Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2013

Open Access 01-12-2013 | Research

Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood–brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk

Authors: Shinya Dohgu, William A Banks

Published in: Fluids and Barriers of the CNS | Issue 1/2013

Login to get access

Abstract

Background

Human immunodeficiency virus-1 (HIV-1) enters the brain by crossing the blood–brain barrier (BBB) as both free virus and within infected immune cells. Previous work showed that activation of the innate immune system with lipopolysaccharide (LPS) enhances free virus transport both in vivo and across monolayer monocultures of brain microvascular endothelial cells (BMECs) in vitro.

Methods

Here, we used monocultures and co-cultures of brain pericytes and brain endothelial cells to examine the crosstalk between these cell types in mediating the LPS-enhanced permeation of radioactively-labeled HIV-1 (I-HIV) across BMEC monolayers.

Results

We found that brain pericytes when co-cultured with BMEC monolayers magnified the LPS-enhanced transport of I-HIV without altering transendothelial electrical resistance, indicating that pericytes affected the transcytotic component of HIV-1 permeation. As LPS crosses the BBB poorly if at all, and since pericytes are on the abluminal side of the BBB, we postulated that luminal LPS acts indirectly on pericytes through abluminal secretions from BMECs. Consistent with this, we found that the pattern of secretion of cytokines by pericytes directly exposed to LPS was different than when the pericytes were exposed to the abluminal fluid from LPS-treated BMEC monolayers.

Conclusion

These results are evidence for a cellular crosstalk in which LPS acts at the luminal surface of the brain endothelial cell, inducing abluminal secretions that stimulate pericytes to release substances that enhance the permeability of the BMEC monolayer to HIV.
Appendix
Available only for authorised users
Literature
1.
go back to reference Groothuis DR, Levy RM: The entry of antiviral and antiretrovial drugs into the central nervous system. J Neurovirol. 1997, 3: 387-400. 10.3109/13550289709031185.PubMedCrossRef Groothuis DR, Levy RM: The entry of antiviral and antiretrovial drugs into the central nervous system. J Neurovirol. 1997, 3: 387-400. 10.3109/13550289709031185.PubMedCrossRef
2.
go back to reference Kim RB, Fromm MF, Wandel C, Leake B, Wood AJJ, Roden DM, Wilkinson GR: The drug transporter p-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest. 1998, 101: 289-294. 10.1172/JCI1269.PubMedCentralPubMedCrossRef Kim RB, Fromm MF, Wandel C, Leake B, Wood AJJ, Roden DM, Wilkinson GR: The drug transporter p-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest. 1998, 101: 289-294. 10.1172/JCI1269.PubMedCentralPubMedCrossRef
3.
go back to reference Thomas SA: Anti-HIV drug distribution to the central nervous system. Curr Pharmaceut Des. 2004, 10: 1313-1324. 10.2174/1381612043384835.CrossRef Thomas SA: Anti-HIV drug distribution to the central nervous system. Curr Pharmaceut Des. 2004, 10: 1313-1324. 10.2174/1381612043384835.CrossRef
4.
go back to reference Bansal AK, Mactutus CF, Nath A, Maragos W, Hauser KF, Booze RM: Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res. 2000, 879: 42-49. 10.1016/S0006-8993(00)02725-6.PubMedCrossRef Bansal AK, Mactutus CF, Nath A, Maragos W, Hauser KF, Booze RM: Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res. 2000, 879: 42-49. 10.1016/S0006-8993(00)02725-6.PubMedCrossRef
5.
go back to reference Benos DJ, McPherson S, Hahn BH, Chaikin MA, Benveniste EN: Cytokines and HIV envelope glycoprotein gp120 stimulate Na+/H+ exchange in astrocytes. J Biol Chem. 1994, 269: 13811-13816.PubMed Benos DJ, McPherson S, Hahn BH, Chaikin MA, Benveniste EN: Cytokines and HIV envelope glycoprotein gp120 stimulate Na+/H+ exchange in astrocytes. J Biol Chem. 1994, 269: 13811-13816.PubMed
6.
go back to reference Bottner A, Mehraein P, Weis S: Vascular changes in the cerebral cortex in HIV-1 infection. Acta Neuropathol. 1996, 92: 35-41. 10.1007/s004010050486.CrossRef Bottner A, Mehraein P, Weis S: Vascular changes in the cerebral cortex in HIV-1 infection. Acta Neuropathol. 1996, 92: 35-41. 10.1007/s004010050486.CrossRef
7.
