Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2014

Open Access 01-12-2014 | Research

Extravasation into brain and subsequent spread beyond the ischemic core of a magnetic resonance contrast agent following a step-down infusion protocol in acute cerebral ischemia

Authors: Tavarekere N Nagaraja, Kelly A Keenan, Madhava P Aryal, James R Ewing, Saarang Gopinath, Varun S Nadig, Sukruth Shashikumar, Robert A Knight

Published in: Fluids and Barriers of the CNS | Issue 1/2014

Login to get access

Abstract

Background

Limiting expansion of the ischemic core lesion by reinstating blood flow and protecting the penumbral cells is a priority in acute stroke treatment. However, at present, methods are not available for effective drug delivery to the ischemic penumbra. To address these issues this study compared the extravasation and subsequent interstitial spread of a magnetic resonance contrast agent (MRCA) beyond the ischemic core into the surrounding brain in a rat model of ischemia-reperfusion for bolus injection and step-down infusion (SDI) protocols.

Methods

Male Wistar rats underwent middle cerebral artery (MCA) occlusion for 3 h followed by reperfusion. Perfusion-diffusion mismatched regions indicating the extent of spread were identified by measuring cerebral blood flow (CBF) deficits by arterial spin-labeled magnetic resonance imaging and the extent of the ischemic core by mapping the apparent diffusion coefficient (ADC) of water with diffusion-weighted imaging. Vascular injury was assessed via MRCA, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) penetration, by Look-Locker T1-weighted MR imaging after either a bolus injection (n = 8) or SDI (n = 6). Spatial and temporal expansion of the MRCA front during a 25 min imaging period was measured from images obtained at 2.5 min intervals.

Results

The mean ADC lesion was 20 ± 7% of the hemispheric area whereas the CBF deficit area was 60 ± 16%, with the difference between the areas suggesting the possible presence of a penumbra. The bolus injection led to MRCA enhancement with an area that initially spread into the ischemic core and then diminished over time. The SDI produced a gradual increase in the area of MRCA enhancement that slowly enlarged to occupy the core, eventually expanded beyond it into the surrounding tissue and then plateaued. The integrated area from SDI extravasation was significantly larger than that for the bolus (p = 0.03). The total number of pixels covered by the SDI at its maximum was significantly larger than the pixels covered by bolus maximum (p = 0.05).

