Skip to main content
Top
Published in: Medical Gas Research 1/2011

Open Access 01-12-2011 | Research

Normobaric hyperoxia protects the blood brain barrier through inhibiting Nox2 containing NADPH oxidase in ischemic stroke

Authors: Wenlan Liu, Qingquan Chen, Jie Liu, Ke Jian Liu

Published in: Medical Gas Research | Issue 1/2011

Login to get access

Abstract

Normobaric hyperoxia (NBO) has been shown to be neuro- and vaso-protective during ischemic stroke. However, the underlying mechanisms remain to be fully elucidated. Activation of NADPH oxidase critically contributes to ischemic brain damage via increase in ROS production. We herein tested the hypothesis that NBO protects the blood-brain barrier (BBB) via inhibiting gp91phox(or called Nox2) containing NADPH oxidase in a mouse model of middle cerebral artery occlusion (MCAO). Wild-type C57/BL6 mice and gp91phoxknockout mice were given NBO (95% O2) or normoxia (21% O2) during 90-min MCAO, followed by 22.5 hrs of reperfusion. BBB damage was quantified by measuring Evans blue extravasation. The protein levels of matrix metalloproteinase-9 (MMP-9), tight junction protein occludin and gp91phoxwere assessed with western blot. Gel zymography was used to assess the gelatinolytic activity of MMP-9. In the wild type mice, cerebral ischemia and reperfusion led to remarkable Evans blue extravasation, significantly increased gp91phoxand MMP-9 levels and decreased occludin levels in the ischemic brain tissue. In gp91phoxknockout mice, the changes in Evans blue extravasation, MMP-9 and occludin were at much smaller magnitudes when compared to the wild type. Importantly, NBO treatment significantly reduced the changes in all measured parameters in wild type mice, while did not cause additional reductions in these changes when gp91phoxwas knocked out. These results indicate that activation of Nox2 containing NADPH oxidase is implicated in the induction of MMP-9, loss of occludin and BBB disruption in ischemic stroke, and inhibition of Nox2 may be an important mechanism underlying NBO-afforded BBB protection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Henninger N, Bouley J, Nelligan JM, Sicard KM, Fisher M: Normobaric hyperoxia delays perfusion/diffusion mismatch evolution, reduces infarct volume, and differentially affects neuronal cell death pathways after suture middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 2007, 27: 1632-1642. 10.1038/sj.jcbfm.9600463.CrossRefPubMed Henninger N, Bouley J, Nelligan JM, Sicard KM, Fisher M: Normobaric hyperoxia delays perfusion/diffusion mismatch evolution, reduces infarct volume, and differentially affects neuronal cell death pathways after suture middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 2007, 27: 1632-1642. 10.1038/sj.jcbfm.9600463.CrossRefPubMed
2.
go back to reference Kim HY, Singhal AB, Lo EH: Normobaric hyperoxia extends the reperfusion window in focal cerebral ischemia. Ann Neurol. 2005, 57: 571-575. 10.1002/ana.20430.CrossRefPubMed Kim HY, Singhal AB, Lo EH: Normobaric hyperoxia extends the reperfusion window in focal cerebral ischemia. Ann Neurol. 2005, 57: 571-575. 10.1002/ana.20430.CrossRefPubMed
3.
go back to reference Liu S, Liu W, Ding W, Miyake M, Rosenberg GA, Liu KJ: Electron paramagnetic resonance-guided normobaric hyperoxia treatment protects the brain by maintaining penumbral oxygenation in a rat model of transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2006, 26: 1274-1284. 10.1038/sj.jcbfm.9600277.CrossRefPubMed Liu S, Liu W, Ding W, Miyake M, Rosenberg GA, Liu KJ: Electron paramagnetic resonance-guided normobaric hyperoxia treatment protects the brain by maintaining penumbral oxygenation in a rat model of transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2006, 26: 1274-1284. 10.1038/sj.jcbfm.9600277.CrossRefPubMed
4.
go back to reference Liu W, Hendren J, Qin XJ, Shen J, Liu KJ: Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem. 2009, 108: 811-820. 10.1111/j.1471-4159.2008.05821.x.PubMedCentralCrossRefPubMed Liu W, Hendren J, Qin XJ, Shen J, Liu KJ: Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem. 2009, 108: 811-820. 10.1111/j.1471-4159.2008.05821.x.PubMedCentralCrossRefPubMed
5.
