Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2014

Open Access 01-12-2014 | Review

A new look at cerebrospinal fluid circulation

Authors: Thomas Brinker, Edward Stopa, John Morrison, Petra Klinge

Published in: Fluids and Barriers of the CNS | Issue 1/2014

Login to get access

Abstract

According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed. The CSF circulation comprises not only a directed flow of CSF, but in addition a pulsatile to and fro movement throughout the entire brain with local fluid exchange between blood, interstitial fluid, and CSF. Astrocytes, aquaporins, and other membrane transporters are key elements in brain water and CSF homeostasis. A continuous bidirectional fluid exchange at the blood brain barrier produces flow rates, which exceed the choroidal CSF production rate by far. The CSF circulation around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces provides both a drainage pathway for the clearance of waste molecules from the brain and a site for the interaction of the systemic immune system with that of the brain. Important physiological functions, for example the regeneration of the brain during sleep, may depend on CSF circulation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Milhorat TH: The third circulation revisited. J Neurosurg. 1975, 42: 628-645. 10.3171/jns.1975.42.6.0628.PubMed Milhorat TH: The third circulation revisited. J Neurosurg. 1975, 42: 628-645. 10.3171/jns.1975.42.6.0628.PubMed
2.
go back to reference McComb JG: Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg. 1983, 59: 369-383. 10.3171/jns.1983.59.3.0369.PubMed McComb JG: Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg. 1983, 59: 369-383. 10.3171/jns.1983.59.3.0369.PubMed
3.
go back to reference Davson H: Formation and drainage of the cerebrospinal fluid. Sci Basis Med Annu Rev. 1966, 238-259. Davson H: Formation and drainage of the cerebrospinal fluid. Sci Basis Med Annu Rev. 1966, 238-259.
4.
go back to reference Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008, 5: 10-10.1186/1743-8454-5-10.PubMedCentralPubMed Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008, 5: 10-10.1186/1743-8454-5-10.PubMedCentralPubMed
5.
go back to reference Pardridge WM: Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS. 2011, 8: 7-10.1186/2045-8118-8-7.PubMedCentralPubMed Pardridge WM: Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS. 2011, 8: 7-10.1186/2045-8118-8-7.PubMedCentralPubMed
6.
go back to reference Hassin GB: The cerebrospinal fluid pathways (a critical note). J Neuropathol Exp Neurol. 1947, 6: 172-176. 10.1097/00005072-194704000-00006.PubMed Hassin GB: The cerebrospinal fluid pathways (a critical note). J Neuropathol Exp Neurol. 1947, 6: 172-176. 10.1097/00005072-194704000-00006.PubMed
7.
go back to reference Bateman GA, Brown KM: The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go?. Child’s Nerv Syst. 2012, 28: 55-63. 10.1007/s00381-011-1617-4. Bateman GA, Brown KM: The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go?. Child’s Nerv Syst. 2012, 28: 55-63. 10.1007/s00381-011-1617-4.
8.
go back to reference Greitz D: Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1993, 386: 1-23.PubMed Greitz D: Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1993, 386: 1-23.PubMed
9.
go back to reference Bulat M, Klarica M: Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev. 2011, 65: 99-112. 10.1016/j.brainresrev.2010.08.002.PubMed Bulat M, Klarica M: Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev. 2011, 65: 99-112. 10.1016/j.brainresrev.2010.08.002.PubMed
10.
go back to reference Oreskovic D, Klarica M: The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev. 2010, 64: 241-262. 10.1016/j.brainresrev.2010.04.006.PubMed Oreskovic D, Klarica M: The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev. 2010, 64: 241-262. 10.1016/j.brainresrev.2010.04.006.PubMed
11.
go back to reference Cserr HF: Physiology of the choroid plexus. Physiol Rev. 1971, 51: 273-311.PubMed Cserr HF: Physiology of the choroid plexus. Physiol Rev. 1971, 51: 273-311.PubMed
12.
go back to reference Becker NH, Novikoff AB, Zimmerman HM: Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem. 1967, 15: 160-165. 10.1177/15.3.160.PubMed Becker NH, Novikoff AB, Zimmerman HM: Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem. 1967, 15: 160-165. 10.1177/15.3.160.PubMed
13.
go back to reference Dandy WE, Blackfan KD: An experimental and clinical study of internal hydrocephalus. JAMA. 1913, 61: 2216-2217. 10.1001/jama.1913.04350260014006. Dandy WE, Blackfan KD: An experimental and clinical study of internal hydrocephalus. JAMA. 1913, 61: 2216-2217. 10.1001/jama.1913.04350260014006.
15.
go back to reference Hassin GB, Oldberg E, Tinsley M: Changes in the brain in plexectomized dogs with commentson the cerebrospinal fluid. Arch Neurol Psychiatry. 1937, 38: 1224-1239. 10.1001/archneurpsyc.1937.02260240104008. Hassin GB, Oldberg E, Tinsley M: Changes in the brain in plexectomized dogs with commentson the cerebrospinal fluid. Arch Neurol Psychiatry. 1937, 38: 1224-1239. 10.1001/archneurpsyc.1937.02260240104008.
16.
go back to reference Oreskovic D, Klarica M, Vukic M: The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion?. Neurosci Lett. 2002, 327: 103-106. 10.1016/S0304-3940(02)00395-6.PubMed Oreskovic D, Klarica M, Vukic M: The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion?. Neurosci Lett. 2002, 327: 103-106. 10.1016/S0304-3940(02)00395-6.PubMed
17.
go back to reference Milhorat TH: Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet. 1974, 139: 505-508.PubMed Milhorat TH: Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet. 1974, 139: 505-508.PubMed
18.
go back to reference Welch K: Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Physiol. 1963, 205: 617-624.PubMed Welch K: Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Physiol. 1963, 205: 617-624.PubMed
19.
go back to reference Pollay M: Formation of cerebrospinal fluid. Relation of studies of isolated choroid plexus to the standing gradient hypothesis. J Neurosurg. 1975, 42: 665-673. 10.3171/jns.1975.42.6.0665.PubMed Pollay M: Formation of cerebrospinal fluid. Relation of studies of isolated choroid plexus to the standing gradient hypothesis. J Neurosurg. 1975, 42: 665-673. 10.3171/jns.1975.42.6.0665.PubMed
20.
go back to reference Pollay M, Stevens A, Estrada E, Kaplan R: Extracorporeal perfusion of choroid plexus. J Appl Physiol. 1972, 32: 612-617.PubMed Pollay M, Stevens A, Estrada E, Kaplan R: Extracorporeal perfusion of choroid plexus. J Appl Physiol. 1972, 32: 612-617.PubMed
21.
go back to reference Ames A, Sakanoue M, Endo S: Na, K, Ca, Mg, and C1 concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J Neurophysiol. 1964, 27: 672-681.PubMed Ames A, Sakanoue M, Endo S: Na, K, Ca, Mg, and C1 concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J Neurophysiol. 1964, 27: 672-681.PubMed
22.
go back to reference de Rougemont , Ames A, Nesbett FB, Hofmann HF: Fluid formed by choroid plexus; a technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J Neurophysiol. 1960, 23: 485-495.PubMed de Rougemont , Ames A, Nesbett FB, Hofmann HF: Fluid formed by choroid plexus; a technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J Neurophysiol. 1960, 23: 485-495.PubMed
23.
go back to reference Bering EA: Cerebrospinal fluid production and its relationship to cerebral metabolism and cerebral blood flow. Am J Physiol. 1959, 197: 825-828.PubMed Bering EA: Cerebrospinal fluid production and its relationship to cerebral metabolism and cerebral blood flow. Am J Physiol. 1959, 197: 825-828.PubMed
24.
go back to reference Bering EA, Sato O: Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg. 1963, 20: 1050-1063. 10.3171/jns.1963.20.12.1050.PubMed Bering EA, Sato O: Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg. 1963, 20: 1050-1063. 10.3171/jns.1963.20.12.1050.PubMed
25.
go back to reference Weed LH: The development of the cerebrospinal spaces in pig and in man. Contrib Embryol Carnegie Inst. 1917, 5: 1-116. Weed LH: The development of the cerebrospinal spaces in pig and in man. Contrib Embryol Carnegie Inst. 1917, 5: 1-116.