Conclusions

These results demonstrate that the SDI protocol resulted in a spread of the MRCA beyond the ischemic core. Whether plasma-borne acute stroke therapeutics can be delivered to the ischemic penumbra in a similar way needs to be investigated.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hossmann K-A: Pathophysiological basis of translational stroke research. Folia Neuropathol. 2009, 47: 213-227.PubMed Hossmann K-A: Pathophysiological basis of translational stroke research. Folia Neuropathol. 2009, 47: 213-227.PubMed
2.
go back to reference Lo EH: A new penumbra: transitioning from injury into repair after stroke. Nature Med. 2008, 14: 497-500. 10.1038/nm1735.CrossRefPubMed Lo EH: A new penumbra: transitioning from injury into repair after stroke. Nature Med. 2008, 14: 497-500. 10.1038/nm1735.CrossRefPubMed
3.
4.
go back to reference Michel P, Bogousslavsky J: Penumbra is brain: no excuse not to perfuse. Annal Neurol. 2005, 58: 661-663. 10.1002/ana.20713.CrossRefPubMed Michel P, Bogousslavsky J: Penumbra is brain: no excuse not to perfuse. Annal Neurol. 2005, 58: 661-663. 10.1002/ana.20713.CrossRefPubMed
6.
go back to reference Ginsberg MD: Invited editorial: current impediments to successful translational research in stroke. Transl Stroke Res. 2010, 1: 155-157. 10.1007/s12975-010-0029-1.CrossRefPubMed Ginsberg MD: Invited editorial: current impediments to successful translational research in stroke. Transl Stroke Res. 2010, 1: 155-157. 10.1007/s12975-010-0029-1.CrossRefPubMed
7.
go back to reference Pardridge WM: Drug targeting to the brain. Pharmaceut Res. 2007, 24: 1733-1744. 10.1007/s11095-007-9324-2.CrossRef Pardridge WM: Drug targeting to the brain. Pharmaceut Res. 2007, 24: 1733-1744. 10.1007/s11095-007-9324-2.CrossRef
8.
go back to reference Jahnke K, Kraemer DF, Knight KR, Fortin D, Bell S, Doolittle ND, Muldoon LL, Neuwelt EA: Intraarterial chemotherapy and osmotic blood–brain barrier disruption for patients with embryonal and germ cell tumors of the central nervous system. Cancer. 2008, 112: 581-588. 10.1002/cncr.23221.CrossRefPubMed Jahnke K, Kraemer DF, Knight KR, Fortin D, Bell S, Doolittle ND, Muldoon LL, Neuwelt EA: Intraarterial chemotherapy and osmotic blood–brain barrier disruption for patients with embryonal and germ cell tumors of the central nervous system. Cancer. 2008, 112: 581-588. 10.1002/cncr.23221.CrossRefPubMed
9.
go back to reference Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA: Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology. 2001, 220: 640-646. 10.1148/radiol.2202001804.CrossRefPubMed Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA: Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology. 2001, 220: 640-646. 10.1148/radiol.2202001804.CrossRefPubMed
10.
go back to reference Kinoshita M, McDannold N, Jolesz FA, Hynynen K: Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc Natl Acad Sci U S A. 2006, 103: 11719-11723. 10.1073/pnas.0604318103.PubMedCentralCrossRefPubMed Kinoshita M, McDannold N, Jolesz FA, Hynynen K: Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc Natl Acad Sci U S A. 2006, 103: 11719-11723. 10.1073/pnas.0604318103.PubMedCentralCrossRefPubMed
11.
go back to reference Choi M, Ku T, Chong K, Yoon J, Choi C: Minimally invasive molecular delivery into the brain using optical modulation of vascular permeability. Proc Natl Acad Sci U S A. 2011, 108: 9256-9261. 10.1073/pnas.1018790108.PubMedCentralCrossRefPubMed Choi M, Ku T, Chong K, Yoon J, Choi C: Minimally invasive molecular delivery into the brain using optical modulation of vascular permeability. Proc Natl Acad Sci U S A. 2011, 108: 9256-9261. 10.1073/pnas.1018790108.PubMedCentralCrossRefPubMed
12.
go back to reference Balashov KE, Aung LL, Dhib-Jalbut S, Keller IA: Acute multiple sclerosis lesion: conversion of restricted diffusion due to vasogenic edema. J Neuroimaging. 2011, 21: 202-204. 10.1111/j.1552-6569.2009.00443.x.PubMedCentralCrossRefPubMed Balashov KE, Aung LL, Dhib-Jalbut S, Keller IA: Acute multiple sclerosis lesion: conversion of restricted diffusion due to vasogenic edema. J Neuroimaging. 2011, 21: 202-204. 10.1111/j.1552-6569.2009.00443.x.PubMedCentralCrossRefPubMed
13.