go back to reference Shin HK, Dunn AK, Jones PB, Boas DA, Lo EH, Moskowitz MA, et al: Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia. Brain. 2007, 130: 1631-1642. 10.1093/brain/awm071.PubMedCentralCrossRefPubMed Shin HK, Dunn AK, Jones PB, Boas DA, Lo EH, Moskowitz MA, et al: Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia. Brain. 2007, 130: 1631-1642. 10.1093/brain/awm071.PubMedCentralCrossRefPubMed
6.
go back to reference Singhal AB, Dijkhuizen RM, Rosen BR, Lo EH: Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke. Neurology. 2002, 58: 945-952.CrossRefPubMed Singhal AB, Dijkhuizen RM, Rosen BR, Lo EH: Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke. Neurology. 2002, 58: 945-952.CrossRefPubMed
7.
go back to reference Henninger N, Fisher M: Normobaric hyperoxia - a promising approach to expand the time window for acute stroke treatment. Cerebrovasc Dis. 2006, 21: 134-136. 10.1159/000090446.CrossRefPubMed Henninger N, Fisher M: Normobaric hyperoxia - a promising approach to expand the time window for acute stroke treatment. Cerebrovasc Dis. 2006, 21: 134-136. 10.1159/000090446.CrossRefPubMed
8.
go back to reference Henninger N, Bratane BT, Bastan B, Bouley J, Fisher M: Normobaric hyperoxia and delayed tPA treatment in a rat embolic stroke model. J Cereb Blood Flow Metab. 2009, 29: 119-129. 10.1038/jcbfm.2008.104.CrossRefPubMed Henninger N, Bratane BT, Bastan B, Bouley J, Fisher M: Normobaric hyperoxia and delayed tPA treatment in a rat embolic stroke model. J Cereb Blood Flow Metab. 2009, 29: 119-129. 10.1038/jcbfm.2008.104.CrossRefPubMed
9.
go back to reference Liu W, Hendren J, Qin XJ, Liu KJ: Normobaric hyperoxia reduces the neurovascular complications associated with delayed tissue plasminogen activator treatment in a rat model of focal cerebral ischemia. Stroke. 2009, 40: 2526-2531. 10.1161/STROKEAHA.108.545483.PubMedCentralCrossRefPubMed Liu W, Hendren J, Qin XJ, Liu KJ: Normobaric hyperoxia reduces the neurovascular complications associated with delayed tissue plasminogen activator treatment in a rat model of focal cerebral ischemia. Stroke. 2009, 40: 2526-2531. 10.1161/STROKEAHA.108.545483.PubMedCentralCrossRefPubMed
10.
go back to reference Chiu EH, Liu CS, Tan TY, Chang KC: Venturi mask adjuvant oxygen therapy in severe acute ischemic stroke. Arch Neurol. 2006, 63: 741-744. 10.1001/archneur.63.5.741.CrossRefPubMed Chiu EH, Liu CS, Tan TY, Chang KC: Venturi mask adjuvant oxygen therapy in severe acute ischemic stroke. Arch Neurol. 2006, 63: 741-744. 10.1001/archneur.63.5.741.CrossRefPubMed
11.
go back to reference Singhal AB, Benner T, Roccatagliata L, Koroshetz WJ, Schaefer PW, Lo EH, et al: A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke. 2005, 36: 797-802. 10.1161/01.STR.0000158914.66827.2e.CrossRefPubMed Singhal AB, Benner T, Roccatagliata L, Koroshetz WJ, Schaefer PW, Lo EH, et al: A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke. 2005, 36: 797-802. 10.1161/01.STR.0000158914.66827.2e.CrossRefPubMed
12.
go back to reference Allen CL, Bayraktutan U: Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009, 4: 461-470. 10.1111/j.1747-4949.2009.00387.x.CrossRefPubMed Allen CL, Bayraktutan U: Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009, 4: 461-470. 10.1111/j.1747-4949.2009.00387.x.CrossRefPubMed
13.
