Skip to main content
Top
Published in: Translational Neurodegeneration 1/2014

Open Access 01-12-2014 | Review

The effects of exercise on cognition in Parkinson’s disease: a systematic review

Authors: Danielle K Murray, Matthew A Sacheli, Janice J Eng, A Jon Stoessl

Published in: Translational Neurodegeneration | Issue 1/2014

Login to get access

Abstract

Cognitive impairments are highly prevalent in Parkinson’s disease (PD) and can substantially affect a patient’s quality of life. These impairments remain difficult to manage with current clinical therapies, but exercise has been identified as a possible treatment. The objective of this systematic review was to accumulate and analyze evidence for the effects of exercise on cognition in both animal models of PD and human disease. This systematic review was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement. Fourteen original reports were identified, including six pre-clinical animal studies and eight human clinical studies. These studies used various exercise interventions and evaluated many different outcome measures; therefore, only a qualitative synthesis was performed. The evidence from animal studies supports the role of exercise to improve cognition in humans through the promotion of neuronal proliferation, neuroprotection and neurogenesis. These findings warrant more research to determine what roles these neural mechanisms play in clinical populations. The reports on cognitive changes in clinical studies demonstrate that a range of exercise programs can improve cognition in humans. While each clinical study demonstrated improvements in a marker of cognition, there were limitations in each study, including non-randomized designs and risk of bias. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used and the quality of the evidence for human studies were rated from “low” to “moderate” and the strength of the recommendations were rated from “weak” to “strong”. Studies that assessed executive function, compared to general cognitive abilities, received a higher GRADE rating. Overall, this systematic review found that in animal models exercise results in behavioral and corresponding neurobiological changes in the basal ganglia related to cognition. The clinical studies showed that various types of exercise, including aerobic, resistance and dance can improve cognitive function, although the optimal type, amount, mechanisms, and duration of exercise are unclear. With growing support for exercise to improve not only motor symptoms, but also cognitive impairments in PD, health care providers and policy makers should recommend exercise as part of routine management and neurorehabilitation for this disorder.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aarsland D, Larsen JP, Lim NG, Janvin C, Karlsen K, Tandberg E, Cummings JL: Range of neuropsychiatric disturbances in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 1999, 67: 492-496. 10.1136/jnnp.67.4.492.PubMedCentralCrossRefPubMed Aarsland D, Larsen JP, Lim NG, Janvin C, Karlsen K, Tandberg E, Cummings JL: Range of neuropsychiatric disturbances in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 1999, 67: 492-496. 10.1136/jnnp.67.4.492.PubMedCentralCrossRefPubMed
2.
go back to reference Chaudhuri KR, Healy DG, Schapira AHV: Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 2006, 5: 235-245. 10.1016/S1474-4422(06)70373-8.CrossRefPubMed Chaudhuri KR, Healy DG, Schapira AHV: Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 2006, 5: 235-245. 10.1016/S1474-4422(06)70373-8.CrossRefPubMed
3.
go back to reference Macht M, Schwarz R, Ellgring H: Patterns of psychological problems in Parkinson's disease. Acta neurologica Scandinavica. 2005, 111: 95-101. 10.1111/j.1600-0404.2005.00375.x.CrossRefPubMed Macht M, Schwarz R, Ellgring H: Patterns of psychological problems in Parkinson's disease. Acta neurologica Scandinavica. 2005, 111: 95-101. 10.1111/j.1600-0404.2005.00375.x.CrossRefPubMed
4.
go back to reference Hely MA, Reid WGJ, Adena MA, Halliday GA, Morris JGL: The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov Disord. 2008, 23: 837-844. 10.1002/mds.21956.CrossRefPubMed Hely MA, Reid WGJ, Adena MA, Halliday GA, Morris JGL: The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov Disord. 2008, 23: 837-844. 10.1002/mds.21956.CrossRefPubMed
5.