26.
go back to reference Pollay M, Curl F: Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol. 1967, 213: 1031-1038.PubMed Pollay M, Curl F: Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol. 1967, 213: 1031-1038.PubMed
27.
go back to reference Sonnenberg H, Solomon S, Frazier DT: Sodium and chloride movement into the central canal of cat spinal cord. Proc Soc Exp Biol Med. 1967, 124: 1316-1320. 10.3181/00379727-124-31996.PubMed Sonnenberg H, Solomon S, Frazier DT: Sodium and chloride movement into the central canal of cat spinal cord. Proc Soc Exp Biol Med. 1967, 124: 1316-1320. 10.3181/00379727-124-31996.PubMed
28.
go back to reference Bradbury MW: Physiopathology of the blood–brain barrier. Adv Exp Med Biol. 1976, 69: 507-516.PubMed Bradbury MW: Physiopathology of the blood–brain barrier. Adv Exp Med Biol. 1976, 69: 507-516.PubMed
29.
go back to reference Abbott NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004, 45: 545-552. 10.1016/j.neuint.2003.11.006.PubMed Abbott NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004, 45: 545-552. 10.1016/j.neuint.2003.11.006.PubMed
30.
go back to reference Cserr HF: Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Ann NY Acad Sci. 1988, 529: 9-20. 10.1111/j.1749-6632.1988.tb51415.x.PubMed Cserr HF: Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Ann NY Acad Sci. 1988, 529: 9-20. 10.1111/j.1749-6632.1988.tb51415.x.PubMed
31.
go back to reference Davson H, Domer FR, Hollingsworth JR: The mechanism of drainage of the cerebrospinal fluid. Brain. 1973, 96: 329-336. 10.1093/brain/96.2.329.PubMed Davson H, Domer FR, Hollingsworth JR: The mechanism of drainage of the cerebrospinal fluid. Brain. 1973, 96: 329-336. 10.1093/brain/96.2.329.PubMed
32.
go back to reference Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res. 2008, 5: 10-10.1186/1743-8454-5-10.PubMedCentralPubMed Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res. 2008, 5: 10-10.1186/1743-8454-5-10.PubMedCentralPubMed
33.
go back to reference Davson H, Welch K, Segal MB: Physiology and pathophysiology of the cerebrospinal fluid. 1987, Edinburgh London Melbourne and New York: Churchill Livingstone Davson H, Welch K, Segal MB: Physiology and pathophysiology of the cerebrospinal fluid. 1987, Edinburgh London Melbourne and New York: Churchill Livingstone
34.
go back to reference Key EAH, Retzius MG: Studien in der Anatomie des Nervensystems und des Bindegewebes. 1875, Stockholm: Samson and Wallin Key EAH, Retzius MG: Studien in der Anatomie des Nervensystems und des Bindegewebes. 1875, Stockholm: Samson and Wallin
35.
go back to reference Weed LH: Studies on cerebro-spinal fluid. No. II : the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J Med Res. 1914, 31: 21-49.PubMedCentralPubMed Weed LH: Studies on cerebro-spinal fluid. No. II : the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J Med Res. 1914, 31: 21-49.PubMedCentralPubMed
36.
go back to reference Weed LH: Studies on cerebro-spinal fluid. No. III : the pathways of escape from the subarachnoid spaces with particular reference to the Arachnoid Villi. J Med Res. 1914, 31: 51-91.PubMedCentralPubMed Weed LH: Studies on cerebro-spinal fluid. No. III : the pathways of escape from the subarachnoid spaces with particular reference to the Arachnoid Villi. J Med Res. 1914, 31: 51-91.PubMedCentralPubMed
37.
go back to reference Weed LH: Studies on cerebro-spinal fluid. No. IV : the dual source of cerebro-spinal fluid. J Med Res. 1914, 31: 93-118. 111PubMedCentralPubMed Weed LH: Studies on cerebro-spinal fluid. No. IV : the dual source of cerebro-spinal fluid. J Med Res. 1914, 31: 93-118. 111PubMedCentralPubMed
38.
go back to reference Tripathi RC: The functional morphology of the outflow systems of ocular and cerebrospinal fluids. Exp Eye Res. 1977, 25 (Suppl): 65-116.PubMed Tripathi RC: The functional morphology of the outflow systems of ocular and cerebrospinal fluids. Exp Eye Res. 1977, 25 (Suppl): 65-116.PubMed
39.
go back to reference Levine JE, Povlishock JT, Becker DP: The morphological correlates of primate cerebrospinal fluid absorption. Brain Res. 1982, 241: 31-41. 10.1016/0006-8993(82)91225-2.PubMed Levine JE, Povlishock JT, Becker DP: The morphological correlates of primate cerebrospinal fluid absorption. Brain Res. 1982, 241: 31-41. 10.1016/0006-8993(82)91225-2.PubMed
40.
go back to reference Welch K, Pollay M: Perfusion of particles through arachnoid villi of the monkey. Am J Physiol. 1961, 201: 651-654.PubMed Welch K, Pollay M: Perfusion of particles through arachnoid villi of the monkey. Am J Physiol. 1961, 201: 651-654.PubMed
41.
go back to reference Courtice FC, Simmonds WJ: The removal of protein from the subarachnoid space. Aust J Exp Biol Med Sci. 1951, 29: 255-263. 10.1038/icb.1951.30.PubMed Courtice FC, Simmonds WJ: The removal of protein from the subarachnoid space. Aust J Exp Biol Med Sci. 1951, 29: 255-263. 10.1038/icb.1951.30.PubMed
42.
go back to reference Boulton M, Flessner M, Armstrong D, Hay J, Johnston M: Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol. 1998, 274: R88-R96.PubMed Boulton M, Flessner M, Armstrong D, Hay J, Johnston M: Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol. 1998, 274: R88-R96.PubMed
43.
go back to reference Bradbury MW, Cserr HF, Westrop RJ: Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol. 1981, 240: F329-F336.PubMed Bradbury MW, Cserr HF, Westrop RJ: Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol. 1981, 240: F329-F336.PubMed
44.
go back to reference Brinker T, Ludemann W, Berens V, Samii M: Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol(Berl). 1997, 94: 493-498. 10.1007/s004010050738. Brinker T, Ludemann W, Berens V, Samii M: Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol(Berl). 1997, 94: 493-498. 10.1007/s004010050738.