go back to reference Farr SA, Banks WA, Uezu K, Freed EO, Kumar VB, Morley JE: Mechanisms of HIV-1 induced cognitive impairment: evidence for hippocampal cholinergic involvement with overstimulation of the VIPergic system by the viral coat protein core. AIDS Res Hum Retroviruses. 2002, 18: 1189-1195. 10.1089/08892220260387931.PubMedCrossRef Farr SA, Banks WA, Uezu K, Freed EO, Kumar VB, Morley JE: Mechanisms of HIV-1 induced cognitive impairment: evidence for hippocampal cholinergic involvement with overstimulation of the VIPergic system by the viral coat protein core. AIDS Res Hum Retroviruses. 2002, 18: 1189-1195. 10.1089/08892220260387931.PubMedCrossRef
8.
go back to reference Fujimura RK, Bockstahler LE, Goodkin K, Werner T, Brack-Werner R, Shapshak P: Neuropathology and virology of HIV associated dementia. Med Virol. 1996, 6: 141-150. 10.1002/(SICI)1099-1654(199609)6:3<141::AID-RMV141>3.0.CO;2-1.CrossRef Fujimura RK, Bockstahler LE, Goodkin K, Werner T, Brack-Werner R, Shapshak P: Neuropathology and virology of HIV associated dementia. Med Virol. 1996, 6: 141-150. 10.1002/(SICI)1099-1654(199609)6:3<141::AID-RMV141>3.0.CO;2-1.CrossRef
9.
go back to reference Gendelman HE, Zheng J, Coulter CL, Ghorpade A, Che M, Thylin M, Rubocki R, Persidsky Y, Hahn F, Reinhard J, Swindells S: Suppression of inflammatory neurotoxins by highly active antiretroviral therapy in human immunodeficiency virus-associated dementia. J Infect Dis. 1998, 178: 1000-1007. 10.1086/515693.PubMedCrossRef Gendelman HE, Zheng J, Coulter CL, Ghorpade A, Che M, Thylin M, Rubocki R, Persidsky Y, Hahn F, Reinhard J, Swindells S: Suppression of inflammatory neurotoxins by highly active antiretroviral therapy in human immunodeficiency virus-associated dementia. J Infect Dis. 1998, 178: 1000-1007. 10.1086/515693.PubMedCrossRef
10.
go back to reference Grossman DM, Banks WA, LeBlanc J, Dejace P: Prevalence of hypernatremia in HIV-infected VA patients. J Invest Med. 1998, 46: 46A- Grossman DM, Banks WA, LeBlanc J, Dejace P: Prevalence of hypernatremia in HIV-infected VA patients. J Invest Med. 1998, 46: 46A-
11.
go back to reference Opp MR, Hughes TK, Smith EM: HIV-1 glycoprotein 120 alters rat sleep. The Physiologist. 1994, 37 (3): A-50- Opp MR, Hughes TK, Smith EM: HIV-1 glycoprotein 120 alters rat sleep. The Physiologist. 1994, 37 (3): A-50-
12.
go back to reference Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, Pomerantz RJ: Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: indentification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS. 1996, 10: 573-585. 10.1097/00002030-199606000-00002.PubMedCrossRef Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, Pomerantz RJ: Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: indentification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS. 1996, 10: 573-585. 10.1097/00002030-199606000-00002.PubMedCrossRef
13.
go back to reference Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, Sharer LR, McComb RD, Swindells S, Soderland C, Gendelman HE: Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol. 1996, 156: 1284-1295.PubMed Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, Sharer LR, McComb RD, Swindells S, Soderland C, Gendelman HE: Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol. 1996, 156: 1284-1295.PubMed
14.
go back to reference Persidsky Y, Stins M, Way D, Witte MH, Weinand M, Kim KS, Bock P, Gendelman HE, Fiala M: A model for monocyte migration through the blood–brain barrier during HIV-1 encephalitis. J Immunol. 1997, 158: 3499-3510.PubMed Persidsky Y, Stins M, Way D, Witte MH, Weinand M, Kim KS, Bock P, Gendelman HE, Fiala M: A model for monocyte migration through the blood–brain barrier during HIV-1 encephalitis. J Immunol. 1997, 158: 3499-3510.PubMed
15.