go back to reference Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H: The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005, 53: 695-699. 10.1111/j.1532-5415.2005.53221.x.CrossRefPubMed Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H: The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005, 53: 695-699. 10.1111/j.1532-5415.2005.53221.x.CrossRefPubMed
6.
go back to reference Zadikoff C, Fox SH, Tang-Wai DF, Thomsen T, de Bie RMA, Wadia P, Miyasaki J, Duff-Canning S, Lang AE, Marras C: A comparison of the mini mental state exam to the Montreal cognitive assessment in identifying cognitive deficits in Parkinson's disease. Mov Disord. 2008, 23: 297-299. 10.1002/mds.21837.CrossRefPubMed Zadikoff C, Fox SH, Tang-Wai DF, Thomsen T, de Bie RMA, Wadia P, Miyasaki J, Duff-Canning S, Lang AE, Marras C: A comparison of the mini mental state exam to the Montreal cognitive assessment in identifying cognitive deficits in Parkinson's disease. Mov Disord. 2008, 23: 297-299. 10.1002/mds.21837.CrossRefPubMed
7.
go back to reference Muller T, Kuhn W: Cysteine elevation in levodopa-treated patients with Parkinson's disease. Mov Disord. 2009, 24: 929-932. 10.1002/mds.22482.CrossRefPubMed Muller T, Kuhn W: Cysteine elevation in levodopa-treated patients with Parkinson's disease. Mov Disord. 2009, 24: 929-932. 10.1002/mds.22482.CrossRefPubMed
8.
go back to reference Tillerson JL, Caudle WM, Reveron ME, Miller GW: Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience. 2003, 119: 899-911. 10.1016/S0306-4522(03)00096-4.CrossRefPubMed Tillerson JL, Caudle WM, Reveron ME, Miller GW: Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience. 2003, 119: 899-911. 10.1016/S0306-4522(03)00096-4.CrossRefPubMed
9.
go back to reference Allen NE, Sherrington C, Paul SS, Canning CG: Balance and falls in Parkinson's disease: a meta-analysis of the effect of exercise and motor training. Mov Disord. 2011, 26: 1605-1615. 10.1002/mds.23790.CrossRefPubMed Allen NE, Sherrington C, Paul SS, Canning CG: Balance and falls in Parkinson's disease: a meta-analysis of the effect of exercise and motor training. Mov Disord. 2011, 26: 1605-1615. 10.1002/mds.23790.CrossRefPubMed
10.
go back to reference Lauhoff P, Murphy N, Doherty C, Horgan NF: A controlled clinical trial investigating the effects of cycle ergometry training on exercise tolerance, balance and quality of life in patients with Parkinson's disease. Disabil Rehabil. 2013, 35: 382-387. 10.3109/09638288.2012.694962.CrossRefPubMed Lauhoff P, Murphy N, Doherty C, Horgan NF: A controlled clinical trial investigating the effects of cycle ergometry training on exercise tolerance, balance and quality of life in patients with Parkinson's disease. Disabil Rehabil. 2013, 35: 382-387. 10.3109/09638288.2012.694962.CrossRefPubMed
11.
go back to reference Ridgel AL, Peacock CA, Fickes EJ, Kim CH: Active-assisted cycling improves Tremor and Bradykinesia in Parkinson's disease. Arch Phys Med Rehabil. 2049–2054, 2012: 93- Ridgel AL, Peacock CA, Fickes EJ, Kim CH: Active-assisted cycling improves Tremor and Bradykinesia in Parkinson's disease. Arch Phys Med Rehabil. 2049–2054, 2012: 93-
12.
go back to reference Ridgel AL, Vitek JL, Alberts JL: Forced, not voluntary, exercise improves motor function in Parkinson's disease patients. Neurorehabil Neural Repair. 2009, 23: 600-608. 10.1177/1545968308328726.CrossRefPubMed Ridgel AL, Vitek JL, Alberts JL: Forced, not voluntary, exercise improves motor function in Parkinson's disease patients. Neurorehabil Neural Repair. 2009, 23: 600-608. 10.1177/1545968308328726.CrossRefPubMed
13.