45.
go back to reference Weller RO, Galea I, Carare RO, Minagar A: Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology. 2010, 17: 295-306. 10.1016/j.pathophys.2009.10.007.PubMed Weller RO, Galea I, Carare RO, Minagar A: Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology. 2010, 17: 295-306. 10.1016/j.pathophys.2009.10.007.PubMed
46.
go back to reference Klarica M, Mise B, Vladic A, Rados M, Oreskovic D: "Compensated hyperosmolarity" of cerebrospinal fluid and the development of hydrocephalus. Neuroscience. 2013, 248C: 278-289. Klarica M, Mise B, Vladic A, Rados M, Oreskovic D: "Compensated hyperosmolarity" of cerebrospinal fluid and the development of hydrocephalus. Neuroscience. 2013, 248C: 278-289.
47.
go back to reference Welch K: The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. Adv Neurol. 1975, 13: 247-332.PubMed Welch K: The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. Adv Neurol. 1975, 13: 247-332.PubMed
48.
go back to reference Masserman JH: Cerebrospinal hydrodynamics: IV. Clinical experimental studies. Arch Neurol Psychiat. 1934, 32: 523-553. 10.1001/archneurpsyc.1934.02250090060006. Masserman JH: Cerebrospinal hydrodynamics: IV. Clinical experimental studies. Arch Neurol Psychiat. 1934, 32: 523-553. 10.1001/archneurpsyc.1934.02250090060006.
49.
go back to reference Heisey SR, Held D, Pappenheimer JR: Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol. 1962, 203: 775-781.PubMed Heisey SR, Held D, Pappenheimer JR: Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol. 1962, 203: 775-781.PubMed
50.
go back to reference Fishman RA: The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology. 2002, 58: 1866-author reply 1866PubMed Fishman RA: The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology. 2002, 58: 1866-author reply 1866PubMed
51.
go back to reference Ekstedt J: CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry. 1978, 41: 345-353. 10.1136/jnnp.41.4.345.PubMedCentralPubMed Ekstedt J: CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry. 1978, 41: 345-353. 10.1136/jnnp.41.4.345.PubMedCentralPubMed
52.
go back to reference Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP: The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg. 1966, 25: 430-436. 10.3171/jns.1966.25.4.0430.PubMed Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP: The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg. 1966, 25: 430-436. 10.3171/jns.1966.25.4.0430.PubMed
53.
go back to reference Cutler RW, Page L, Galicich J, Watters GV: Formation and absorption of cerebrospinal fluid in man. Brain. 1968, 91: 707-720. 10.1093/brain/91.4.707.PubMed Cutler RW, Page L, Galicich J, Watters GV: Formation and absorption of cerebrospinal fluid in man. Brain. 1968, 91: 707-720. 10.1093/brain/91.4.707.PubMed
54.
go back to reference Lorenzo AV, Page LK, Watters GV: Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain. 1970, 93: 679-692. 10.1093/brain/93.4.679.PubMed Lorenzo AV, Page LK, Watters GV: Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain. 1970, 93: 679-692. 10.1093/brain/93.4.679.PubMed
55.
go back to reference Rottenberg DA, Deck MD, Allen JC: Metrizamide washout as a measure of CSF bulk flow. Neuroradiology. 1978, 16: 203-206. 10.1007/BF00395250.PubMed Rottenberg DA, Deck MD, Allen JC: Metrizamide washout as a measure of CSF bulk flow. Neuroradiology. 1978, 16: 203-206. 10.1007/BF00395250.PubMed
56.
go back to reference Rottenberg DA, Howieson J, Deck MD: The rate of CSF formation in man: preliminary observations on metrizamide washout as a measure of CSF bulk flow. Ann Neurol. 1977, 2: 503-510. 10.1002/ana.410020610.PubMed Rottenberg DA, Howieson J, Deck MD: The rate of CSF formation in man: preliminary observations on metrizamide washout as a measure of CSF bulk flow. Ann Neurol. 1977, 2: 503-510. 10.1002/ana.410020610.PubMed
57.
go back to reference Cushing H: Studies in Intracranial physiology & surgery: the third circulation, the Hypophysis, the Gliomas : the Cameron prize lectures delivered at the University of Edinburgh, October 19–22, 1925. 1926, Oxford Cushing H: Studies in Intracranial physiology & surgery: the third circulation, the Hypophysis, the Gliomas : the Cameron prize lectures delivered at the University of Edinburgh, October 19–22, 1925. 1926, Oxford
58.
go back to reference Black PM: Harvey cushing at the Peter Bent Brigham hospital. Neurosurgery. 1999, 45: 990-1001. 10.1097/00006123-199911000-00007.PubMed Black PM: Harvey cushing at the Peter Bent Brigham hospital. Neurosurgery. 1999, 45: 990-1001. 10.1097/00006123-199911000-00007.PubMed
59.
go back to reference Woollam DH, Millen JW: The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J Anat. 1955, 89: 193-200.PubMedCentralPubMed Woollam DH, Millen JW: The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J Anat. 1955, 89: 193-200.PubMedCentralPubMed
61.
go back to reference Cserr HF, Depasquale M, Patlak CS, Pullen RG: Convection of cerebral interstitial fluid and its role in brain volume regulation. Ann NY Acad Sci. 1986, 481: 123-134. 10.1111/j.1749-6632.1986.tb27144.x.PubMed Cserr HF, Depasquale M, Patlak CS, Pullen RG: Convection of cerebral interstitial fluid and its role in brain volume regulation. Ann NY Acad Sci. 1986, 481: 123-134. 10.1111/j.1749-6632.1986.tb27144.x.PubMed
62.
go back to reference Bechmann I, Kwidzinski E, Kovac AD, Simburger E, Horvath T, Gimsa U, Dirnagl U, Priller J, Nitsch R: Turnover of rat brain perivascular cells. Exp Neurol. 2001, 168: 242-249. 10.1006/exnr.2000.7618.PubMed Bechmann I, Kwidzinski E, Kovac AD, Simburger E, Horvath T, Gimsa U, Dirnagl U, Priller J, Nitsch R: Turnover of rat brain perivascular cells. Exp Neurol. 2001, 168: 242-249. 10.1006/exnr.2000.7618.PubMed
63.
go back to reference Bechmann I, Priller J, Kovac A, Bontert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R: Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci. 2001, 14: 1651-1658. 10.1046/j.0953-816x.2001.01793.x.PubMed Bechmann I, Priller J, Kovac A, Bontert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R: Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci. 2001, 14: 1651-1658. 10.1046/j.0953-816x.2001.01793.x.PubMed
64.
go back to reference Krueger M, Bechmann I: CNS pericytes: concepts, misconceptions, and a way out. Glia. 2010, 58: 1-10. 10.1002/glia.20898.PubMed Krueger M, Bechmann I: CNS pericytes: concepts, misconceptions, and a way out. Glia. 2010, 58: 1-10. 10.1002/glia.20898.PubMed
65.
go back to reference Krahn V: The pia mater at the site of the entry of blood vessels into the central nervous system. Anat Embryol (Berl). 1982, 164: 257-263. 10.1007/BF00318509. Krahn V: The pia mater at the site of the entry of blood vessels into the central nervous system. Anat Embryol (Berl). 1982, 164: 257-263. 10.1007/BF00318509.