go back to reference Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al: Oxidative Stress in Ischemic Brain Damage: Mechanisms of Cell Death and Potential Molecular Targets for Neuroprotection. Antioxid Redox Signal. 2011, 14: 1505-17. 10.1089/ars.2010.3576.PubMedCentralCrossRefPubMed Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al: Oxidative Stress in Ischemic Brain Damage: Mechanisms of Cell Death and Potential Molecular Targets for Neuroprotection. Antioxid Redox Signal. 2011, 14: 1505-17. 10.1089/ars.2010.3576.PubMedCentralCrossRefPubMed
14.
go back to reference Chen H, Kim GS, Okami N, Narasimhan P, Chan PH: NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis. 2011, 42: 341-348. 10.1016/j.nbd.2011.01.027.PubMedCentralCrossRefPubMed Chen H, Kim GS, Okami N, Narasimhan P, Chan PH: NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis. 2011, 42: 341-348. 10.1016/j.nbd.2011.01.027.PubMedCentralCrossRefPubMed
15.
go back to reference Abramov AY, Scorziello A, Duchen MR: Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci. 2007, 27: 1129-1138. 10.1523/JNEUROSCI.4468-06.2007.CrossRefPubMed Abramov AY, Scorziello A, Duchen MR: Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci. 2007, 27: 1129-1138. 10.1523/JNEUROSCI.4468-06.2007.CrossRefPubMed
16.
go back to reference Tang X, Liu KJ, Ramu J, Cheng Q, Li T, Liu W: Inhibition of gp91phoxcontributes towards normobaric hyperoxia afforded neuroprotection in focal cerebral ischemia. Brain Research. 2010, 1348: 174-180.PubMedCentralCrossRefPubMed Tang X, Liu KJ, Ramu J, Cheng Q, Li T, Liu W: Inhibition of gp91phoxcontributes towards normobaric hyperoxia afforded neuroprotection in focal cerebral ischemia. Brain Research. 2010, 1348: 174-180.PubMedCentralCrossRefPubMed
17.
go back to reference Woodfin A, Hu DE, Sarker M, Kurokawa T, Fraser P: Acute NADPH oxidase activation potentiates cerebrovascular permeability response to bradykinin in ischemia-reperfusion. Free Radic Biol Med. 2011, 50: 518-524. 10.1016/j.freeradbiomed.2010.12.010.PubMedCentralCrossRefPubMed Woodfin A, Hu DE, Sarker M, Kurokawa T, Fraser P: Acute NADPH oxidase activation potentiates cerebrovascular permeability response to bradykinin in ischemia-reperfusion. Free Radic Biol Med. 2011, 50: 518-524. 10.1016/j.freeradbiomed.2010.12.010.PubMedCentralCrossRefPubMed
18.
go back to reference Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, et al: NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke. 2007, 38: 3000-3006. 10.1161/STROKEAHA.107.489765.CrossRefPubMed Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, et al: NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke. 2007, 38: 3000-3006. 10.1161/STROKEAHA.107.489765.CrossRefPubMed
19.
go back to reference Ueyama T, Geiszt M, Leto TL: Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Molecular and Cellular Biology. 2006, 26: 2160-2174. 10.1128/MCB.26.6.2160-2174.2006.PubMedCentralCrossRefPubMed Ueyama T, Geiszt M, Leto TL: Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Molecular and Cellular Biology. 2006, 26: 2160-2174. 10.1128/MCB.26.6.2160-2174.2006.PubMedCentralCrossRefPubMed
20.
go back to reference Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007, 87: 245-313. 10.1152/physrev.00044.2005.CrossRefPubMed Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007, 87: 245-313. 10.1152/physrev.00044.2005.CrossRefPubMed
21.
go back to reference Lambeth JD, Kawahara T, Diebold B: Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med. 2007, 43: 319-331. 10.1016/j.freeradbiomed.2007.03.028.PubMedCentralCrossRefPubMed Lambeth JD, Kawahara T, Diebold B: Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med. 2007, 43: 319-331. 10.1016/j.freeradbiomed.2007.03.028.PubMedCentralCrossRefPubMed
22.
go back to reference Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, et al: Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience. 2005, 132: 233-238. 10.1016/j.neuroscience.2004.12.038.CrossRefPubMed Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, et al: Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience. 2005, 132: 233-238. 10.1016/j.neuroscience.2004.12.038.CrossRefPubMed
23.