14.
go back to reference Hindle JV, Petrelli A, Clare L, Kalbe E: Nonpharmacological enhancement of cognitive function in Parkinson's disease: a systematic review. Mov Disord. 2013, 28: 1034-1049. 10.1002/mds.25377.CrossRefPubMed Hindle JV, Petrelli A, Clare L, Kalbe E: Nonpharmacological enhancement of cognitive function in Parkinson's disease: a systematic review. Mov Disord. 2013, 28: 1034-1049. 10.1002/mds.25377.CrossRefPubMed
15.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P: Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Plos Med. 2009, 6: e1000097-10.1371/journal.pmed.1000097.PubMedCentralCrossRefPubMed Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P: Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Plos Med. 2009, 6: e1000097-10.1371/journal.pmed.1000097.PubMedCentralCrossRefPubMed
16.
go back to reference Fisher BE, Petzinger GM, Nixon K, Hogg E, Bremmer S, Meshul CK, Jakowec MW: Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- lesioned mouse basal ganglia. J Neurosci Res. 2004, 77: 378-390. 10.1002/jnr.20162.CrossRefPubMed Fisher BE, Petzinger GM, Nixon K, Hogg E, Bremmer S, Meshul CK, Jakowec MW: Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- lesioned mouse basal ganglia. J Neurosci Res. 2004, 77: 378-390. 10.1002/jnr.20162.CrossRefPubMed
17.
go back to reference Gorton LM, Vuckovic MG, Vertelkina N, Petzinger GM, Jakowec MW, Wood RI: Exercise effects on motor and affective behavior and catecholamine neurochemistry in the MPTP-lesioned mouse. Behav Brain Res. 2010, 213: 253-262. 10.1016/j.bbr.2010.05.009.PubMedCentralCrossRefPubMed Gorton LM, Vuckovic MG, Vertelkina N, Petzinger GM, Jakowec MW, Wood RI: Exercise effects on motor and affective behavior and catecholamine neurochemistry in the MPTP-lesioned mouse. Behav Brain Res. 2010, 213: 253-262. 10.1016/j.bbr.2010.05.009.PubMedCentralCrossRefPubMed
18.
go back to reference Tajiri N, Yasuhara T, Shingo T, Kondo A, Yuan W, Kadota T, Wang F, Baba T, Tayra JT, Morimoto T, Jing M, Kikuchi Y, Kuramoto S, Agari T, Miyoshi Y, Fujino H, Obata F, Takeda I, Furuta T, Date I: Exercise exerts neuroprotective effects on Parkinson's disease model of rats. Brain Res. 2010, 1310: 200-207.CrossRefPubMed Tajiri N, Yasuhara T, Shingo T, Kondo A, Yuan W, Kadota T, Wang F, Baba T, Tayra JT, Morimoto T, Jing M, Kikuchi Y, Kuramoto S, Agari T, Miyoshi Y, Fujino H, Obata F, Takeda I, Furuta T, Date I: Exercise exerts neuroprotective effects on Parkinson's disease model of rats. Brain Res. 2010, 1310: 200-207.CrossRefPubMed
19.
go back to reference Aguiar AS, Araujo AL, Da-Cunha TR, Speck AE, Ignacio ZM, De-Mello N, Prediger RD: Physical exercise improves motor and short-term social memory deficits in reserpinized rats. Brain Res Bull. 2009, 79: 452-457. 10.1016/j.brainresbull.2009.05.005.CrossRefPubMed Aguiar AS, Araujo AL, Da-Cunha TR, Speck AE, Ignacio ZM, De-Mello N, Prediger RD: Physical exercise improves motor and short-term social memory deficits in reserpinized rats. Brain Res Bull. 2009, 79: 452-457. 10.1016/j.brainresbull.2009.05.005.CrossRefPubMed
20.