66.
go back to reference Ge S, Song L, Pachter JS: Where is the blood–brain barrier … really?. J Neurosci Res. 2005, 79: 421-427. 10.1002/jnr.20313.PubMed Ge S, Song L, Pachter JS: Where is the blood–brain barrier … really?. J Neurosci Res. 2005, 79: 421-427. 10.1002/jnr.20313.PubMed
67.
go back to reference Bechmann I, Galea I, Perry VH: What is the blood–brain barrier (not)?. Trends Immunol. 2007, 28: 5-11. 10.1016/j.it.2006.11.007.PubMed Bechmann I, Galea I, Perry VH: What is the blood–brain barrier (not)?. Trends Immunol. 2007, 28: 5-11. 10.1016/j.it.2006.11.007.PubMed
68.
go back to reference Zhang ET, Inman CB, Weller RO: Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990, 170: 111-123.PubMedCentralPubMed Zhang ET, Inman CB, Weller RO: Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990, 170: 111-123.PubMedCentralPubMed
69.
go back to reference Krisch B: Ultrastructure of the meninges at the site of penetration of veins through the dura mater, with particular reference to Pacchionian granulations. Investigations in the rat and two species of new-world monkeys (Cebus apella, Callitrix jacchus). Cell Tissue Res. 1988, 251: 621-631. 10.1007/BF00214011.PubMed Krisch B: Ultrastructure of the meninges at the site of penetration of veins through the dura mater, with particular reference to Pacchionian granulations. Investigations in the rat and two species of new-world monkeys (Cebus apella, Callitrix jacchus). Cell Tissue Res. 1988, 251: 621-631. 10.1007/BF00214011.PubMed
70.
go back to reference Krisch B, Leonhardt H, Oksche A: Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res. 1984, 238: 459-474.PubMed Krisch B, Leonhardt H, Oksche A: Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res. 1984, 238: 459-474.PubMed
71.
go back to reference Ichimura T, Fraser PA, Cserr HF: Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 1991, 545: 103-113. 10.1016/0006-8993(91)91275-6.PubMed Ichimura T, Fraser PA, Cserr HF: Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 1991, 545: 103-113. 10.1016/0006-8993(91)91275-6.PubMed
72.
go back to reference Thal DR: The pre-capillary segment of the blood–brain barrier and its relation to perivascular drainage in Alzheimer’s disease and small vessel disease. Sci World J. 2009, 9: 557-563. Thal DR: The pre-capillary segment of the blood–brain barrier and its relation to perivascular drainage in Alzheimer’s disease and small vessel disease. Sci World J. 2009, 9: 557-563.
73.
go back to reference Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA: Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985, 326: 47-63. 10.1016/0006-8993(85)91383-6.PubMed Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA: Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985, 326: 47-63. 10.1016/0006-8993(85)91383-6.PubMed
74.
go back to reference Zhang ET, Richards HK, Kida S, Weller RO: Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol. 1992, 83: 233-239. 10.1007/BF00296784.PubMed Zhang ET, Richards HK, Kida S, Weller RO: Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol. 1992, 83: 233-239. 10.1007/BF00296784.PubMed
75.
go back to reference Barshes N, Demopoulos A, Engelhard HH: Anatomy and physiology of the leptomeninges and CSF space. Cancer Treat Res. 2005, 125: 1-16. 10.1007/0-387-24199-X_1.PubMed Barshes N, Demopoulos A, Engelhard HH: Anatomy and physiology of the leptomeninges and CSF space. Cancer Treat Res. 2005, 125: 1-16. 10.1007/0-387-24199-X_1.PubMed
76.
go back to reference Hutchings M, Weller RO: Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg. 1986, 65: 316-325. 10.3171/jns.1986.65.3.0316.PubMed Hutchings M, Weller RO: Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg. 1986, 65: 316-325. 10.3171/jns.1986.65.3.0316.PubMed
77.
go back to reference Alcolado R, Weller RO, Parrish EP, Garrod D: The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropath Appl Neurobiol. 1988, 14: 1-17. 10.1111/j.1365-2990.1988.tb00862.x. Alcolado R, Weller RO, Parrish EP, Garrod D: The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropath Appl Neurobiol. 1988, 14: 1-17. 10.1111/j.1365-2990.1988.tb00862.x.
78.
go back to reference Brightman MW, Palay SL: The fine structure of Ependyma in the brain of the rat. J Cell Biol. 1963, 19: 415-439. 10.1083/jcb.19.2.415.PubMedCentralPubMed Brightman MW, Palay SL: The fine structure of Ependyma in the brain of the rat. J Cell Biol. 1963, 19: 415-439. 10.1083/jcb.19.2.415.PubMedCentralPubMed
79.
go back to reference Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn M, Noble C, Park J, Bankiewicz K: The "Perivascular Pump" driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006, 14: 69-78. 10.1016/j.ymthe.2006.02.018.PubMedCentralPubMed Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn M, Noble C, Park J, Bankiewicz K: The "Perivascular Pump" driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006, 14: 69-78. 10.1016/j.ymthe.2006.02.018.PubMedCentralPubMed
80.
go back to reference Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF: Drainage of interstitial fluid from different regions of rat brain. Am J Physiol. 1984, 246: F835-F844.PubMed Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF: Drainage of interstitial fluid from different regions of rat brain. Am J Physiol. 1984, 246: F835-F844.PubMed
81.
go back to reference Weller RO, Kida S, Zhang ET: Pathways of fluid drainage from the brain–morphological aspects and immunological significance in rat and man. Brain Pathol. 1992, 2: 277-284. 10.1111/j.1750-3639.1992.tb00704.x.PubMed Weller RO, Kida S, Zhang ET: Pathways of fluid drainage from the brain–morphological aspects and immunological significance in rat and man. Brain Pathol. 1992, 2: 277-284. 10.1111/j.1750-3639.1992.tb00704.x.PubMed
82.
go back to reference Weller RO, Djuanda E, Yow HY, Carare RO: Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009, 117: 1-14. 10.1007/s00401-008-0457-0.PubMed Weller RO, Djuanda E, Yow HY, Carare RO: Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009, 117: 1-14. 10.1007/s00401-008-0457-0.PubMed
83.
go back to reference Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO: Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008, 34: 131-144. 10.1111/j.1365-2990.2007.00926.x.PubMed Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO: Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008, 34: 131-144. 10.1111/j.1365-2990.2007.00926.x.PubMed
84.
go back to reference Preston SD, Steart PV, Wilkinson A, Nicoll JA, Weller RO: Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol. 2003, 29: 106-117. 10.1046/j.1365-2990.2003.00424.x.PubMed Preston SD, Steart PV, Wilkinson A, Nicoll JA, Weller RO: Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol. 2003, 29: 106-117. 10.1046/j.1365-2990.2003.00424.x.PubMed
85.
go back to reference Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO: Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol. 2013, 39: 593-611. 10.1111/nan.12042.PubMed Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO: Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol. 2013, 39: 593-611. 10.1111/nan.12042.PubMed
86.
go back to reference Carare RO, Hawkes CA, Weller RO: Afferent and efferent immunological pathways of the brain. Anatomy, function and failure. Brain. Behav Immun. 2014, 36: 9-14. Carare RO, Hawkes CA, Weller RO: Afferent and efferent immunological pathways of the brain. Anatomy, function and failure. Brain. Behav Immun. 2014, 36: 9-14.
87.
go back to reference Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO: Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 2011, 121: 431-443. 10.1007/s00401-011-0801-7.PubMed Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO: Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 2011, 121: 431-443. 10.1007/s00401-011-0801-7.PubMed
88.
go back to reference Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H: Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013, 123: 1299-1309. 10.1172/JCI67677.PubMedCentralPubMed Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H: Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013, 123: 1299-1309. 10.1172/JCI67677.PubMedCentralPubMed
89.
go back to reference Davson H, Kleeman CR, Levin E: The blood brain barrier. Drugs and Membranes, Volume 4. Edited by: Hoghen AM, Lindgren P. 1963, Oxford: Pergamon Press, 71-94. Davson H, Kleeman CR, Levin E: The blood brain barrier. Drugs and Membranes, Volume 4. Edited by: Hoghen AM, Lindgren P. 1963, Oxford: Pergamon Press, 71-94.