go back to reference Gorlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R: A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res. 2000, 87: 26-32.CrossRefPubMed Gorlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R: A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res. 2000, 87: 26-32.CrossRefPubMed
24.
go back to reference Lassegue B, Clempus RE: Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2003, 285: R277-297.CrossRefPubMed Lassegue B, Clempus RE: Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2003, 285: R277-297.CrossRefPubMed
25.
go back to reference Miller AA, Dusting GJ, Roulston CL, Sobey CG: NADPH-oxidase activity is elevated in penumbral and non-ischemic cerebral arteries following stroke. Brain Res. 2006, 1111: 111-116. 10.1016/j.brainres.2006.06.082.CrossRefPubMed Miller AA, Dusting GJ, Roulston CL, Sobey CG: NADPH-oxidase activity is elevated in penumbral and non-ischemic cerebral arteries following stroke. Brain Res. 2006, 1111: 111-116. 10.1016/j.brainres.2006.06.082.CrossRefPubMed
26.
go back to reference Kahles T, Foerch C, Sitzer M, Schroeter M, Steinmetz H, Rami A, et al: Tissue plasminogen activator mediated blood-brain barrier damage in transient focal cerebral ischemia in rats: relevance of interactions between thrombotic material and thrombolytic agent. Vascul Pharmacol. 2005, 43: 254-259. 10.1016/j.vph.2005.07.008.CrossRefPubMed Kahles T, Foerch C, Sitzer M, Schroeter M, Steinmetz H, Rami A, et al: Tissue plasminogen activator mediated blood-brain barrier damage in transient focal cerebral ischemia in rats: relevance of interactions between thrombotic material and thrombolytic agent. Vascul Pharmacol. 2005, 43: 254-259. 10.1016/j.vph.2005.07.008.CrossRefPubMed
27.
go back to reference Yoshioka H, Niizuma K, Katsu M, Okami N, Sakata H, Kim GS, et al: NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab. 2010, 31: 868-880.PubMedCentralCrossRefPubMed Yoshioka H, Niizuma K, Katsu M, Okami N, Sakata H, Kim GS, et al: NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab. 2010, 31: 868-880.PubMedCentralCrossRefPubMed
28.
go back to reference Muralikrishna Adibhatla R, Hatcher JF: Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med. 2006, 40: 376-387. 10.1016/j.freeradbiomed.2005.08.044.CrossRefPubMed Muralikrishna Adibhatla R, Hatcher JF: Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med. 2006, 40: 376-387. 10.1016/j.freeradbiomed.2005.08.044.CrossRefPubMed
29.
go back to reference Heo JH, Han SW, Lee SK: Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med. 2005, 39: 51-70. 10.1016/j.freeradbiomed.2005.03.035.CrossRefPubMed Heo JH, Han SW, Lee SK: Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med. 2005, 39: 51-70. 10.1016/j.freeradbiomed.2005.03.035.CrossRefPubMed
30.
go back to reference Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD: Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006, 1: 223-236. 10.1007/s11481-006-9025-3.CrossRefPubMed Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD: Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006, 1: 223-236. 10.1007/s11481-006-9025-3.CrossRefPubMed
31.
go back to reference Chan PH: Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001, 21: 2-14.CrossRefPubMed Chan PH: Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001, 21: 2-14.CrossRefPubMed
32.
go back to reference Liu W, Sood R, Chen Q, Sakoglu U, Hendren J, Cetin O, et al: Normobaric hyperoxia inhibits NADPH oxidase-mediated matrix metalloproteinase-9 induction in cerebral microvessels in experimental stroke. J Neurochem. 2008, 107: 1196-1205. 10.1111/j.1471-4159.2008.05664.x.PubMedCentralCrossRefPubMed Liu W, Sood R, Chen Q, Sakoglu U, Hendren J, Cetin O, et al: Normobaric hyperoxia inhibits NADPH oxidase-mediated matrix metalloproteinase-9 induction in cerebral microvessels in experimental stroke. J Neurochem. 2008, 107: 1196-1205. 10.1111/j.1471-4159.2008.05664.x.PubMedCentralCrossRefPubMed
33.
go back to reference Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA: Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007, 27: 697-709.CrossRefPubMed Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA: Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007, 27: 697-709.CrossRefPubMed
34.