go back to reference Pothakos K, Kurz MJ, Lau Y-S: Restorative effect of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson's disease with severe neurodegeneration. Bmc Neuroscience. 2009, 10: 6-10.1186/1471-2202-10-6.PubMedCentralCrossRefPubMed Pothakos K, Kurz MJ, Lau Y-S: Restorative effect of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson's disease with severe neurodegeneration. Bmc Neuroscience. 2009, 10: 6-10.1186/1471-2202-10-6.PubMedCentralCrossRefPubMed
21.
go back to reference Goes AT, Souza LC, Filho CB, Del Fabbro L, De Gomes MG, Boeira SP, Jesse CR: Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine. Neuroscience. 2014, 256: 61-71.CrossRefPubMed Goes AT, Souza LC, Filho CB, Del Fabbro L, De Gomes MG, Boeira SP, Jesse CR: Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine. Neuroscience. 2014, 256: 61-71.CrossRefPubMed
22.
go back to reference Baatile J, Langbein WE, Weaver F, Maloney C, Jost MB: Effect of exercise on perceived quality of life of individuals with Parkinson's disease. J Rehabil Res Dev. 2000, 37: 529-534.PubMed Baatile J, Langbein WE, Weaver F, Maloney C, Jost MB: Effect of exercise on perceived quality of life of individuals with Parkinson's disease. J Rehabil Res Dev. 2000, 37: 529-534.PubMed
23.
go back to reference Muller T, Muhlack S: Effect of exercise on reactivity and motor behaviour in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 2010, 81: 747-753. 10.1136/jnnp.2009.174987.CrossRefPubMed Muller T, Muhlack S: Effect of exercise on reactivity and motor behaviour in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 2010, 81: 747-753. 10.1136/jnnp.2009.174987.CrossRefPubMed
24.
go back to reference Pompeu JE, dos Santos Mendes FA, da Silva KG, Lobo AM, Oliveira TP, Zomignani AP, Pimentel Piemonte ME: Effect of Nintendo Wii (TM)-based motor and cognitive training on activities of daily living in patients with Parkinson's disease: a randomised clinical trial. Physiotherapy. 2012, 98: 196-204. 10.1016/j.physio.2012.06.004.CrossRefPubMed Pompeu JE, dos Santos Mendes FA, da Silva KG, Lobo AM, Oliveira TP, Zomignani AP, Pimentel Piemonte ME: Effect of Nintendo Wii (TM)-based motor and cognitive training on activities of daily living in patients with Parkinson's disease: a randomised clinical trial. Physiotherapy. 2012, 98: 196-204. 10.1016/j.physio.2012.06.004.CrossRefPubMed
25.
go back to reference dos Santos Mendes FA, Pompeu JE, Modenesi Lobo A, Guedes Da Silva K, Oliveira Tde P, Peterson Zomignani A, Pimentel Piemonte ME: Motor learning, retention and transfer after virtual-reality-based training in Parkinson's disease–effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy. 2012, 98: 217-223. 10.1016/j.physio.2012.06.001.CrossRefPubMed dos Santos Mendes FA, Pompeu JE, Modenesi Lobo A, Guedes Da Silva K, Oliveira Tde P, Peterson Zomignani A, Pimentel Piemonte ME: Motor learning, retention and transfer after virtual-reality-based training in Parkinson's disease–effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy. 2012, 98: 217-223. 10.1016/j.physio.2012.06.001.CrossRefPubMed
26.
go back to reference Cruise KE, Bucks RS, Loftus AM, Newton RU, Pegoraro R, Thomas MG: Exercise and Parkinson's: benefits for cognition and quality of life. Acta neurologica Scandinavica. 2011, 123: 13-19. 10.1111/j.1600-0404.2010.01338.x.CrossRefPubMed Cruise KE, Bucks RS, Loftus AM, Newton RU, Pegoraro R, Thomas MG: Exercise and Parkinson's: benefits for cognition and quality of life. Acta neurologica Scandinavica. 2011, 123: 13-19. 10.1111/j.1600-0404.2010.01338.x.CrossRefPubMed
27.