90.
go back to reference Patlak CS, Fenstermacher JD: Measurements of dog blood–brain transfer constants by ventriculocisternal perfusion. Am J Physiol. 1975, 229: 877-884.PubMed Patlak CS, Fenstermacher JD: Measurements of dog blood–brain transfer constants by ventriculocisternal perfusion. Am J Physiol. 1975, 229: 877-884.PubMed
91.
go back to reference Nicholson C, Phillips JM: Diffusion of anions and cations in the extracellular micro-environment of the brain [proceedings]. J Physiol. 1979, 296: 66P-PubMed Nicholson C, Phillips JM: Diffusion of anions and cations in the extracellular micro-environment of the brain [proceedings]. J Physiol. 1979, 296: 66P-PubMed
92.
go back to reference Sykova E, Nicholson C: Diffusion in brain extracellular space. Physiol Rev. 2008, 88: 1277-1340. 10.1152/physrev.00027.2007.PubMedCentralPubMed Sykova E, Nicholson C: Diffusion in brain extracellular space. Physiol Rev. 2008, 88: 1277-1340. 10.1152/physrev.00027.2007.PubMedCentralPubMed
93.
go back to reference Wolak DJ, Thorne RG: Diffusion of macromolecules in the brain: implications for drug delivery. Molec Pharmaceutics. 2013, 10: 1492-1504. 10.1021/mp300495e. Wolak DJ, Thorne RG: Diffusion of macromolecules in the brain: implications for drug delivery. Molec Pharmaceutics. 2013, 10: 1492-1504. 10.1021/mp300495e.
94.
go back to reference Cserr HF, Harling-Berg CJ, Knopf PM: Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 1992, 2: 269-276. 10.1111/j.1750-3639.1992.tb00703.x.PubMed Cserr HF, Harling-Berg CJ, Knopf PM: Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 1992, 2: 269-276. 10.1111/j.1750-3639.1992.tb00703.x.PubMed
95.
go back to reference Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012, 4: 147ra111-PubMedCentralPubMed Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012, 4: 147ra111-PubMedCentralPubMed
96.
go back to reference MacAulay N, Zeuthen T: Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience. 2010, 168: 941-956. 10.1016/j.neuroscience.2009.09.016.PubMed MacAulay N, Zeuthen T: Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience. 2010, 168: 941-956. 10.1016/j.neuroscience.2009.09.016.PubMed
97.
go back to reference Papadopoulos MC, Verkman AS: Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013, 14: 265-277. 10.1038/nrn3468.PubMedCentralPubMed Papadopoulos MC, Verkman AS: Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013, 14: 265-277. 10.1038/nrn3468.PubMedCentralPubMed
98.
go back to reference Tait MJ, Saadoun S, Bell BA, Papadopoulos MC: Water movements in the brain: role of aquaporins. Trends Neurosci. 2008, 31: 37-43. 10.1016/j.tins.2007.11.003.PubMed Tait MJ, Saadoun S, Bell BA, Papadopoulos MC: Water movements in the brain: role of aquaporins. Trends Neurosci. 2008, 31: 37-43. 10.1016/j.tins.2007.11.003.PubMed
99.
go back to reference Bering EA: Water exchange of central nervous system and cerebrospinal fluid. J Neurosurg. 1952, 9: 275-287. 10.3171/jns.1952.9.3.0275.PubMed Bering EA: Water exchange of central nervous system and cerebrospinal fluid. J Neurosurg. 1952, 9: 275-287. 10.3171/jns.1952.9.3.0275.PubMed
100.
go back to reference Bateman GA: Extending the hydrodynamic hypothesis in chronic hydrocephalus. Neurosurg Rev. 2005, 28: 333-334. 10.1007/s10143-005-0405-6.PubMed Bateman GA: Extending the hydrodynamic hypothesis in chronic hydrocephalus. Neurosurg Rev. 2005, 28: 333-334. 10.1007/s10143-005-0405-6.PubMed
101.
go back to reference Mamonov AB, Coalson RD, Zeidel ML, Mathai JC: Water and deuterium oxide permeability through aquaporin 1: MD predictions and experimental verification. J Gen Physiol. 2007, 130: 111-116. 10.1085/jgp.200709810.PubMedCentralPubMed Mamonov AB, Coalson RD, Zeidel ML, Mathai JC: Water and deuterium oxide permeability through aquaporin 1: MD predictions and experimental verification. J Gen Physiol. 2007, 130: 111-116. 10.1085/jgp.200709810.PubMedCentralPubMed
102.
go back to reference Ibata K, Takimoto S, Morisaku T, Miyawaki A, Yasui M: Analysis of aquaporin-mediated diffusional water permeability by coherent anti-stokes Raman scattering microscopy. Biophysical J. 2011, 101: 2277-2283. 10.1016/j.bpj.2011.08.045. Ibata K, Takimoto S, Morisaku T, Miyawaki A, Yasui M: Analysis of aquaporin-mediated diffusional water permeability by coherent anti-stokes Raman scattering microscopy. Biophysical J. 2011, 101: 2277-2283. 10.1016/j.bpj.2011.08.045.
103.
go back to reference Johanson CE, Stopa EG, McMillan PN: The blood-cerebrospinal fluid barrier: structure and functional significance. Meth Molec Biol. 2011, 686: 101-131. 10.1007/978-1-60761-938-3_4. Johanson CE, Stopa EG, McMillan PN: The blood-cerebrospinal fluid barrier: structure and functional significance. Meth Molec Biol. 2011, 686: 101-131. 10.1007/978-1-60761-938-3_4.
104.
go back to reference Praetorius J, Nielsen S: Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol. 2006, 291: C59-C67. 10.1152/ajpcell.00433.2005.PubMed Praetorius J, Nielsen S: Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol. 2006, 291: C59-C67. 10.1152/ajpcell.00433.2005.PubMed
105.
go back to reference Brown PD, Davies SL, Speake T, Millar ID: Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 2004, 129: 957-970.PubMedCentralPubMed Brown PD, Davies SL, Speake T, Millar ID: Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 2004, 129: 957-970.PubMedCentralPubMed
106.
go back to reference Owler BK, Pitham T, Wang D: Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res. 2010, 7: 15-10.1186/1743-8454-7-S1-S15.PubMedCentralPubMed Owler BK, Pitham T, Wang D: Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res. 2010, 7: 15-10.1186/1743-8454-7-S1-S15.PubMedCentralPubMed
107.
go back to reference Bradbury MWB, Cserr H: Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. Experimental Biology of the lymphatic circulation. Edited by: Johnston MG. 1985, Amsterdam: Elsevier Science Publishers Bradbury MWB, Cserr H: Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. Experimental Biology of the lymphatic circulation. Edited by: Johnston MG. 1985, Amsterdam: Elsevier Science Publishers
108.
go back to reference Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood–brain barrier. Neurobiol Dis. 2010, 37: 13-25. 10.1016/j.nbd.2009.07.030.PubMed Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood–brain barrier. Neurobiol Dis. 2010, 37: 13-25. 10.1016/j.nbd.2009.07.030.PubMed
109.