go back to reference Lehmann P, Saliou G, de Marco G, Monet P, Souraya SE, Bruniau A, Vallee JN, Ducreux D: Cerebral peritumoral oedema study: does a single dynamic MR sequence assessing perfusion and permeability can help to differentiate glioblastoma from metastasis?. Euro J Radiol. 2012, 81: 522-527. 10.1016/j.ejrad.2011.01.076.CrossRef Lehmann P, Saliou G, de Marco G, Monet P, Souraya SE, Bruniau A, Vallee JN, Ducreux D: Cerebral peritumoral oedema study: does a single dynamic MR sequence assessing perfusion and permeability can help to differentiate glioblastoma from metastasis?. Euro J Radiol. 2012, 81: 522-527. 10.1016/j.ejrad.2011.01.076.CrossRef
14.
go back to reference Gerriets T, Walberer M, Ritschel N, Tschernatsch M, Mueller C, Bachmann G, Schoenburg M, Kaps M, Nedelman M: Edema formation in the hyperacute phase of ischemic stroke. Laboratory investigation. J Neurosurg. 2009, 111: 1036-1042. 10.3171/2009.3.JNS081040.CrossRefPubMed Gerriets T, Walberer M, Ritschel N, Tschernatsch M, Mueller C, Bachmann G, Schoenburg M, Kaps M, Nedelman M: Edema formation in the hyperacute phase of ischemic stroke. Laboratory investigation. J Neurosurg. 2009, 111: 1036-1042. 10.3171/2009.3.JNS081040.CrossRefPubMed
15.
go back to reference Kuroiwa T, Ting P, Martinez H, Klatzo I: The biphasic opening of the blood–brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol. 1985, 68: 122-129. 10.1007/BF00688633.CrossRefPubMed Kuroiwa T, Ting P, Martinez H, Klatzo I: The biphasic opening of the blood–brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol. 1985, 68: 122-129. 10.1007/BF00688633.CrossRefPubMed
16.
go back to reference Rosenberg GS, Estrada EY, Dencoff JE: Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brains. Stroke. 1998, 29: 2189-2195. 10.1161/01.STR.29.10.2189.CrossRefPubMed Rosenberg GS, Estrada EY, Dencoff JE: Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brains. Stroke. 1998, 29: 2189-2195. 10.1161/01.STR.29.10.2189.CrossRefPubMed
17.
go back to reference Brightman MW, Klatzo I, Olsson Y, Reese TS: The blood–brain barrier under normal and pathological conditions. J Neurol Sci. 1970, 10: 215-239. 10.1016/0022-510X(70)90151-6.CrossRefPubMed Brightman MW, Klatzo I, Olsson Y, Reese TS: The blood–brain barrier under normal and pathological conditions. J Neurol Sci. 1970, 10: 215-239. 10.1016/0022-510X(70)90151-6.CrossRefPubMed
18.
go back to reference Murakami K, Kawase M, Kondo T, Chan P: Cellular accumulation of extravasated serum protein and DNA fragmentation following vasogenic edema. J Neurotrauma. 1998, 15: 825-835. 10.1089/neu.1998.15.825.CrossRefPubMed Murakami K, Kawase M, Kondo T, Chan P: Cellular accumulation of extravasated serum protein and DNA fragmentation following vasogenic edema. J Neurotrauma. 1998, 15: 825-835. 10.1089/neu.1998.15.825.CrossRefPubMed
19.
go back to reference Nagaraja TN, Keenan KA, Fenstermacher JD, Knight RA: Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood–brain barrier. Microcirculation. 2008, 15: 1-14. 10.1080/10739680701409811.CrossRefPubMed Nagaraja TN, Keenan KA, Fenstermacher JD, Knight RA: Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood–brain barrier. Microcirculation. 2008, 15: 1-14. 10.1080/10739680701409811.CrossRefPubMed
20.
go back to reference Warach S, Latour LL: Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood–brain barrier disruption. Stroke. 2004, 35 (Suppl 1): 2659-2661.CrossRefPubMed Warach S, Latour LL: Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood–brain barrier disruption. Stroke. 2004, 35 (Suppl 1): 2659-2661.CrossRefPubMed
21.
go back to reference Kohrmann M, Juttler E, Huttner HB, Nowe T, Schellinger PD: Acute stroke imaging for thrombolytic therapy–an update. Cerebrovasc Dis. 2007, 24: 161-169. 10.1159/000104473.CrossRefPubMed Kohrmann M, Juttler E, Huttner HB, Nowe T, Schellinger PD: Acute stroke imaging for thrombolytic therapy–an update. Cerebrovasc Dis. 2007, 24: 161-169. 10.1159/000104473.CrossRefPubMed
22.