go back to reference Banks WA, Freed EO, Wolf KM, Robinson SM, Franko M, Kumar VB: Transport of human immunodeficiency virus type 1 pseudoviruses across the blood–brain barrier: role of envelope proteins and adsorptive endocytosis. J Virol. 2001, 75: 4681-4691. 10.1128/JVI.75.10.4681-4691.2001.PubMedCentralPubMedCrossRef Banks WA, Freed EO, Wolf KM, Robinson SM, Franko M, Kumar VB: Transport of human immunodeficiency virus type 1 pseudoviruses across the blood–brain barrier: role of envelope proteins and adsorptive endocytosis. J Virol. 2001, 75: 4681-4691. 10.1128/JVI.75.10.4681-4691.2001.PubMedCentralPubMedCrossRef
16.
go back to reference Anathbandhu C, Yang B, Gendelman HE, Persidsky Y, Kanmogne GD: STAT1 signaling modulates HIV-1-induced inflammatory responses and leukocyte transmigration across the blood–brain barrier. Blood. 2007, 111: 2062-2072. Anathbandhu C, Yang B, Gendelman HE, Persidsky Y, Kanmogne GD: STAT1 signaling modulates HIV-1-induced inflammatory responses and leukocyte transmigration across the blood–brain barrier. Blood. 2007, 111: 2062-2072.
17.
go back to reference Ramirez SH, Fan S, Dykstra H, Reichenbach N, Del Valle L, Potula R, Phipps RP, Maggirwar SB, Persidsky Y: Dyad of CD40/CD40 ligand fosters neuroinflammation at the blood–brain barrier and is regulated via JNK signaling: implications for HIV-1 encephalitis. J Neurosci. 2010, 30: 9454-9464. 10.1523/JNEUROSCI.5796-09.2010.PubMedCentralPubMedCrossRef Ramirez SH, Fan S, Dykstra H, Reichenbach N, Del Valle L, Potula R, Phipps RP, Maggirwar SB, Persidsky Y: Dyad of CD40/CD40 ligand fosters neuroinflammation at the blood–brain barrier and is regulated via JNK signaling: implications for HIV-1 encephalitis. J Neurosci. 2010, 30: 9454-9464. 10.1523/JNEUROSCI.5796-09.2010.PubMedCentralPubMedCrossRef
18.
go back to reference Banks WA, Akerstrom V, Kastin AJ: Adsorptive endocytosis mediates the passage of HIV-1 across the blood–brain barrier: evidence for a post-internalization coreceptor. J Cell Sci. 1998, 111: 533-540.PubMed Banks WA, Akerstrom V, Kastin AJ: Adsorptive endocytosis mediates the passage of HIV-1 across the blood–brain barrier: evidence for a post-internalization coreceptor. J Cell Sci. 1998, 111: 533-540.PubMed
19.
go back to reference Banks WA, Robinson SM, Wolf KM, Bess JW, Arthur LO: Binding, internalization, and membrane incorporation of human immunodeficiency virus-1 at the blood–brain barrier is differentially regulated. Neurosci. 2004, 128: 143-153. 10.1016/j.neuroscience.2004.06.021.CrossRef Banks WA, Robinson SM, Wolf KM, Bess JW, Arthur LO: Binding, internalization, and membrane incorporation of human immunodeficiency virus-1 at the blood–brain barrier is differentially regulated. Neurosci. 2004, 128: 143-153. 10.1016/j.neuroscience.2004.06.021.CrossRef
20.
go back to reference Dohgu S, Banks WA: Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood–brain barrier is medited by the p38 mitogen-activated protein kinase pathway. Exp Neurol. 2008, 210: 740-749. 10.1016/j.expneurol.2007.12.028.PubMedCentralPubMedCrossRef Dohgu S, Banks WA: Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood–brain barrier is medited by the p38 mitogen-activated protein kinase pathway. Exp Neurol. 2008, 210: 740-749. 10.1016/j.expneurol.2007.12.028.PubMedCentralPubMedCrossRef
21.
go back to reference Nakaoke R, Ryerse JS, Niwa M, Banks WA: Human immunodeficiency virus type 1 transport across the in vitro mouse brain endothelial cell monolayer. Exp Neurol. 2005, 193: 101-109. 10.1016/j.expneurol.2004.11.020.PubMedCrossRef Nakaoke R, Ryerse JS, Niwa M, Banks WA: Human immunodeficiency virus type 1 transport across the in vitro mouse brain endothelial cell monolayer. Exp Neurol. 2005, 193: 101-109. 10.1016/j.expneurol.2004.11.020.PubMedCrossRef
22.