go back to reference Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O'Donnell ME, Povlishock JT, Saunders NR, Sharp F, Stanimirovic D, Watts RJ, Drewes LR: Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011, 12: 169-182. 10.1038/nrn2995.PubMedCentralPubMed Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O'Donnell ME, Povlishock JT, Saunders NR, Sharp F, Stanimirovic D, Watts RJ, Drewes LR: Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011, 12: 169-182. 10.1038/nrn2995.PubMedCentralPubMed
110.
go back to reference Abbott NJ: Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013, 36: 437-449. 10.1007/s10545-013-9608-0.PubMed Abbott NJ: Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013, 36: 437-449. 10.1007/s10545-013-9608-0.PubMed
111.
go back to reference Neuwelt EA: Mechanisms of disease: the blood–brain barrier. Neurosurgery. 2004, 54: 131-142. 10.1227/01.NEU.0000097715.11966.8E.PubMed Neuwelt EA: Mechanisms of disease: the blood–brain barrier. Neurosurgery. 2004, 54: 131-142. 10.1227/01.NEU.0000097715.11966.8E.PubMed
112.
go back to reference Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP: The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 2010, 58: 1094-1103. 10.1002/glia.20990.PubMed Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP: The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 2010, 58: 1094-1103. 10.1002/glia.20990.PubMed
113.
go back to reference Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S: Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A. 1998, 95: 11981-11986. 10.1073/pnas.95.20.11981.PubMedCentralPubMed Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S: Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A. 1998, 95: 11981-11986. 10.1073/pnas.95.20.11981.PubMedCentralPubMed
114.
go back to reference Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP: Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997, 17: 171-180.PubMed Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP: Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997, 17: 171-180.PubMed
115.
go back to reference Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, Gundersen GA, Skare O, Laake P, Klungland A, Thoren AE, Burkhardt JM, Ottersen OP, Nagelhus EA: Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood–brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci U S A. 2011, 108: 17815-17820. 10.1073/pnas.1110655108.PubMedCentralPubMed Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, Gundersen GA, Skare O, Laake P, Klungland A, Thoren AE, Burkhardt JM, Ottersen OP, Nagelhus EA: Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood–brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci U S A. 2011, 108: 17815-17820. 10.1073/pnas.1110655108.PubMedCentralPubMed
116.
go back to reference Zelenina M: Regulation of brain aquaporins. Neurochem Int. 2010, 57: 468-488. 10.1016/j.neuint.2010.03.022.PubMed Zelenina M: Regulation of brain aquaporins. Neurochem Int. 2010, 57: 468-488. 10.1016/j.neuint.2010.03.022.PubMed
117.
go back to reference Day RE, Kitchen P, Owen D, Bland C, Marshall L, Conner AC, Bill RM, Conner MT: Human aquaporins: regulators of transcellular water flow. Biochim Biophys Acta. 2014, 1840 (5): 1492-1506. 10.1016/j.bbagen.2013.09.033.PubMed Day RE, Kitchen P, Owen D, Bland C, Marshall L, Conner AC, Bill RM, Conner MT: Human aquaporins: regulators of transcellular water flow. Biochim Biophys Acta. 2014, 1840 (5): 1492-1506. 10.1016/j.bbagen.2013.09.033.PubMed
118.
go back to reference Badaut J, Lasbennes F, Magistretti PJ, Regli L: Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002, 22: 367-378.PubMed Badaut J, Lasbennes F, Magistretti PJ, Regli L: Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002, 22: 367-378.PubMed
120.
go back to reference Benfenati V, Ferroni S: Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels. Neuroscience. 2010, 168: 926-940. 10.1016/j.neuroscience.2009.12.017.PubMed Benfenati V, Ferroni S: Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels. Neuroscience. 2010, 168: 926-940. 10.1016/j.neuroscience.2009.12.017.PubMed
121.
go back to reference Chai RC, Jiang JH, Kwan Wong AY, Jiang F, Gao K, Vatcher G, Hoi Yu AC: AQP5 is differentially regulated in astrocytes during metabolic and traumatic injuries. Glia. 2013, 61: 1748-1765. 10.1002/glia.22555.PubMed Chai RC, Jiang JH, Kwan Wong AY, Jiang F, Gao K, Vatcher G, Hoi Yu AC: AQP5 is differentially regulated in astrocytes during metabolic and traumatic injuries. Glia. 2013, 61: 1748-1765. 10.1002/glia.22555.PubMed
122.
go back to reference Igarashi H, Tsujita M, Kwee IL, Nakada T: Water influx into cerebrospinal fluid is primarily controlled by aquaporin-4, not by aquaporin-1: 17O JJVCPE MRI study in knockout mice. Neuroreport. 2014, 25 (1): 39-43.PubMedCentralPubMed Igarashi H, Tsujita M, Kwee IL, Nakada T: Water influx into cerebrospinal fluid is primarily controlled by aquaporin-4, not by aquaporin-1: 17O JJVCPE MRI study in knockout mice. Neuroreport. 2014, 25 (1): 39-43.PubMedCentralPubMed
123.
go back to reference Suzuki Y, Nakamura Y, Yamada K, Huber VJ, Tsujita M, Nakada T: Aquaporin-4 positron emission tomography imaging of the human brain: first report. J Neuroimaging. 2013, 23: 219-223. 10.1111/j.1552-6569.2012.00704.x.PubMed Suzuki Y, Nakamura Y, Yamada K, Huber VJ, Tsujita M, Nakada T: Aquaporin-4 positron emission tomography imaging of the human brain: first report. J Neuroimaging. 2013, 23: 219-223. 10.1111/j.1552-6569.2012.00704.x.PubMed
124.
go back to reference Yukutake Y, Yasui M: Regulation of water permeability through aquaporin-4. Neuroscience. 2010, 168: 885-891. 10.1016/j.neuroscience.2009.10.029.PubMed Yukutake Y, Yasui M: Regulation of water permeability through aquaporin-4. Neuroscience. 2010, 168: 885-891. 10.1016/j.neuroscience.2009.10.029.PubMed
125.
go back to reference Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC: Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta. 2006, 1758: 1085-1093. 10.1016/j.bbamem.2006.02.018.PubMed Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC: Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta. 2006, 1758: 1085-1093. 10.1016/j.bbamem.2006.02.018.PubMed
126.
go back to reference Oshio K, Binder DK, Bollen A, Verkman AS, Berger MS, Manley GT: Aquaporin-1 expression in human glial tumors suggests a potential novel therapeutic target for tumor-associated edema. Acta Neurochir Suppl. 2003, 86: 499-502.PubMed Oshio K, Binder DK, Bollen A, Verkman AS, Berger MS, Manley GT: Aquaporin-1 expression in human glial tumors suggests a potential novel therapeutic target for tumor-associated edema. Acta Neurochir Suppl. 2003, 86: 499-502.PubMed
127.
go back to reference Oshio K, Binder DK, Liang Y, Bollen A, Feuerstein B, Berger MS, Manley GT: Expression of the aquaporin-1 water channel in human glial tumors. Neurosurgery. 2005, 56: 375-381. 10.1227/01.NEU.0000148904.57841.6B. discussion 375–381PubMed Oshio K, Binder DK, Liang Y, Bollen A, Feuerstein B, Berger MS, Manley GT: Expression of the aquaporin-1 water channel in human glial tumors. Neurosurgery. 2005, 56: 375-381. 10.1227/01.NEU.0000148904.57841.6B. discussion 375–381PubMed
128.
