Skip to main content
Top
Published in: Arthritis Research & Therapy 3/2002

01-04-2002 | Commentary

Glucocorticoids: do we know how they work?

Author: Jeremy Saklatvala

Published in: Arthritis Research & Therapy | Issue 3/2002

Login to get access

Abstract

It is not known to what extent glucocorticoid hormones cause their anti-inflammatory actions and their undesirable side effects by the same or different molecular mechanisms. Glucocorticoids combine with a cytoplasmic receptor that alters gene expression in two ways. One way is dependent on the receptor's binding directly to DNA and acting (positively or negatively) as a transcription factor. The other is dependent on its binding to and interfering with other transcription factors. Both mechanisms could underlie suppression of inflammation. The liganded receptor binds and inhibits the inflammatory transcription factors activator protein-1 and NF-κB. It also directly induces anti-inflammatory genes such as that encoding the protein inhibitor of NF-κB. Recent work has shown that glucocorticoids inhibit signalling in the mitogen-activated protein kinase pathways that mediate the expression of inflammatory genes. This inhibition is dependent on de novo gene expression. It is important to establish the significance of these different mechanisms for the various physiological effects of glucocorticoids, because it may be possible to produce steroid-related drugs that selectively target the inflammatory process.
Literature
1.
go back to reference Hench PS, Slocumb CH, Barnes AR, Smith HL, Polley HF, Kendall EC: The effect of a hormone of the adrenal cortex, 17-hydroxy-11-dehydrocorticosterone (compound E), on the acute phase of rheumatic fevers. Proceedings of the Staff Meetings of the Mayo Clinic. 1949, 24: 277-297.PubMed Hench PS, Slocumb CH, Barnes AR, Smith HL, Polley HF, Kendall EC: The effect of a hormone of the adrenal cortex, 17-hydroxy-11-dehydrocorticosterone (compound E), on the acute phase of rheumatic fevers. Proceedings of the Staff Meetings of the Mayo Clinic. 1949, 24: 277-297.PubMed
2.
go back to reference Beato M, Truss M, Chavez S: Control of transcription by steroid hormones. Ann N Y Acad Sci. 1996, 784: 93-123.CrossRef Beato M, Truss M, Chavez S: Control of transcription by steroid hormones. Ann N Y Acad Sci. 1996, 784: 93-123.CrossRef
3.
go back to reference Karin M: New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable?. Cell. 1998, 93: 487-490.CrossRef Karin M: New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable?. Cell. 1998, 93: 487-490.CrossRef
4.
go back to reference Newton R: Molecular mechanisms of glucocorticoid action: what is important?. Thorax. 2000, 55B: 603-613. 10.1136/thorax.55.7.603.CrossRef Newton R: Molecular mechanisms of glucocorticoid action: what is important?. Thorax. 2000, 55B: 603-613. 10.1136/thorax.55.7.603.CrossRef
5.
go back to reference Ray A, Prefontaine KE: Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci U S A. 1994, 91: 752-756.CrossRef Ray A, Prefontaine KE: Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci U S A. 1994, 91: 752-756.CrossRef
6.
go back to reference Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS: Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol. 1995, 15: 943-953.CrossRef Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS: Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol. 1995, 15: 943-953.CrossRef
7.
go back to reference Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG: A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996, 85: 403-414.CrossRef Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG: A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996, 85: 403-414.CrossRef
8.
go back to reference Sheppard KA, Phelps KM, Williams AJ, Thanos D, Glass CK, Rosenfeld MG, Gerritsen ME, Collins T: Nuclear integration of glucocorticoid receptor and nuclear factor-kappaB signaling by CREB-binding protein and steroid receptor coactivator-1. J Biol Chem. 1998, 273: 29291-29294. 10.1074/jbc.273.45.29291.CrossRef Sheppard KA, Phelps KM, Williams AJ, Thanos D, Glass CK, Rosenfeld MG, Gerritsen ME, Collins T: Nuclear integration of glucocorticoid receptor and nuclear factor-kappaB signaling by CREB-binding protein and steroid receptor coactivator-1. J Biol Chem. 1998, 273: 29291-29294. 10.1074/jbc.273.45.29291.CrossRef
9.
go back to reference Ito K, Barnes PJ, Adcock IM: Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000, 20: 6891-6903. 10.1128/MCB.20.18.6891-6903.2000.CrossRef Ito K, Barnes PJ, Adcock IM: Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000, 20: 6891-6903. 10.1128/MCB.20.18.6891-6903.2000.CrossRef
10.
go back to reference Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS: Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science. 1995, 270: 283-286.CrossRef Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS: Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science. 1995, 270: 283-286.CrossRef
11.
go back to reference Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M: Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995, 270: 286-290.CrossRef Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M: Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995, 270: 286-290.CrossRef
12.
go back to reference Lasa M, Brook M, Saklatvala J, Clark AR: Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38. Mol Cell Biol. 2001, 21: 771-80. 10.1128/MCB.21.3.771-780.2001.CrossRef Lasa M, Brook M, Saklatvala J, Clark AR: Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38. Mol Cell Biol. 2001, 21: 771-80. 10.1128/MCB.21.3.771-780.2001.CrossRef
13.