go back to reference Dohgu S, Ryerse JS, Robinson SM, Banks WA: Human immunodeficiency virus-1 uses the mannos-6-phosphate receptor to cross the blood–brain barrier. PLOS one. 2012, 7: e41623-10.1371/journal.pone.0041623.CrossRef Dohgu S, Ryerse JS, Robinson SM, Banks WA: Human immunodeficiency virus-1 uses the mannos-6-phosphate receptor to cross the blood–brain barrier. PLOS one. 2012, 7: e41623-10.1371/journal.pone.0041623.CrossRef
23.
go back to reference Alonso K, Pontiggia P, Medenica R, Rizzo R: Cytokine patterns in adults with AIDS. Immunol Invest. 1997, 26: 341-350. 10.3109/08820139709022691.PubMedCrossRef Alonso K, Pontiggia P, Medenica R, Rizzo R: Cytokine patterns in adults with AIDS. Immunol Invest. 1997, 26: 341-350. 10.3109/08820139709022691.PubMedCrossRef
24.
go back to reference Chaudhuri A, Duan F, Morsey B, Persidsky Y, Kanmogne GD: HIV-1 activates proinflammatory and interferon-inducible genes in human brain microvascular endothelial cells: putative mechanisms of blood–brain barrier dysfunction. J Cereb Blood Flow Metab. 2007, 28: 697-711.PubMedCrossRef Chaudhuri A, Duan F, Morsey B, Persidsky Y, Kanmogne GD: HIV-1 activates proinflammatory and interferon-inducible genes in human brain microvascular endothelial cells: putative mechanisms of blood–brain barrier dysfunction. J Cereb Blood Flow Metab. 2007, 28: 697-711.PubMedCrossRef
25.
go back to reference Didier N, Banks WA, Creminon C, Dereuddre-Bosquet N, Mabondzo A: HIV-1-induced production of endothelin-1 in an in vitro model of the human blood–brain barrier. Neuroreport. 2002, 13: 1179-1183. 10.1097/00001756-200207020-00022.PubMedCrossRef Didier N, Banks WA, Creminon C, Dereuddre-Bosquet N, Mabondzo A: HIV-1-induced production of endothelin-1 in an in vitro model of the human blood–brain barrier. Neuroreport. 2002, 13: 1179-1183. 10.1097/00001756-200207020-00022.PubMedCrossRef
26.
go back to reference Ulmer AJ, Rietschel ET, Zahringer U, Heine H: Lipopolysaccharide: structure, bioactivity, receptors, and signal transduction. Trends Glycosci Glycotechnol. 2002, 14: 53-68. 10.4052/tigg.14.53.CrossRef Ulmer AJ, Rietschel ET, Zahringer U, Heine H: Lipopolysaccharide: structure, bioactivity, receptors, and signal transduction. Trends Glycosci Glycotechnol. 2002, 14: 53-68. 10.4052/tigg.14.53.CrossRef
27.
go back to reference Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, et al: Microbial translocation is a cause of systemic immune activation in chronic HIV injection. Nature Med. 2006, 12: 1365-1371.PubMedCrossRef Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, et al: Microbial translocation is a cause of systemic immune activation in chronic HIV injection. Nature Med. 2006, 12: 1365-1371.PubMedCrossRef
28.
go back to reference Laye S, Parnet P, Goujon E, Dantzer R: Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res. 1994, 27: 157-162. 10.1016/0169-328X(94)90197-X.CrossRef Laye S, Parnet P, Goujon E, Dantzer R: Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res. 1994, 27: 157-162. 10.1016/0169-328X(94)90197-X.CrossRef
29.
go back to reference Banks WA: Physiology and pathophysiology of the blood–brain barrier: Implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J Neurovirol. 1999, 5: 538-555. 10.3109/13550289909021284.PubMedCrossRef Banks WA: Physiology and pathophysiology of the blood–brain barrier: Implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J Neurovirol. 1999, 5: 538-555. 10.3109/13550289909021284.PubMedCrossRef
30.
go back to reference Banks WA, Dohgu S, Nakaoke R, Lynch JL, Fleegal-DeMotta MA, Erickson MA, Vo TQ: Nitric oxide isoenzymes regulate LPS-enhanced insulin transport across the blood–brain barrier. Endocrinol. 2008, 149: 1514-1523. 10.1210/en.2007-1091.CrossRef Banks WA, Dohgu S, Nakaoke R, Lynch JL, Fleegal-DeMotta MA, Erickson MA, Vo TQ: Nitric oxide isoenzymes regulate LPS-enhanced insulin transport across the blood–brain barrier. Endocrinol. 2008, 149: 1514-1523. 10.1210/en.2007-1091.CrossRef
31.