go back to reference Igarashi H, Tsujita M, Kwee IL, Nakada T: Inhibition of aquaporin-4 significantly increases regional cerebral blood flow. Neuroreport. 2013, 24: 324-328. 10.1097/WNR.0b013e32835fc827.PubMed Igarashi H, Tsujita M, Kwee IL, Nakada T: Inhibition of aquaporin-4 significantly increases regional cerebral blood flow. Neuroreport. 2013, 24: 324-328. 10.1097/WNR.0b013e32835fc827.PubMed
129.
go back to reference Cserr HF: Relationship between cerebrospinal fluid and interstitial fluid of brain. Fed Proc. 1974, 33: 2075-2078.PubMed Cserr HF: Relationship between cerebrospinal fluid and interstitial fluid of brain. Fed Proc. 1974, 33: 2075-2078.PubMed
130.
go back to reference Yang M, Gao F, Liu H, Yu WH, He GQ, Zhuo F, Qiu GP, Sun SQ: Immunolocalization of aquaporins in rat brain. Anat Histol Embryol. 2011, 40: 299-306. 10.1111/j.1439-0264.2011.01070.x.PubMed Yang M, Gao F, Liu H, Yu WH, He GQ, Zhuo F, Qiu GP, Sun SQ: Immunolocalization of aquaporins in rat brain. Anat Histol Embryol. 2011, 40: 299-306. 10.1111/j.1439-0264.2011.01070.x.PubMed
131.
go back to reference Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME: Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci U S A. 2001, 98: 14108-14113. 10.1073/pnas.241508198.PubMedCentralPubMed Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME: Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci U S A. 2001, 98: 14108-14113. 10.1073/pnas.241508198.PubMedCentralPubMed
132.
go back to reference Connors NC, Kofuji P: Potassium channel Kir4.1 macromolecular complex in retinal glial cells. Glia. 2006, 53: 124-131. 10.1002/glia.20271.PubMed Connors NC, Kofuji P: Potassium channel Kir4.1 macromolecular complex in retinal glial cells. Glia. 2006, 53: 124-131. 10.1002/glia.20271.PubMed
133.
go back to reference Amiry-Moghaddam M, Frydenlund DS, Ottersen OP: Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience. 2004, 129: 999-1010.PubMed Amiry-Moghaddam M, Frydenlund DS, Ottersen OP: Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience. 2004, 129: 999-1010.PubMed
134.
go back to reference Vajda Z, Pedersen M, Fuchtbauer EM, Wertz K, Stodkilde-Jorgensen H, Sulyok E, Doczi T, Neely JD, Agre P, Frokiaer J, Nielsen S: Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci U S A. 2002, 99: 13131-13136. 10.1073/pnas.192457099.PubMedCentralPubMed Vajda Z, Pedersen M, Fuchtbauer EM, Wertz K, Stodkilde-Jorgensen H, Sulyok E, Doczi T, Neely JD, Agre P, Frokiaer J, Nielsen S: Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci U S A. 2002, 99: 13131-13136. 10.1073/pnas.192457099.PubMedCentralPubMed
135.
go back to reference Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielsen S, Kurachi Y, Ottersen OP: Immunogold evidence suggests that coupling of K + siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia. 1999, 26: 47-54. 10.1002/(SICI)1098-1136(199903)26:1<47::AID-GLIA5>3.0.CO;2-5.PubMed Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielsen S, Kurachi Y, Ottersen OP: Immunogold evidence suggests that coupling of K + siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia. 1999, 26: 47-54. 10.1002/(SICI)1098-1136(199903)26:1<47::AID-GLIA5>3.0.CO;2-5.PubMed
136.
go back to reference Nagelhus EA, Mathiisen TM, Ottersen OP: Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience. 2004, 129: 905-913. 10.1016/j.neuroscience.2004.08.053.PubMed Nagelhus EA, Mathiisen TM, Ottersen OP: Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience. 2004, 129: 905-913. 10.1016/j.neuroscience.2004.08.053.PubMed
137.
go back to reference Verkman AS: Knock-out models reveal new aquaporin functions. Handb Exp Pharmacol. 2009, 190: 359-381. 10.1007/978-3-540-79885-9_18.PubMed Verkman AS: Knock-out models reveal new aquaporin functions. Handb Exp Pharmacol. 2009, 190: 359-381. 10.1007/978-3-540-79885-9_18.PubMed
138.
go back to reference Zador Z, Stiver S, Wang V, Manley GT: Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol. 2009, 190: 159-170. 10.1007/978-3-540-79885-9_7.PubMed Zador Z, Stiver S, Wang V, Manley GT: Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol. 2009, 190: 159-170. 10.1007/978-3-540-79885-9_7.PubMed
139.
go back to reference Bloch O, Auguste KI, Manley GT, Verkman AS: Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab. 2006, 26: 1527-1537. 10.1038/sj.jcbfm.9600306.PubMed Bloch O, Auguste KI, Manley GT, Verkman AS: Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab. 2006, 26: 1527-1537. 10.1038/sj.jcbfm.9600306.PubMed
140.
go back to reference Solenov E, Watanabe H, Manley GT, Verkman AS: Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol. 2004, 286: C426-432. 10.1152/ajpcell.00298.2003.PubMed Solenov E, Watanabe H, Manley GT, Verkman AS: Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol. 2004, 286: C426-432. 10.1152/ajpcell.00298.2003.PubMed
141.
go back to reference Papadopoulos MC, Verkman AS: Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem. 2005, 280: 13906-13912. 10.1074/jbc.M413627200.PubMed Papadopoulos MC, Verkman AS: Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem. 2005, 280: 13906-13912. 10.1074/jbc.M413627200.PubMed
142.
go back to reference Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS: Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000, 6: 159-163. 10.1038/72256.PubMed Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS: Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000, 6: 159-163. 10.1038/72256.PubMed
143.
go back to reference Saadoun S, Tait MJ, Reza A, Davies DC, Bell BA, Verkman AS, Papadopoulos MC: AQP4 gene deletion in mice does not alter blood–brain barrier integrity or brain morphology. Neuroscience. 2009, 161: 764-772. 10.1016/j.neuroscience.2009.03.069.PubMed Saadoun S, Tait MJ, Reza A, Davies DC, Bell BA, Verkman AS, Papadopoulos MC: AQP4 gene deletion in mice does not alter blood–brain barrier integrity or brain morphology. Neuroscience. 2009, 161: 764-772. 10.1016/j.neuroscience.2009.03.069.PubMed
144.
go back to reference Li X, Kong H, Wu W, Xiao M, Sun X, Hu G: Aquaporin-4 maintains ependymal integrity in adult mice. Neuroscience. 2009, 162: 67-77. 10.1016/j.neuroscience.2009.04.044.PubMed Li X, Kong H, Wu W, Xiao M, Sun X, Hu G: Aquaporin-4 maintains ependymal integrity in adult mice. Neuroscience. 2009, 162: 67-77. 10.1016/j.neuroscience.2009.04.044.PubMed
145.
go back to reference Bulat M, Lupret V, Oreskovic D, Klarica M: Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol. 2008, 32: 43-50.PubMed Bulat M, Lupret V, Oreskovic D, Klarica M: Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol. 2008, 32: 43-50.PubMed
146.
go back to reference O'Donnell M: NMR blood flow imaging using multiecho, phase contrast sequences. Med Phys. 1985, 12: 59-64. 10.1118/1.595736.PubMed O'Donnell M: NMR blood flow imaging using multiecho, phase contrast sequences. Med Phys. 1985, 12: 59-64. 10.1118/1.595736.PubMed
147.