go back to reference Hjort N, Wu O, Ashkanian M, Solling C, Mouridsen K, Christensen S, Gyldensted C, Andersen G, Ostergaard L: MRI detection of early blood–brain barrier disruption: parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke. 2008, 39: 1025-1028. 10.1161/STROKEAHA.107.497719.CrossRefPubMed Hjort N, Wu O, Ashkanian M, Solling C, Mouridsen K, Christensen S, Gyldensted C, Andersen G, Ostergaard L: MRI detection of early blood–brain barrier disruption: parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke. 2008, 39: 1025-1028. 10.1161/STROKEAHA.107.497719.CrossRefPubMed
23.
go back to reference Fenstermacher JD, Knight RA, Ewing ER, Nagaraja T, Nagesh V, Yee JS, Arniego PA: Estimating blood–brain barrier opening in a rat model of hemorrhagic transformation with Patlak plots of Gd-DTPA contrast enhanced MRI. Acta Neurochir Suppl. 2003, 86: 37-39. Fenstermacher JD, Knight RA, Ewing ER, Nagaraja T, Nagesh V, Yee JS, Arniego PA: Estimating blood–brain barrier opening in a rat model of hemorrhagic transformation with Patlak plots of Gd-DTPA contrast enhanced MRI. Acta Neurochir Suppl. 2003, 86: 37-39.
24.
go back to reference Knight RA, Nagaraja TN, Ewing JR, Nagesh V, Whitton PA, Bershad E, Fagan SC, Fenstermacher JD: Quantitation and localization of blood-to-brain influx by MRI and quantitative autoradiography in a model of transient focal ischemia. Magn Reson Med. 2005, 54: 813-821. 10.1002/mrm.20629.CrossRefPubMed Knight RA, Nagaraja TN, Ewing JR, Nagesh V, Whitton PA, Bershad E, Fagan SC, Fenstermacher JD: Quantitation and localization of blood-to-brain influx by MRI and quantitative autoradiography in a model of transient focal ischemia. Magn Reson Med. 2005, 54: 813-821. 10.1002/mrm.20629.CrossRefPubMed
25.
go back to reference Ewing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, Cao Y, Jiang Q, Nagaraja TN, Churchman JL, Fenstermacher JD: Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab. 2006, 26: 310-320. 10.1038/sj.jcbfm.9600189.CrossRefPubMed Ewing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, Cao Y, Jiang Q, Nagaraja TN, Churchman JL, Fenstermacher JD: Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab. 2006, 26: 310-320. 10.1038/sj.jcbfm.9600189.CrossRefPubMed
26.
go back to reference Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, Herscovitch P: Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab. 1993, 13: 24-42. 10.1038/jcbfm.1993.6.CrossRefPubMed Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, Herscovitch P: Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab. 1993, 13: 24-42. 10.1038/jcbfm.1993.6.CrossRefPubMed
27.
go back to reference Merten CL, Knitelius HO, Assheuer J, Bergmann-Kurz B, Hedde JP, Bewermeyer H: MRI of acute cerebral infarcts: increased contrast enhancement with continuous infusion of gadolinium. Neuroradiology. 1999, 41: 242-248. 10.1007/s002340050740.CrossRefPubMed Merten CL, Knitelius HO, Assheuer J, Bergmann-Kurz B, Hedde JP, Bewermeyer H: MRI of acute cerebral infarcts: increased contrast enhancement with continuous infusion of gadolinium. Neuroradiology. 1999, 41: 242-248. 10.1007/s002340050740.CrossRefPubMed
28.
go back to reference Nagaraja TN, Nagesh V, Ewing JR, Whitton PA, Fenstermacher JD, Knight RA: Step-down infusions of Gd-DTPA yield greater contrast-enhanced magnetic resonance images of BBB damage in acute stroke than bolus injections. Magn Reson Imaging. 2007, 25: 311-318. 10.1016/j.mri.2006.09.003.PubMedCentralCrossRefPubMed Nagaraja TN, Nagesh V, Ewing JR, Whitton PA, Fenstermacher JD, Knight RA: Step-down infusions of Gd-DTPA yield greater contrast-enhanced magnetic resonance images of BBB damage in acute stroke than bolus injections. Magn Reson Imaging. 2007, 25: 311-318. 10.1016/j.mri.2006.09.003.PubMedCentralCrossRefPubMed
29.
go back to reference Knight RA, Karki K, Ewing JR, Divine GW, Fenstermacher JD, Patlak CS, Nagaraja TN: Estimating blood and brain concentrations and blood-to-brain influx by magnetic resonance imaging with step-down infusion of Gd-DTPA in focal transient cerebral ischemia and confirmation by quantitative autoradiography with Gd-[14C]DTPA. J Cereb Blood Flow Metab. 2009, 29: 1048-1058. 10.1038/jcbfm.2009.20.PubMedCentralCrossRefPubMed Knight RA, Karki K, Ewing JR, Divine GW, Fenstermacher JD, Patlak CS, Nagaraja TN: Estimating blood and brain concentrations and blood-to-brain influx by magnetic resonance imaging with step-down infusion of Gd-DTPA in focal transient cerebral ischemia and confirmation by quantitative autoradiography with Gd-[14C]DTPA. J Cereb Blood Flow Metab. 2009, 29: 1048-1058. 10.1038/jcbfm.2009.20.PubMedCentralCrossRefPubMed