go back to reference Nonaka N, Shioda S, Banks WA: Effect of lipopolysaccharide on the transport of pituitary adenylate cyclase activating polypeptide across the blood–brain barrier. Exp Neurol. 2005, 191: 137-144. 10.1016/j.expneurol.2004.09.013.PubMedCrossRef Nonaka N, Shioda S, Banks WA: Effect of lipopolysaccharide on the transport of pituitary adenylate cyclase activating polypeptide across the blood–brain barrier. Exp Neurol. 2005, 191: 137-144. 10.1016/j.expneurol.2004.09.013.PubMedCrossRef
32.
go back to reference Xaio H, Banks WA, Niehoff ML, Morley JE: Effect of LPS on the permeability of the blood–brain barrier to insulin. Brain Res. 2001, 896: 36-42. 10.1016/S0006-8993(00)03247-9.PubMedCrossRef Xaio H, Banks WA, Niehoff ML, Morley JE: Effect of LPS on the permeability of the blood–brain barrier to insulin. Brain Res. 2001, 896: 36-42. 10.1016/S0006-8993(00)03247-9.PubMedCrossRef
33.
go back to reference Hartz AMS, Bauer B, Fricker G, Miller DS: Rapid modulation of P-glycoprotein-mediated transport at the blood–brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Molec Pharmacol. 2006, 69: 462-470.CrossRef Hartz AMS, Bauer B, Fricker G, Miller DS: Rapid modulation of P-glycoprotein-mediated transport at the blood–brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Molec Pharmacol. 2006, 69: 462-470.CrossRef
34.
go back to reference Jaeger JB, Dohgu S, Lynch JL, Fleegal-DeMotta MA, Banks WA: Effects of lipopolysaccharide on the blood–brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer's disease. Brain Behav, Immunity. 2009, 23: 507-517. 10.1016/j.bbi.2009.01.017.CrossRef Jaeger JB, Dohgu S, Lynch JL, Fleegal-DeMotta MA, Banks WA: Effects of lipopolysaccharide on the blood–brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer's disease. Brain Behav, Immunity. 2009, 23: 507-517. 10.1016/j.bbi.2009.01.017.CrossRef
35.
go back to reference Salkeni MA, Lynch JL, Price TO, Banks WA: Lipopolysaccharide impairs blood–brain barrier P-glycoprotein function in mice through prostaglandin- and nitric oxide-independent pathways and nitric oxide-independent pathways. J Neuroimmune Pharmacology. J Neuroimmune Pharmacol. 2009, 4: 276-282. 10.1007/s11481-008-9138-y.CrossRef Salkeni MA, Lynch JL, Price TO, Banks WA: Lipopolysaccharide impairs blood–brain barrier P-glycoprotein function in mice through prostaglandin- and nitric oxide-independent pathways and nitric oxide-independent pathways. J Neuroimmune Pharmacology. J Neuroimmune Pharmacol. 2009, 4: 276-282. 10.1007/s11481-008-9138-y.CrossRef
36.
go back to reference Reyes TM, Fabry Z, Coe CL: Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res. 1999, 851: 215-220. 10.1016/S0006-8993(99)02189-7.PubMedCrossRef Reyes TM, Fabry Z, Coe CL: Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res. 1999, 851: 215-220. 10.1016/S0006-8993(99)02189-7.PubMedCrossRef
37.
go back to reference Verma S, Nakaoke R, Dohgu S, Banks WA: Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide. Brain Behav, Immunity. 2006, 20: 449-455. 10.1016/j.bbi.2005.10.005.CrossRef Verma S, Nakaoke R, Dohgu S, Banks WA: Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide. Brain Behav, Immunity. 2006, 20: 449-455. 10.1016/j.bbi.2005.10.005.CrossRef
38.
go back to reference Andras IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M: HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res. 2003, 74: 255-265. 10.1002/jnr.10762.PubMedCrossRef Andras IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M: HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res. 2003, 74: 255-265. 10.1002/jnr.10762.PubMedCrossRef
39.
go back to reference Annunziata P: Blood–brain barrier changes during invasion of the central nervous system. J Neurol. 2003, 250: 901-906. 10.1007/s00415-003-1159-0.PubMedCrossRef Annunziata P: Blood–brain barrier changes during invasion of the central nervous system. J Neurol. 2003, 250: 901-906. 10.1007/s00415-003-1159-0.PubMedCrossRef
40.
go back to reference Kanmogne GD, Primeaux C, Grammas P: HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permability: implications for the pathogenesis of HIV-associated dementia. J Neuropathol Exper Neurol. 2005, 64: 498-505. Kanmogne GD, Primeaux C, Grammas P: HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permability: implications for the pathogenesis of HIV-associated dementia. J Neuropathol Exper Neurol. 2005, 64: 498-505.