go back to reference Garrington TP, Johnson GL: Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 1999, 11: 211-218. 10.1016/S0955-0674(99)80028-3.CrossRef Garrington TP, Johnson GL: Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 1999, 11: 211-218. 10.1016/S0955-0674(99)80028-3.CrossRef
14.
go back to reference Keyse SM: Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol. 2000, 12: 186-92. 10.1016/S0955-0674(99)00075-7.CrossRef Keyse SM: Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol. 2000, 12: 186-92. 10.1016/S0955-0674(99)00075-7.CrossRef
15.
go back to reference Shaw G, Kamen R: A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986, 46: 659-667.CrossRef Shaw G, Kamen R: A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986, 46: 659-667.CrossRef
16.
go back to reference Ridley SH, Dean JL, Sarsfield SJ, Brook M, Clark AR, Saklatvala J: A p38 MAP kinase inhibitor regulates stability of interleukin-1-induced cyclooxygenase-2 mRNA. FEBS Lett. 1998, 439: 75-80. 10.1016/S0014-5793(98)01342-8.CrossRef Ridley SH, Dean JL, Sarsfield SJ, Brook M, Clark AR, Saklatvala J: A p38 MAP kinase inhibitor regulates stability of interleukin-1-induced cyclooxygenase-2 mRNA. FEBS Lett. 1998, 439: 75-80. 10.1016/S0014-5793(98)01342-8.CrossRef
17.
go back to reference Dean JL, Brook M, Clark AR, Saklatvala J: p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J Biol Chem. 1999, 274: 264-269. 10.1074/jbc.274.1.264.CrossRef Dean JL, Brook M, Clark AR, Saklatvala J: p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J Biol Chem. 1999, 274: 264-269. 10.1074/jbc.274.1.264.CrossRef
18.
go back to reference Miyazawa K, Mori A, Miyata H, Akahane M, Ajisawa Y, Okudaira H: Regulation of interleukin-1beta-induced interleukin-6 gene expression in human fibroblast-like synoviocytes by p38 mitogen-activated protein kinase. J Biol Chem. 1998, 273: 24832-24838. 10.1074/jbc.273.38.24832.CrossRef Miyazawa K, Mori A, Miyata H, Akahane M, Ajisawa Y, Okudaira H: Regulation of interleukin-1beta-induced interleukin-6 gene expression in human fibroblast-like synoviocytes by p38 mitogen-activated protein kinase. J Biol Chem. 1998, 273: 24832-24838. 10.1074/jbc.273.38.24832.CrossRef
19.
go back to reference Brook M, Sully G, Clark AR, Saklatvala J: Regulation of tumour necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signalling cascade. FEBS Lett. 2000, 483: 57-61. 10.1016/S0014-5793(00)02084-6.CrossRef Brook M, Sully G, Clark AR, Saklatvala J: Regulation of tumour necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signalling cascade. FEBS Lett. 2000, 483: 57-61. 10.1016/S0014-5793(00)02084-6.CrossRef
20.
go back to reference Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, Clark AR: Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol. 2000, 20: 4265-4274. 10.1128/MCB.20.12.4265-4274.2000.CrossRef Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, Clark AR: Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol. 2000, 20: 4265-4274. 10.1128/MCB.20.12.4265-4274.2000.CrossRef
21.
go back to reference Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB, Muller M, Gaestel M, Resch K, Holtmann H: The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. Embo J. 1999, 18: 4969-4980. 10.1093/emboj/18.18.4969.CrossRef Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB, Muller M, Gaestel M, Resch K, Holtmann H: The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. Embo J. 1999, 18: 4969-4980. 10.1093/emboj/18.18.4969.CrossRef
22.
go back to reference Ristimaki A, Narko K, Hla T: Down-regulation of cytokine-induced cyclo-oxygenase-2 transcript isoforms by dexamethasone: evidence for post-transcriptional regulation. Biochem J. 1996, 318: 325-331.CrossRef Ristimaki A, Narko K, Hla T: Down-regulation of cytokine-induced cyclo-oxygenase-2 transcript isoforms by dexamethasone: evidence for post-transcriptional regulation. Biochem J. 1996, 318: 325-331.CrossRef
23.
go back to reference Swantek JL, Cobb MH, Geppert TD: Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol Cell Biol. 1997, 17: 6274-6282.CrossRef Swantek JL, Cobb MH, Geppert TD: Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol Cell Biol. 1997, 17: 6274-6282.CrossRef
24.
go back to reference Caelles C, Gonzalez-Sancho JM, Munoz A: Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev. 1997, 11: 3351-3364.CrossRef Caelles C, Gonzalez-Sancho JM, Munoz A: Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev. 1997, 11: 3351-3364.CrossRef
25.
go back to reference Rider LG, Hirasawa N, Santini F, Beaven MA: Activation of the mitogen-activated protein kinase cascade is suppressed by low concentrations of dexamethasone in mast cells. J Immunol. 1996, 157: 2374-2380.PubMed Rider LG, Hirasawa N, Santini F, Beaven MA: Activation of the mitogen-activated protein kinase cascade is suppressed by low concentrations of dexamethasone in mast cells. J Immunol. 1996, 157: 2374-2380.PubMed
26.
go back to reference Kassel O, et al: Glucocorticoids inhibit MAPkinase via increased expression and decreased degradation of MKP-1. EMBO J. 2001, 20: 7108-7116. 10.1093/emboj/20.24.7108.CrossRef Kassel O, et al: Glucocorticoids inhibit MAPkinase via increased expression and decreased degradation of MKP-1. EMBO J. 2001, 20: 7108-7116. 10.1093/emboj/20.24.7108.CrossRef
Metadata
Title
Glucocorticoids: do we know how they work?
Author
Jeremy Saklatvala
Publication date
01-04-2002
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 3/2002
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar398

Other articles of this Issue 3/2002

Arthritis Research & Therapy 3/2002 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.