30.
go back to reference Nagaraja TN, Karki K, Ewing JR, Divine GW, Fenstermacher JD, Patlak CS, Knight RA: The MRI-measured arterial input function resulting from a bolus injection of Gd-DTPA in a rat model of stroke slightly underestimates that of Gd-[14C]DTPA and marginally overestimates the blood-to-brain influx rate constant determined by Patlak plots. Magn Reson Med. 2010, 63: 1502-1509. 10.1002/mrm.22339.PubMedCentralCrossRefPubMed Nagaraja TN, Karki K, Ewing JR, Divine GW, Fenstermacher JD, Patlak CS, Knight RA: The MRI-measured arterial input function resulting from a bolus injection of Gd-DTPA in a rat model of stroke slightly underestimates that of Gd-[14C]DTPA and marginally overestimates the blood-to-brain influx rate constant determined by Patlak plots. Magn Reson Med. 2010, 63: 1502-1509. 10.1002/mrm.22339.PubMedCentralCrossRefPubMed
31.
go back to reference Nagaraja TN, Karki K, Ewing JR, Croxen RL, Knight RA: Identification of variations in blood–brain barrier opening after cerebral ischemia by dual contrast-enhanced magnetic resonance imaging and T1sat measurements. Stroke. 2008, 39: 427-432. 10.1161/STROKEAHA.107.496059.CrossRefPubMed Nagaraja TN, Karki K, Ewing JR, Croxen RL, Knight RA: Identification of variations in blood–brain barrier opening after cerebral ischemia by dual contrast-enhanced magnetic resonance imaging and T1sat measurements. Stroke. 2008, 39: 427-432. 10.1161/STROKEAHA.107.496059.CrossRefPubMed
32.
go back to reference Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA, Li L, Fenstermacher JD: Patlak plots of Gd-DTPA MRI data yield blood–brain transfer constants concordant with those of 14C-sucrose in areas of blood–brain opening. Magn Reson Med. 2003, 50: 283-292. 10.1002/mrm.10524.CrossRefPubMed Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA, Li L, Fenstermacher JD: Patlak plots of Gd-DTPA MRI data yield blood–brain transfer constants concordant with those of 14C-sucrose in areas of blood–brain opening. Magn Reson Med. 2003, 50: 283-292. 10.1002/mrm.10524.CrossRefPubMed
33.
go back to reference Ewing JR, Wei L, Knight RA, Pawa S, Nagaraja TN, Brusca T, Divine GW, Fenstermacher JD: Direct comparison of local cerebral blood flow rates measured by MRI arterial spin-tagging and quantitative autoradiography in a rat model of experimental cerebral ischemia. J Cereb Blood Flow Metab. 2003, 23: 198-209.CrossRefPubMed Ewing JR, Wei L, Knight RA, Pawa S, Nagaraja TN, Brusca T, Divine GW, Fenstermacher JD: Direct comparison of local cerebral blood flow rates measured by MRI arterial spin-tagging and quantitative autoradiography in a rat model of experimental cerebral ischemia. J Cereb Blood Flow Metab. 2003, 23: 198-209.CrossRefPubMed
34.
go back to reference Knight RA, Nagesh V, Nagaraja TN, Ewing JR, Whitton PA, Bershad E, Fagan SC, Fenstermacher JD: Acute blood–brain barrier opening in experimentally induced focal cerebral ischemia is preferentially identified by quantitative magnetization transfer imaging. Magn Reson Med. 2005, 54: 822-832. 10.1002/mrm.20630.CrossRefPubMed Knight RA, Nagesh V, Nagaraja TN, Ewing JR, Whitton PA, Bershad E, Fagan SC, Fenstermacher JD: Acute blood–brain barrier opening in experimentally induced focal cerebral ischemia is preferentially identified by quantitative magnetization transfer imaging. Magn Reson Med. 2005, 54: 822-832. 10.1002/mrm.20630.CrossRefPubMed
35.
go back to reference Fenstermacher J, Kaye T: Drug “diffusion” within the brain. Ann N Y Acad Sci. 1988, 531: 29-39. 10.1111/j.1749-6632.1988.tb31809.x.CrossRefPubMed Fenstermacher J, Kaye T: Drug “diffusion” within the brain. Ann N Y Acad Sci. 1988, 531: 29-39. 10.1111/j.1749-6632.1988.tb31809.x.CrossRefPubMed
37.
go back to reference Fenstermacher JD, Li CL, Levin VA: Extracellular space of the cerebral cortex of normothermic and hypothermic cats. Exp Neurol. 1970, 27: 101-114. 10.1016/0014-4886(70)90205-0.CrossRefPubMed Fenstermacher JD, Li CL, Levin VA: Extracellular space of the cerebral cortex of normothermic and hypothermic cats. Exp Neurol. 1970, 27: 101-114. 10.1016/0014-4886(70)90205-0.CrossRefPubMed
38.