go back to reference Tanaka K, Quadros AC, Santos RF, Stella F, Gobbi LT, Gobbi S: Benefits of physical exercise on executive functions in older people with Parkinson's disease. Brain Cogn. 2009, 69: 435-441. 10.1016/j.bandc.2008.09.008.CrossRefPubMed Tanaka K, Quadros AC, Santos RF, Stella F, Gobbi LT, Gobbi S: Benefits of physical exercise on executive functions in older people with Parkinson's disease. Brain Cogn. 2009, 69: 435-441. 10.1016/j.bandc.2008.09.008.CrossRefPubMed
28.
go back to reference Ridgel AL, Kim C-H, Fickes EJ, Muller MD, Alberts JL: Changes in executive function after acute bouts of passive cycling in Parkinson's disease. J Aging Phys Act. 2011, 19: 87-98.PubMed Ridgel AL, Kim C-H, Fickes EJ, Muller MD, Alberts JL: Changes in executive function after acute bouts of passive cycling in Parkinson's disease. J Aging Phys Act. 2011, 19: 87-98.PubMed
29.
go back to reference McKee K, Hackney ME: The effects of adapted tango on spatial cognition and disease severity in Parkinson's disease. J Mot Behav. 2013, 45: 519-529. 10.1080/00222895.2013.834288.CrossRefPubMed McKee K, Hackney ME: The effects of adapted tango on spatial cognition and disease severity in Parkinson's disease. J Mot Behav. 2013, 45: 519-529. 10.1080/00222895.2013.834288.CrossRefPubMed
30.
go back to reference Goes AT, Souza LC, Filho CB, Del Fabbro L, De Gomes MG, Boeira SP, Jesse CR: Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine. Neuroscience. 2013, 256C: 61-71. Goes AT, Souza LC, Filho CB, Del Fabbro L, De Gomes MG, Boeira SP, Jesse CR: Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine. Neuroscience. 2013, 256C: 61-71.
31.
go back to reference Goldberg NR, Fields V, Pflibsen L, Salvatore MF, Meshul CK: Social enrichment attenuates nigrostriatal lesioning and reverses motor impairment in a progressive 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Neurobiol Dis. 2012, 45: 1051-1067. 10.1016/j.nbd.2011.12.024.CrossRefPubMed Goldberg NR, Fields V, Pflibsen L, Salvatore MF, Meshul CK: Social enrichment attenuates nigrostriatal lesioning and reverses motor impairment in a progressive 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Neurobiol Dis. 2012, 45: 1051-1067. 10.1016/j.nbd.2011.12.024.CrossRefPubMed
32.
go back to reference Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JAC, et al: The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. Brit Med J. 2011, 343: 889-893.CrossRef Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JAC, et al: The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. Brit Med J. 2011, 343: 889-893.CrossRef
34.
go back to reference Hoehn MM, Yahr MD: Parkinsonism: onset, progression and mortality. Neurology. 1967, 17: 427-442. 10.1212/WNL.17.5.427.CrossRefPubMed Hoehn MM, Yahr MD: Parkinsonism: onset, progression and mortality. Neurology. 1967, 17: 427-442. 10.1212/WNL.17.5.427.CrossRefPubMed
35.
go back to reference Gerlach M, Riederer P: Animal models of Parkinson's disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm. 1996, 103: 987-1041. 10.1007/BF01291788.CrossRefPubMed Gerlach M, Riederer P: Animal models of Parkinson's disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm. 1996, 103: 987-1041. 10.1007/BF01291788.CrossRefPubMed
36.
go back to reference Jakowec MW, Petzinger GM: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned model of Parkinson's disease, with emphasis on mice and nonhuman primates. Comparative Med. 2004, 54: 497-513. Jakowec MW, Petzinger GM: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned model of Parkinson's disease, with emphasis on mice and nonhuman primates. Comparative Med. 2004, 54: 497-513.