go back to reference Dohi K, Ohtaki H, Nakamachi T, Yofu S, Satoh K, Miyamoto K, et al: Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation. 2010, 7: 41-10.1186/1742-2094-7-41.PubMedCentralCrossRefPubMed Dohi K, Ohtaki H, Nakamachi T, Yofu S, Satoh K, Miyamoto K, et al: Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation. 2010, 7: 41-10.1186/1742-2094-7-41.PubMedCentralCrossRefPubMed
35.
go back to reference Rosenberg GA, Estrada EY, Dencoff JE: Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke. 1998, 29: 2189-2195. 10.1161/01.STR.29.10.2189.CrossRefPubMed Rosenberg GA, Estrada EY, Dencoff JE: Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke. 1998, 29: 2189-2195. 10.1161/01.STR.29.10.2189.CrossRefPubMed
36.
go back to reference Liu S, Liu M, Peterson S, Miyake M, Vallyathan V, Liu KJ: Hydroxyl radical formation is greater in striatal core than in penumbra in a rat model of ischemic stroke. J Neurosci Res. 2003, 71: 882-888. 10.1002/jnr.10534.CrossRefPubMed Liu S, Liu M, Peterson S, Miyake M, Vallyathan V, Liu KJ: Hydroxyl radical formation is greater in striatal core than in penumbra in a rat model of ischemic stroke. J Neurosci Res. 2003, 71: 882-888. 10.1002/jnr.10534.CrossRefPubMed
37.
go back to reference Yamato M, Egashira T, Utsumi H: Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med. 2003, 35: 1619-1631. 10.1016/j.freeradbiomed.2003.09.013.CrossRefPubMed Yamato M, Egashira T, Utsumi H: Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med. 2003, 35: 1619-1631. 10.1016/j.freeradbiomed.2003.09.013.CrossRefPubMed
38.
go back to reference Fujimura M, Tominaga T, Chan PH: Neuroprotective effect of an antioxidant in ischemic brain injury: involvement of neuronal apoptosis. Neurocrit Care. 2005, 2: 59-66. 10.1385/NCC:2:1:059.CrossRefPubMed Fujimura M, Tominaga T, Chan PH: Neuroprotective effect of an antioxidant in ischemic brain injury: involvement of neuronal apoptosis. Neurocrit Care. 2005, 2: 59-66. 10.1385/NCC:2:1:059.CrossRefPubMed
39.
go back to reference Jackman KA, Miller AA, Drummond GR, Sobey CG: Importance of NOX1 for angiotensin II-induced cerebrovascular superoxide production and cortical infarct volume following ischemic stroke. Brain Res. 2009, 1286: 215-220.CrossRefPubMed Jackman KA, Miller AA, Drummond GR, Sobey CG: Importance of NOX1 for angiotensin II-induced cerebrovascular superoxide production and cortical infarct volume following ischemic stroke. Brain Res. 2009, 1286: 215-220.CrossRefPubMed
40.
go back to reference Jung JE, Kim GS, Chen H, Maier CM, Narasimhan P, Song YS, et al: Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Molecular Neurobiology. 2010, 41: 172-179. 10.1007/s12035-010-8102-z.PubMedCentralCrossRefPubMed Jung JE, Kim GS, Chen H, Maier CM, Narasimhan P, Song YS, et al: Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Molecular Neurobiology. 2010, 41: 172-179. 10.1007/s12035-010-8102-z.PubMedCentralCrossRefPubMed
41.
go back to reference Liu KJ, Rosenberg GA: Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med. 2005, 39: 71-80. 10.1016/j.freeradbiomed.2005.03.033.CrossRef Liu KJ, Rosenberg GA: Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med. 2005, 39: 71-80. 10.1016/j.freeradbiomed.2005.03.033.CrossRef
42.
go back to reference Rosenberg GA, Mun-Bryce S: Matrix metalloproteinases in neuroinflammation and cerebral ischemia. Ernst Schering Res Found Workshop. 2004, 1-16. Rosenberg GA, Mun-Bryce S: Matrix metalloproteinases in neuroinflammation and cerebral ischemia. Ernst Schering Res Found Workshop. 2004, 1-16.