go back to reference Nicholson C, Sykova E: Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998, 21: 207-215. 10.1016/S0166-2236(98)01261-2.CrossRefPubMed Nicholson C, Sykova E: Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998, 21: 207-215. 10.1016/S0166-2236(98)01261-2.CrossRefPubMed
39.
go back to reference Thorne RG, Nicholson C: In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A. 2006, 103: 5567-5572. 10.1073/pnas.0509425103.PubMedCentralCrossRefPubMed Thorne RG, Nicholson C: In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A. 2006, 103: 5567-5572. 10.1073/pnas.0509425103.PubMedCentralCrossRefPubMed
40.
go back to reference Cserr HF, Ostrach LH: Bulk flow of interstitial fluid after intracranial injection of blue dextran. Exp Neurol. 1974, 45: 50-60. 10.1016/0014-4886(74)90099-5.CrossRefPubMed Cserr HF, Ostrach LH: Bulk flow of interstitial fluid after intracranial injection of blue dextran. Exp Neurol. 1974, 45: 50-60. 10.1016/0014-4886(74)90099-5.CrossRefPubMed
41.
go back to reference Reulen H-J: Bulk flow and diffusion revisited, and clinical applications. Acta Neurochir Suppl. 2010, 106: 3-13. 10.1007/978-3-211-98811-4_1.CrossRefPubMed Reulen H-J: Bulk flow and diffusion revisited, and clinical applications. Acta Neurochir Suppl. 2010, 106: 3-13. 10.1007/978-3-211-98811-4_1.CrossRefPubMed
43.
go back to reference Pillai DR, Dittmar MS, Baldaranov D, Heidemann RM, Henning EC, Schuierer G, Bogdahn U, Schlachetzki F: Cerebral ischemia–reperfusion injury in rats—A 3 T MRI study on biphasic blood–brain barrier opening and the dynamics of edema formation. J Cereb Blood Flow Metab. 2009, 29: 1846-1855. 10.1038/jcbfm.2009.106.PubMedCentralCrossRefPubMed Pillai DR, Dittmar MS, Baldaranov D, Heidemann RM, Henning EC, Schuierer G, Bogdahn U, Schlachetzki F: Cerebral ischemia–reperfusion injury in rats—A 3 T MRI study on biphasic blood–brain barrier opening and the dynamics of edema formation. J Cereb Blood Flow Metab. 2009, 29: 1846-1855. 10.1038/jcbfm.2009.106.PubMedCentralCrossRefPubMed
44.
go back to reference Lo EH, Singhal AB, Torchilin VP, Abbott NJ: Drug delivery to the damaged brain. Brain Res Rev. 2001, 38: 140-148. 10.1016/S0165-0173(01)00083-2.CrossRefPubMed Lo EH, Singhal AB, Torchilin VP, Abbott NJ: Drug delivery to the damaged brain. Brain Res Rev. 2001, 38: 140-148. 10.1016/S0165-0173(01)00083-2.CrossRefPubMed
45.
go back to reference Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF: Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs. 2009, 23: 35-58.CrossRefPubMed Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF: Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs. 2009, 23: 35-58.CrossRefPubMed
46.
go back to reference Kawamata T, Dalton Dietrich W, Schallert T, Gotts JE, Cocke RR, Benowitz LI, Finklestein SP: Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci U S A. 1997, 94: 8179-8184. 10.1073/pnas.94.15.8179.PubMedCentralCrossRefPubMed Kawamata T, Dalton Dietrich W, Schallert T, Gotts JE, Cocke RR, Benowitz LI, Finklestein SP: Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci U S A. 1997, 94: 8179-8184. 10.1073/pnas.94.15.8179.PubMedCentralCrossRefPubMed
47.
go back to reference Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schroter A, Gullo M, Weinmann O, Kobayashi K, Helmchen F, Ommer B, Schwab ME: Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science. 2014, 344: 1250-1255. 10.1126/science.1253050.CrossRefPubMed Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schroter A, Gullo M, Weinmann O, Kobayashi K, Helmchen F, Ommer B, Schwab ME: Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science. 2014, 344: 1250-1255. 10.1126/science.1253050.CrossRefPubMed
Metadata
Title
Extravasation into brain and subsequent spread beyond the ischemic core of a magnetic resonance contrast agent following a step-down infusion protocol in acute cerebral ischemia
Authors
Tavarekere N Nagaraja
Kelly A Keenan
Madhava P Aryal
James R Ewing
Saarang Gopinath
Varun S Nadig
Sukruth Shashikumar
Robert A Knight
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2014
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-11-21

Other articles of this Issue 1/2014

Fluids and Barriers of the CNS 1/2014 Go to the issue