37.
go back to reference Colpaert FC: Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rat. Neuropharmacology. 1987, 26: 1431-1440. 10.1016/0028-3908(87)90110-9.CrossRefPubMed Colpaert FC: Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rat. Neuropharmacology. 1987, 26: 1431-1440. 10.1016/0028-3908(87)90110-9.CrossRefPubMed
38.
go back to reference Schwarting RK, Huston JP: The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Progress in neurobiology. 1996, 50: 275-331. 10.1016/S0301-0082(96)00040-8.CrossRefPubMed Schwarting RK, Huston JP: The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Progress in neurobiology. 1996, 50: 275-331. 10.1016/S0301-0082(96)00040-8.CrossRefPubMed
39.
go back to reference Schwarting RK, Huston JP: Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Progress in neurobiology. 1996, 49: 215-266. 10.1016/S0301-0082(96)00015-9.CrossRefPubMed Schwarting RK, Huston JP: Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Progress in neurobiology. 1996, 49: 215-266. 10.1016/S0301-0082(96)00015-9.CrossRefPubMed
40.
go back to reference Schwarting RK, Huston JP: Behavioral and neurochemical dynamics of neurotoxic meso-striatal dopamine lesions. Neurotoxicology. 1997, 18: 689-708.PubMed Schwarting RK, Huston JP: Behavioral and neurochemical dynamics of neurotoxic meso-striatal dopamine lesions. Neurotoxicology. 1997, 18: 689-708.PubMed
41.
go back to reference Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, Lee VMY: Pathological alpha-Synuclein Transmission Initiates Parkinson-like Neurodegeneration in Nontransgenic Mice. Science. 2012, 338: 949-953. 10.1126/science.1227157.PubMedCentralCrossRefPubMed Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, Lee VMY: Pathological alpha-Synuclein Transmission Initiates Parkinson-like Neurodegeneration in Nontransgenic Mice. Science. 2012, 338: 949-953. 10.1126/science.1227157.PubMedCentralCrossRefPubMed
42.
go back to reference Horvath J, Herrmann FR, Burkhard PR, Bouras C, Kovari E: Neuropathology of dementia in a large cohort of patients with Parkinson's disease. Parkinsonism Relat Disord. 2013, 19: 864-868. 10.1016/j.parkreldis.2013.05.010. discussion 864CrossRefPubMed Horvath J, Herrmann FR, Burkhard PR, Bouras C, Kovari E: Neuropathology of dementia in a large cohort of patients with Parkinson's disease. Parkinsonism Relat Disord. 2013, 19: 864-868. 10.1016/j.parkreldis.2013.05.010. discussion 864CrossRefPubMed
43.
go back to reference Kim S-E, Ko I-G, Shin M-S, Kim C-J, Jin B-K, Hong H-P, Jee Y-S: Treadmill exercise and wheel exercise enhance expressions of neutrophic factors in the hippocampus of lipopolysaccharide-injected rats. Neurosci Lett. 2013, 538: 54-59.CrossRefPubMed Kim S-E, Ko I-G, Shin M-S, Kim C-J, Jin B-K, Hong H-P, Jee Y-S: Treadmill exercise and wheel exercise enhance expressions of neutrophic factors in the hippocampus of lipopolysaccharide-injected rats. Neurosci Lett. 2013, 538: 54-59.CrossRefPubMed
44.
go back to reference Zigmond MJ, Cameron JL, Hoffer BJ, Smeyne RJ: Neurorestoration by physical exercise: moving forward. Parkinsonism Relat Disord. 2012, 18 (Supplement 1): S147-S150.CrossRefPubMed Zigmond MJ, Cameron JL, Hoffer BJ, Smeyne RJ: Neurorestoration by physical exercise: moving forward. Parkinsonism Relat Disord. 2012, 18 (Supplement 1): S147-S150.CrossRefPubMed
45.