41.
go back to reference Hayashi K, Pu H, Andras IE, Eum SY, Yamauchi A, Henning B, Toborek M: HIV-TAT protein upregulates expressin of multidrug resistance protein 1 in the blood–brain barrier. J Cereb Blood Flow and Metab. 2006, 26: 1052-1065. 10.1038/sj.jcbfm.9600254.CrossRef Hayashi K, Pu H, Andras IE, Eum SY, Yamauchi A, Henning B, Toborek M: HIV-TAT protein upregulates expressin of multidrug resistance protein 1 in the blood–brain barrier. J Cereb Blood Flow and Metab. 2006, 26: 1052-1065. 10.1038/sj.jcbfm.9600254.CrossRef
42.
go back to reference Persidsky Y, Zheng J, Miller D, Gendelman HE: Mononuclear phagocytes mediate blood–brain barrier compromise and neuronal injury during HIV-1-associated dementia. J Leukocyte Biol. 2000, 68: 413-422.PubMed Persidsky Y, Zheng J, Miller D, Gendelman HE: Mononuclear phagocytes mediate blood–brain barrier compromise and neuronal injury during HIV-1-associated dementia. J Leukocyte Biol. 2000, 68: 413-422.PubMed
43.
go back to reference Toborek M, Lee YW, Flora G, Pu H, Andreeff M, Wylegala E, Henning B, Nath A: Mechanisms of the blood–brain barrier disruption in HIV-1 infection. Cell Molec Neurobiol. 2005, 25: 181-199. 10.1007/s10571-004-1383-x.PubMedCrossRef Toborek M, Lee YW, Flora G, Pu H, Andreeff M, Wylegala E, Henning B, Nath A: Mechanisms of the blood–brain barrier disruption in HIV-1 infection. Cell Molec Neurobiol. 2005, 25: 181-199. 10.1007/s10571-004-1383-x.PubMedCrossRef
44.
go back to reference Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, et al: Strategies to advance translational research into brain barriers. Lancet Neurol. 2008, 7: 84-96. 10.1016/S1474-4422(07)70326-5.PubMedCrossRef Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, et al: Strategies to advance translational research into brain barriers. Lancet Neurol. 2008, 7: 84-96. 10.1016/S1474-4422(07)70326-5.PubMedCrossRef
45.
go back to reference Katyshev V, Dore-Duffy P: Pericyte coculture models to study astrocyte, pericyte, and endothelial cell interactions. Methods Mol Biol. 2012, 814: 467-481. 10.1007/978-1-61779-452-0_31.PubMedCrossRef Katyshev V, Dore-Duffy P: Pericyte coculture models to study astrocyte, pericyte, and endothelial cell interactions. Methods Mol Biol. 2012, 814: 467-481. 10.1007/978-1-61779-452-0_31.PubMedCrossRef
46.
go back to reference Dore-Duffy P: Pericytes: pluripotent cells of the blood brain barrier. Current Pharmaceut Des. 2008, 14: 1581-1593. 10.2174/138161208784705469.CrossRef Dore-Duffy P: Pericytes: pluripotent cells of the blood brain barrier. Current Pharmaceut Des. 2008, 14: 1581-1593. 10.2174/138161208784705469.CrossRef
47.
go back to reference Dore-Duffy P, Katychev A, Wang X, Van Buren E: CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. 2006, 26: 613-624. 10.1038/sj.jcbfm.9600272.PubMedCrossRef Dore-Duffy P, Katychev A, Wang X, Van Buren E: CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. 2006, 26: 613-624. 10.1038/sj.jcbfm.9600272.PubMedCrossRef
48.
go back to reference Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA: Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res. 2000, 60: 55-69. 10.1006/mvre.2000.2244.PubMedCrossRef Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA: Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res. 2000, 60: 55-69. 10.1006/mvre.2000.2244.PubMedCrossRef
49.
