964-2971. 10.1634/stemcells.2006-0311.CrossRefPubMed Lee KB, Hui JH, Song IC, Ardany L, Lee EH: Injectable mesenchymal stem cell therapy for large cartilage defects - a porcine model. Stem Cells. 2007, 25: 2964-2971. 10.1634/stemcells.2006-0311.CrossRefPubMed
21.
go back to reference Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, Toda K: Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc. 2006, 14: 1307-1314. 10.1007/s00167-006-0124-8.CrossRefPubMed Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, Toda K: Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc. 2006, 14: 1307-1314. 10.1007/s00167-006-0124-8.CrossRefPubMed
22.
go back to reference Chen X, Armstrong MA, Li G: Mesenchymal stem cells in immunoregulation. Immunol Cell Biol. 2006, 84: 413-421. 10.1111/j.1440-1711.2006.01458.x.CrossRefPubMed Chen X, Armstrong MA, Li G: Mesenchymal stem cells in immunoregulation. Immunol Cell Biol. 2006, 84: 413-421. 10.1111/j.1440-1711.2006.01458.x.CrossRefPubMed
23.
go back to reference Uccelli A, Pistoia V, Moretta L: Mesenchymal stem cells: a new strategy for immunosuppression?. Trends Immunol. 2007, 28: 219-226. 10.1016/j.it.2007.03.001.CrossRefPubMed Uccelli A, Pistoia V, Moretta L: Mesenchymal stem cells: a new strategy for immunosuppression?. Trends Immunol. 2007, 28: 219-226. 10.1016/j.it.2007.03.001.CrossRefPubMed
24.
go back to reference Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, Xu C, Chen X, Huang Y, Zhu Z, Huang X, Han X, Xie N, Ren G: Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 2010, 20: 510-518. 10.1038/cr.2010.44.CrossRefPubMed Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, Xu C, Chen X, Huang Y, Zhu Z, Huang X, Han X, Xie N, Ren G: Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 2010, 20: 510-518. 10.1038/cr.2010.44.CrossRefPubMed
25.
go back to reference Dashtdar H, Rothan HA, Tay T, Ahmad RE, Ali R, Tay LX, Chong PP, Kamarul T: A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. J Orthopaed Res. 2011, 29: 1336-1342. 10.1002/jor.21413.CrossRef Dashtdar H, Rothan HA, Tay T, Ahmad RE, Ali R, Tay LX, Chong PP, Kamarul T: A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. J Orthopaed Res. 2011, 29: 1336-1342. 10.1002/jor.21413.CrossRef
26.
go back to reference Kamarul T, Selvaratnam L, Masjuddin T, Ab-Rahim S, Ng C, Chan KY, Ahmad TS: Autologous chondrocyte transplantation in the repair of full-thickness focal cartilage damage in rabbits. J Orthop Surg (Hong Kong). 2008, 16: 230-236. Kamarul T, Selvaratnam L, Masjuddin T, Ab-Rahim S, Ng C, Chan KY, Ahmad TS: Autologous chondrocyte transplantation in the repair of full-thickness focal cartilage damage in rabbits. J Orthop Surg (Hong Kong). 2008, 16: 230-236.
27.
go back to reference Kamarul T, Ab-Rahim S, Tumin M, Selvaratnam L, Ahmad TS: A preliminary study of the effects of glucosamine sulphate and chondroitin sulphate on surgically treated and untreated focal cartilage damage. Eur Cell Mater. 2011, 21: 259-271. discussion 270–271PubMed Kamarul T, Ab-Rahim S, Tumin M, Selvaratnam L, Ahmad TS: A preliminary study of the effects of glucosamine sulphate and chondroitin sulphate on surgically treated and untreated focal cartilage damage. Eur Cell Mater. 2011, 21: 259-271. discussion 270–271PubMed
28.
go back to reference Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T, Nawata M, Tensho K, Kato H, Uematsu K, Kuroda R, Kurosaka M, Yoshiya S, Hattori K, Ohgushi H: Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med. 2011, 5: 146-150. 10.1002/term.299.CrossRefPubMed Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T, Nawata M, Tensho K, Kato H, Uematsu K, Kuroda R, Kurosaka M, Yoshiya S, Hattori K, Ohgushi H: Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med. 2011, 5: 146-150. 10.1002/term.299.CrossRefPubMed
29.
go back to reference Harris JD, Brophy RH, Siston RA, Flanigan DC: Treatment of chondral defects in the athlete’s knee. Arthroscopy. 2010, 26: 841-852. 10.1016/j.arthro.2009.12.030.CrossRefPubMed Harris JD, Brophy RH, Siston RA, Flanigan DC: Treatment of chondral defects in the athlete’s knee. Arthroscopy. 2010, 26: 841-852. 10.1016/j.arthro.2009.12.030.CrossRefPubMed
30.
go back to reference Maniwa S, Ochi M, Motomura T, Nishikori T, Chen J, Naora H: Effects of hyaluronic acid and basic fibroblast growth factor on motility of chondrocytes and synovial cells in culture. Acta Orthop Scand. 2001, 72: 299-303. 10.1080/00016470152846664.CrossRefPubMed Maniwa S, Ochi M, Motomura T, Nishikori T, Chen J, Naora H: Effects of hyaluronic acid and basic fibroblast growth factor on motility of chondrocytes and synovial cells in culture. Acta Orthop Scand. 2001, 72: 299-303. 10.1080/00016470152846664.CrossRefPubMed
31.
go back to reference Kogan G, Soltes L, Stern R, Gemeiner P: Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007, 29: 17-25.CrossRefPubMed Kogan G, Soltes L, Stern R, Gemeiner P: Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007, 29: 17-25.CrossRefPubMed
32.
go back to reference Forsey RW, Fisher J, Thompson J, Stone MH, Bell C, Ingham E: The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials. 2006, 27: 4581-4590. 10.1016/j.biomaterials.2006.04.018.CrossRefPubMed Forsey RW, Fisher J, Thompson J, Stone MH, Bell C, Ingham E: The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials. 2006, 27: 4581-4590. 10.1016/j.biomaterials.2006.04.018.CrossRefPubMed
33.
go back to reference Goldberg VM, Buckwalter JA: Hyaluronans in the treatment of osteoarthritis of the knee: evidence for disease-modifying activity. Osteoarthritis Cartilage. 2005, 13: 216-224. 10.1016/j.joca.2004.11.010.CrossRefPubMed Goldberg VM, Buckwalter JA: Hyaluronans in the treatment of osteoarthritis of the knee: evidence for disease-modifying activity. Osteoarthritis Cartilage. 2005, 13: 216-224. 10.1016/j.joca.2004.11.010.CrossRefPubMed
Metadata
Title
The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model
Authors
Hui Yin Nam
Puvanan Karunanithi
Wagner Cheng Poh Loo
Sangeetha Vasudevaraj Naveen
Hui Cheng Chen
Paisal Hussin
Lucy Chan
Tunku Kamarul
Publication date
01-10-2013
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 5/2013
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar4309

Other articles of this Issue 5/2013

Arthritis Research & Therapy 5/2013 Go to the issue