go back to reference Fisher BE, Li Q, Nacca A, Salem GJ, Song J, Yip J, Hui JS, Jakowec MW, Petzinger GM: Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson's disease. Neuroreport. 2013, 24: 509-514. 10.1097/WNR.0b013e328361dc13.CrossRefPubMed Fisher BE, Li Q, Nacca A, Salem GJ, Song J, Yip J, Hui JS, Jakowec MW, Petzinger GM: Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson's disease. Neuroreport. 2013, 24: 509-514. 10.1097/WNR.0b013e328361dc13.CrossRefPubMed
46.
go back to reference Higginson CI, King DS, Levine D, Wheelock VL, Khamphay NO, Sigvardt KA: The relationship between executive function and verbal memory in Parkinson's disease. Brain Cogn. 2003, 52: 343-352. 10.1016/S0278-2626(03)00180-5.CrossRefPubMed Higginson CI, King DS, Levine D, Wheelock VL, Khamphay NO, Sigvardt KA: The relationship between executive function and verbal memory in Parkinson's disease. Brain Cogn. 2003, 52: 343-352. 10.1016/S0278-2626(03)00180-5.CrossRefPubMed
47.
go back to reference Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, Mollenhauer B, Adler CH, Marder K, Williams-Gray CH, Aarsland D, Kulisevsky J, Rogriguez-Oroz MC, Burn DJ, Barker RA, Emre M: Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Mov Disord. 2012, 27: 349-356. 10.1002/mds.24893.PubMedCentralCrossRefPubMed Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, Mollenhauer B, Adler CH, Marder K, Williams-Gray CH, Aarsland D, Kulisevsky J, Rogriguez-Oroz MC, Burn DJ, Barker RA, Emre M: Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Mov Disord. 2012, 27: 349-356. 10.1002/mds.24893.PubMedCentralCrossRefPubMed
48.
go back to reference Kudlicka A, Clare L, Hindle JV: Executive functions in Parkinson's disease: Systematic review and meta-analysis. Mov Disord. 2011, 26: 2305-2315. 10.1002/mds.23868.CrossRefPubMed Kudlicka A, Clare L, Hindle JV: Executive functions in Parkinson's disease: Systematic review and meta-analysis. Mov Disord. 2011, 26: 2305-2315. 10.1002/mds.23868.CrossRefPubMed
49.
go back to reference Lezak MD: Neuropsychological assessment. 1995, New York: Oxford University Press, 3 Lezak MD: Neuropsychological assessment. 1995, New York: Oxford University Press, 3
50.
go back to reference Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, Chason J, Vakil E, Bardell L, Boileau RA, Colcombe A: Ageing, fitness and neurocognitive function. Nature. 1999, 400: 418-419. 10.1038/22682.CrossRefPubMed Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, Chason J, Vakil E, Bardell L, Boileau RA, Colcombe A: Ageing, fitness and neurocognitive function. Nature. 1999, 400: 418-419. 10.1038/22682.CrossRefPubMed
51.
go back to reference Petzinger GM, Walsh JP, Akopian G, Hogg E, Abernathy A, Arevalo P, Turnquist P, Vuckovic M, Fisher BE, Togasaki DM, Jakowec MW: Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci. 2007, 27: 5291-5300. 10.1523/JNEUROSCI.1069-07.2007.CrossRefPubMed Petzinger GM, Walsh JP, Akopian G, Hogg E, Abernathy A, Arevalo P, Turnquist P, Vuckovic M, Fisher BE, Togasaki DM, Jakowec MW: Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci. 2007, 27: 5291-5300. 10.1523/JNEUROSCI.1069-07.2007.CrossRefPubMed
52.