go back to reference Bronkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P: The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011, 8: 8-10.1186/2045-8118-8-8.CrossRef Bronkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P: The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011, 8: 8-10.1186/2045-8118-8-8.CrossRef
50.
go back to reference Nakagawa S, Castro V, Toborek M: Infection of human pericytes by HIV-1 disrupts the integrity of the blood–brain barrier. J Cell Mol Med. 2012, 16: 2950-2957. 10.1111/j.1582-4934.2012.01622.x.PubMedCentralPubMedCrossRef Nakagawa S, Castro V, Toborek M: Infection of human pericytes by HIV-1 disrupts the integrity of the blood–brain barrier. J Cell Mol Med. 2012, 16: 2950-2957. 10.1111/j.1582-4934.2012.01622.x.PubMedCentralPubMedCrossRef
51.
go back to reference Arthur LO, Bess JW, Chertova EN, Rossio JL, Esser MT, Benveniste RE, Henderson LE, Lifson JD: Chemical inactivation of retroviral infectivity by targeting nucleocapsid protein zinc fingers: a candidate SIV vaccine. AIDS Res Human Retroviruses. 1998, 14 (supplement 3): S-311- Arthur LO, Bess JW, Chertova EN, Rossio JL, Esser MT, Benveniste RE, Henderson LE, Lifson JD: Chemical inactivation of retroviral infectivity by targeting nucleocapsid protein zinc fingers: a candidate SIV vaccine. AIDS Res Human Retroviruses. 1998, 14 (supplement 3): S-311-
52.
go back to reference Rossio JL, Esser MT, Suryanarayana K, Schneider DK, Bess JW, Vasquez GM, Wiltrout TA, Chertova E, Grimes MK, Sattentau Q, et al: Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J Virol. 1998, 72: 7992-8001.PubMedCentralPubMed Rossio JL, Esser MT, Suryanarayana K, Schneider DK, Bess JW, Vasquez GM, Wiltrout TA, Chertova E, Grimes MK, Sattentau Q, et al: Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J Virol. 1998, 72: 7992-8001.PubMedCentralPubMed
53.
go back to reference Frost EH: Radioactive labelling of viruses: an iodination preserving biological properties. JGenVirol. 1977, 35: 181-185. Frost EH: Radioactive labelling of viruses: an iodination preserving biological properties. JGenVirol. 1977, 35: 181-185.
54.
go back to reference Montelaro RC, Rueckert RR: On the use of chloramine-T to iodinate specifically the surface proteins of intact enveloped viruses. J GenVirol. 1975, 29: 127-131. Montelaro RC, Rueckert RR: On the use of chloramine-T to iodinate specifically the surface proteins of intact enveloped viruses. J GenVirol. 1975, 29: 127-131.
55.
go back to reference Szabo CA, Deli MA, Ngo TKD, Joo F: Production of pure primary rat cerebral endothelial cell culture: a comparison of different methods. Neurobiol. 1997, 5: 1-16. Szabo CA, Deli MA, Ngo TKD, Joo F: Production of pure primary rat cerebral endothelial cell culture: a comparison of different methods. Neurobiol. 1997, 5: 1-16.
56.
go back to reference Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M: Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007, 27: 687-694. 10.1007/s10571-007-9195-4.PubMedCrossRef Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M: Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007, 27: 687-694. 10.1007/s10571-007-9195-4.PubMedCrossRef
57.
go back to reference Perriere N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, et al: Puromycin-based purification of rat brain capillary endothelial cell cultures. J Neurochem. 2005, 93: 279-289. 10.1111/j.1471-4159.2004.03020.x.PubMedCrossRef Perriere N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, et al: Puromycin-based purification of rat brain capillary endothelial cell cultures. J Neurochem. 2005, 93: 279-289. 10.1111/j.1471-4159.2004.03020.x.PubMedCrossRef
58.
go back to reference Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y: Brain pericytes contribute to the upregulation and maintenance of blood–brain barrier functions through transforming growth factor-beta production. Brain Res. 2005, 1038: 208-215. 10.1016/j.brainres.2005.01.027.PubMedCrossRef Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y: Brain pericytes contribute to the upregulation and maintenance of blood–brain barrier functions through transforming growth factor-beta production. Brain Res. 2005, 1038: 208-215. 10.1016/j.brainres.2005.01.027.PubMedCrossRef
59.