43.
go back to reference Rosenberg GA, Yang Y: Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus. 2007, 22: E4-CrossRefPubMed Rosenberg GA, Yang Y: Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus. 2007, 22: E4-CrossRefPubMed
44.
go back to reference Liu W, Hendren J, Qin XJ, Shen J, Liu KJ: Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem. 2009, 108: 811-820. 10.1111/j.1471-4159.2008.05821.x.PubMedCentralCrossRefPubMed Liu W, Hendren J, Qin XJ, Shen J, Liu KJ: Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem. 2009, 108: 811-820. 10.1111/j.1471-4159.2008.05821.x.PubMedCentralCrossRefPubMed
45.
go back to reference Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, et al: Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001, 21: 7724-7732.PubMed Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, et al: Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001, 21: 7724-7732.PubMed
46.
go back to reference Tsukamoto T, Nigam SK: Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am J Physiol. 1999, 276: F737-750.PubMed Tsukamoto T, Nigam SK: Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am J Physiol. 1999, 276: F737-750.PubMed
47.
go back to reference Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, et al: Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci. 1997, 110 (Pt 14): 1603-1613.PubMed Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, et al: Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci. 1997, 110 (Pt 14): 1603-1613.PubMed
48.
go back to reference Giebel SJ, Menicucci G, McGuire PG, Das A: Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest. 2005, 85: 597-607. 10.1038/labinvest.3700251.CrossRefPubMed Giebel SJ, Menicucci G, McGuire PG, Das A: Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest. 2005, 85: 597-607. 10.1038/labinvest.3700251.CrossRefPubMed
49.
go back to reference Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA: Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007, 27: 697-709.CrossRefPubMed Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA: Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007, 27: 697-709.CrossRefPubMed
50.
go back to reference McColl BW, Rothwell NJ, Allan SM: Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci. 2008, 28: 9451-9462. 10.1523/JNEUROSCI.2674-08.2008.CrossRefPubMed McColl BW, Rothwell NJ, Allan SM: Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci. 2008, 28: 9451-9462. 10.1523/JNEUROSCI.2674-08.2008.CrossRefPubMed
51.
go back to reference Singhal AB, Wang X, Sumii T, Mori T, Lo EH: Effects of normobaric hyperoxia in a rat model of focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab. 2002, 22: 861-868.CrossRefPubMed Singhal AB, Wang X, Sumii T, Mori T, Lo EH: Effects of normobaric hyperoxia in a rat model of focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab. 2002, 22: 861-868.CrossRefPubMed
52.
go back to reference Chern CM, Liou KT, Wang YH, Liao JF, Yen JC, Shen YC: Andrographolide Inhibits PI3K/AKT-Dependent NOX2 and iNOS Expression Protecting Mice against Hypoxia/Ischemia-Induced Oxidative Brain Injury. Planta Med. 2011 Chern CM, Liou KT, Wang YH, Liao JF, Yen JC, Shen YC: Andrographolide Inhibits PI3K/AKT-Dependent NOX2 and iNOS Expression Protecting Mice against Hypoxia/Ischemia-Induced Oxidative Brain Injury. Planta Med. 2011
53.
go back to reference Murotomi K, Takagi N, Mizutani R, Honda TA, Ono M, Takeo S, et al: mGluR1 antagonist decreased NADPH oxidase activity and superoxide production after transient focal cerebral ischemia. J Neurochem. 2010, 114: 1711-1719. 10.1111/j.1471-4159.2010.06882.x.CrossRefPubMed Murotomi K, Takagi N, Mizutani R, Honda TA, Ono M, Takeo S, et al: mGluR1 antagonist decreased NADPH oxidase activity and superoxide production after transient focal cerebral ischemia. J Neurochem. 2010, 114: 1711-1719. 10.1111/j.1471-4159.2010.06882.x.CrossRefPubMed
Metadata
Title
Normobaric hyperoxia protects the blood brain barrier through inhibiting Nox2 containing NADPH oxidase in ischemic stroke
Authors
Wenlan Liu
Qingquan Chen
Jie Liu
Ke Jian Liu
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Medical Gas Research / Issue 1/2011
Electronic ISSN: 2045-9912
DOI
https://doi.org/10.1186/2045-9912-1-22

Other articles of this Issue 1/2011

Medical Gas Research 1/2011 Go to the issue