go back to reference Bradley WG, Kortman KE, Burgoyne B: Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology. 1986, 159: 611-616.PubMed Bradley WG, Kortman KE, Burgoyne B: Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology. 1986, 159: 611-616.PubMed
148.
go back to reference Feinberg DA, Mark AS: Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology. 1987, 163: 793-799.PubMed Feinberg DA, Mark AS: Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology. 1987, 163: 793-799.PubMed
149.
go back to reference Nitz WR, Bradley WG, Watanabe AS, Lee RR, Burgoyne B, O'Sullivan RM, Herbst MD: Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology. 1992, 183: 395-405.PubMed Nitz WR, Bradley WG, Watanabe AS, Lee RR, Burgoyne B, O'Sullivan RM, Herbst MD: Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology. 1992, 183: 395-405.PubMed
150.
go back to reference Bradley WG, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P: Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology. 1996, 198: 523-529.PubMed Bradley WG, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P: Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology. 1996, 198: 523-529.PubMed
151.
go back to reference Yoshida K, Takahashi H, Saijo M, Ueguchi T, Tanaka H, Fujita N, Murase K: Phase-contrast MR studies of CSF flow rate in the cerebral aqueduct and cervical subarachnoid space with correlation-based segmentation. Magn Reson Med Sci. 2009, 8: 91-100. 10.2463/mrms.8.91.PubMed Yoshida K, Takahashi H, Saijo M, Ueguchi T, Tanaka H, Fujita N, Murase K: Phase-contrast MR studies of CSF flow rate in the cerebral aqueduct and cervical subarachnoid space with correlation-based segmentation. Magn Reson Med Sci. 2009, 8: 91-100. 10.2463/mrms.8.91.PubMed
152.
go back to reference Penn RD, Basati S, Sweetman B, Guo X, Linninger A: Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg. 2011, 115: 159-164. 10.3171/2010.12.JNS10926.PubMed Penn RD, Basati S, Sweetman B, Guo X, Linninger A: Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg. 2011, 115: 159-164. 10.3171/2010.12.JNS10926.PubMed
153.
go back to reference Piechnik SK, Summers PE, Jezzard P, Byrne JV: Magnetic resonance measurement of blood and CSF flow rates with phase contrast–normal values, repeatability and CO2 reactivity. Acta Neurochir Suppl. 2008, 102: 263-270. 10.1007/978-3-211-85578-2_50.PubMed Piechnik SK, Summers PE, Jezzard P, Byrne JV: Magnetic resonance measurement of blood and CSF flow rates with phase contrast–normal values, repeatability and CO2 reactivity. Acta Neurochir Suppl. 2008, 102: 263-270. 10.1007/978-3-211-85578-2_50.PubMed
154.
go back to reference Gideon P, Stahlberg F, Thomsen C, Gjerris F, Sorensen PS, Henriksen O: Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology. 1994, 36: 210-215. 10.1007/BF00588133.PubMed Gideon P, Stahlberg F, Thomsen C, Gjerris F, Sorensen PS, Henriksen O: Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology. 1994, 36: 210-215. 10.1007/BF00588133.PubMed
155.
go back to reference Huang TY, Chung HW, Chen MY, Giiang LH, Chin SC, Lee CS, Chen CY, Liu YJ: Supratentorial cerebrospinal fluid production rate in healthy adults: quantification with two-dimensional cine phase-contrast MR imaging with high temporal and spatial resolution. Radiology. 2004, 233: 603-608. 10.1148/radiol.2332030884.PubMed Huang TY, Chung HW, Chen MY, Giiang LH, Chin SC, Lee CS, Chen CY, Liu YJ: Supratentorial cerebrospinal fluid production rate in healthy adults: quantification with two-dimensional cine phase-contrast MR imaging with high temporal and spatial resolution. Radiology. 2004, 233: 603-608. 10.1148/radiol.2332030884.PubMed
156.
go back to reference Kim DS, Choi JU, Huh R, Yun PH, Kim DI: Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Child’s Nerv Syst. 1999, 15: 461-467. 10.1007/s003810050440. Kim DS, Choi JU, Huh R, Yun PH, Kim DI: Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Child’s Nerv Syst. 1999, 15: 461-467. 10.1007/s003810050440.
157.
go back to reference Badaut J, Ashwal S, Adami A, Tone B, Recker R, Spagnoli D, Ternon B, Obenaus A: Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J Cereb Blood Flow Metab. 2011, 31: 819-831. 10.1038/jcbfm.2010.163.PubMedCentralPubMed Badaut J, Ashwal S, Adami A, Tone B, Recker R, Spagnoli D, Ternon B, Obenaus A: Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J Cereb Blood Flow Metab. 2011, 31: 819-831. 10.1038/jcbfm.2010.163.PubMedCentralPubMed
158.
go back to reference Chikly B, Quaghebeur J: Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther. 2013, 17: 344-354. 10.1016/j.jbmt.2013.02.002.PubMed Chikly B, Quaghebeur J: Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther. 2013, 17: 344-354. 10.1016/j.jbmt.2013.02.002.PubMed
159.
go back to reference Greitz D, Greitz T, Hindmarsh T: We need a new understanding of the reabsorption of cerebrospinal fluid–II. Acta Paediatr. 1997, 86: 1148-PubMed Greitz D, Greitz T, Hindmarsh T: We need a new understanding of the reabsorption of cerebrospinal fluid–II. Acta Paediatr. 1997, 86: 1148-PubMed
160.
go back to reference Klarica M, Oreskovic D, Bozic B, Vukic M, Butkovic V, Bulat M: New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience. 2009, 158: 1397-1405. 10.1016/j.neuroscience.2008.11.041.PubMed Klarica M, Oreskovic D, Bozic B, Vukic M, Butkovic V, Bulat M: New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience. 2009, 158: 1397-1405. 10.1016/j.neuroscience.2008.11.041.PubMed
161.
162.
go back to reference Foldi M, Csillik B, Zoltan OT: Lymphatic drainage of the brain. Experientia. 1968, 24: 1283-1287. 10.1007/BF02146675.PubMed Foldi M, Csillik B, Zoltan OT: Lymphatic drainage of the brain. Experientia. 1968, 24: 1283-1287. 10.1007/BF02146675.PubMed
163.
go back to reference Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M: Sleep drives metabolite clearance from the adult brain. Science. 2013, 342: 373-377. 10.1126/science.1241224.PubMed Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M: Sleep drives metabolite clearance from the adult brain. Science. 2013, 342: 373-377. 10.1126/science.1241224.PubMed
164.
go back to reference Greitz D, Hannerz J: A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. AJNR. 1996, 17: 431-438.PubMed Greitz D, Hannerz J: A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. AJNR. 1996, 17: 431-438.PubMed
165.
go back to reference Yang L, Kress BT, Weber HJ, Thiyagarajan M, Wang B, Deane R, Benveniste H, Iliff JJ, Nedergaard M: Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med. 2013, 11: 107-10.1186/1479-5876-11-107.PubMedCentralPubMed Yang L, Kress BT, Weber HJ, Thiyagarajan M, Wang B, Deane R, Benveniste H, Iliff JJ, Nedergaard M: Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med. 2013, 11: 107-10.1186/1479-5876-11-107.PubMedCentralPubMed
Metadata
Title
A new look at cerebrospinal fluid circulation
Authors
Thomas Brinker
Edward Stopa
John Morrison
Petra Klinge
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2014
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-11-10

Other articles of this Issue 1/2014

Fluids and Barriers of the CNS 1/2014 Go to the issue