go back to reference Vuckovic MG, Li QZ, Fisher B, Nacca A, Leahy RM, Walsh JP, Mukherjee J, Williams C, Jakowec MW, Petzinger GM: Exercise elevates dopamine D2 receptor in a mouse model of Parkinson's disease: in Vivo imaging with [F-18]Fallypride. Mov Disord. 2010, 25: 2777-2784. 10.1002/mds.23407.PubMedCentralCrossRefPubMed Vuckovic MG, Li QZ, Fisher B, Nacca A, Leahy RM, Walsh JP, Mukherjee J, Williams C, Jakowec MW, Petzinger GM: Exercise elevates dopamine D2 receptor in a mouse model of Parkinson's disease: in Vivo imaging with [F-18]Fallypride. Mov Disord. 2010, 25: 2777-2784. 10.1002/mds.23407.PubMedCentralCrossRefPubMed
53.
go back to reference de Melo Coelho FG, Gobbi S, Almeida Andreatto CA, Corazza DI, Pedroso RV, Santos-Galduroz RF: Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch Gerontol Geriatr. 2013, 56: 10-15. 10.1016/j.archger.2012.06.003.CrossRef de Melo Coelho FG, Gobbi S, Almeida Andreatto CA, Corazza DI, Pedroso RV, Santos-Galduroz RF: Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch Gerontol Geriatr. 2013, 56: 10-15. 10.1016/j.archger.2012.06.003.CrossRef
54.
go back to reference Sartorius A, Hellweg R, Litzke J, Vogt M, Dormann C, Vollmayr B, Danker-Hopfe H, Gass P: Correlations and discrepancies between serum and brain tissue levels of neurotrophins after electroconvulsive treatment in rats. Pharmacopsychiatry. 2009, 42: 270-276. 10.1055/s-0029-1224162.CrossRefPubMed Sartorius A, Hellweg R, Litzke J, Vogt M, Dormann C, Vollmayr B, Danker-Hopfe H, Gass P: Correlations and discrepancies between serum and brain tissue levels of neurotrophins after electroconvulsive treatment in rats. Pharmacopsychiatry. 2009, 42: 270-276. 10.1055/s-0029-1224162.CrossRefPubMed
55.
go back to reference Chang YK, Labban JD, Gapin JI, Etnier JL: The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 2012, 1453: 87-101.CrossRefPubMed Chang YK, Labban JD, Gapin JI, Etnier JL: The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 2012, 1453: 87-101.CrossRefPubMed
56.
go back to reference Langlois F, Vu TTM, Chasse K, Dupuis G, Kergoat MJ, Bherer L: Benefits of physical exercise training on cognition and quality of life in frail older adults. J Gerontol B-Psychol. 2013, 68: 400-404. 10.1093/geronb/gbs069.CrossRef Langlois F, Vu TTM, Chasse K, Dupuis G, Kergoat MJ, Bherer L: Benefits of physical exercise training on cognition and quality of life in frail older adults. J Gerontol B-Psychol. 2013, 68: 400-404. 10.1093/geronb/gbs069.CrossRef
57.
go back to reference Gates N, Fiatarone Singh MA, Sachdev PS, Valenzuela M: The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. Am J Geriatr Psychiatry. 2013, 21: 1086-1097. 10.1016/j.jagp.2013.02.018.CrossRefPubMed Gates N, Fiatarone Singh MA, Sachdev PS, Valenzuela M: The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. Am J Geriatr Psychiatry. 2013, 21: 1086-1097. 10.1016/j.jagp.2013.02.018.CrossRefPubMed
Metadata
Title
The effects of exercise on cognition in Parkinson’s disease: a systematic review
Authors
Danielle K Murray
Matthew A Sacheli
Janice J Eng
A Jon Stoessl
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2014
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/2047-9158-3-5

Other articles of this Issue 1/2014

Translational Neurodegeneration 1/2014 Go to the issue