go back to reference Hiyashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa K, Niwa M: Effects of hypoxia on endothelial/pericyte co-culture model of the blood–brain barrier. Reg Peptides. 2004, 123: 77-83. 10.1016/j.regpep.2004.05.023.CrossRef Hiyashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa K, Niwa M: Effects of hypoxia on endothelial/pericyte co-culture model of the blood–brain barrier. Reg Peptides. 2004, 123: 77-83. 10.1016/j.regpep.2004.05.023.CrossRef
60.
go back to reference Dehouck MP, Jolliet-Riant P, Bree F, Fruchart JC, Cecchelli R, Tillement JP: Drug transfer across the blood–brain barrier: correlation between in vitro and in vivo models. J Neurochem. 1992, 58: 1790-1797. 10.1111/j.1471-4159.1992.tb10055.x.PubMedCrossRef Dehouck MP, Jolliet-Riant P, Bree F, Fruchart JC, Cecchelli R, Tillement JP: Drug transfer across the blood–brain barrier: correlation between in vitro and in vivo models. J Neurochem. 1992, 58: 1790-1797. 10.1111/j.1471-4159.1992.tb10055.x.PubMedCrossRef
61.
go back to reference Davson H: The blood–brain barrier. Physiology of the Cerebrospinal Fluid. 1967, London: J. and A. Churchill, LTD, 82-103. Davson H: The blood–brain barrier. Physiology of the Cerebrospinal Fluid. 1967, London: J. and A. Churchill, LTD, 82-103.
62.
go back to reference Fleegal-DeMotta MA, Dohgu S, Banks WA: Angiotensin II modulates BBB permeability via activation of the AT1 receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009, 29: 640-647. 10.1038/jcbfm.2008.158.PubMedCrossRef Fleegal-DeMotta MA, Dohgu S, Banks WA: Angiotensin II modulates BBB permeability via activation of the AT1 receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009, 29: 640-647. 10.1038/jcbfm.2008.158.PubMedCrossRef
63.
go back to reference Mayhan WG, Heistad DD: Permeability of blood–brain barrier to various sized molecules. Am J Physiology. 1985, 248: H712-H718. Mayhan WG, Heistad DD: Permeability of blood–brain barrier to various sized molecules. Am J Physiology. 1985, 248: H712-H718.
64.
go back to reference Banks WA, Robinson SM: Minimal penetration of lipopolysaccharide across the murine blood–brain barrier. Brain, Behav, and Immunity. 2010, 2010: 102-109.CrossRef Banks WA, Robinson SM: Minimal penetration of lipopolysaccharide across the murine blood–brain barrier. Brain, Behav, and Immunity. 2010, 2010: 102-109.CrossRef
65.
go back to reference Dohgu S, Fleegal-DeMotta MA, Banks WA: Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood–brain barrier is mediated by luminal microvessel IL-6 and GM-CSF. J Neuroinflam. 2011, 8: 167-10.1186/1742-2094-8-167.CrossRef Dohgu S, Fleegal-DeMotta MA, Banks WA: Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood–brain barrier is mediated by luminal microvessel IL-6 and GM-CSF. J Neuroinflam. 2011, 8: 167-10.1186/1742-2094-8-167.CrossRef
66.
go back to reference Kovac A, Erickson MA, Banks WA: Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflam. 2011, 8: 139-10.1186/1742-2094-8-139.CrossRef Kovac A, Erickson MA, Banks WA: Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflam. 2011, 8: 139-10.1186/1742-2094-8-139.CrossRef
67.
go back to reference Erickson MA, Banks WA: Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: mutliplex quantification with path analysis. Brain, Behav, and Immunity. 2011, 25: 1637-1648. 10.1016/j.bbi.2011.06.006.CrossRef Erickson MA, Banks WA: Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: mutliplex quantification with path analysis. Brain, Behav, and Immunity. 2011, 25: 1637-1648. 10.1016/j.bbi.2011.06.006.CrossRef
68.
go back to reference Muratori C, Mangino G, Affabris E, Federico M: Astrocytes contacting HIV-1-infected macrophages increase the release of CCL2 in response to the HIV-1-dependent enhancement of membrane-associated TNF alpha in macrophages. Glia. 2010, 58: 1893-1904. 10.1002/glia.21059.PubMedCrossRef Muratori C, Mangino G, Affabris E, Federico M: Astrocytes contacting HIV-1-infected macrophages increase the release of CCL2 in response to the HIV-1-dependent enhancement of membrane-associated TNF alpha in macrophages. Glia. 2010, 58: 1893-1904. 10.1002/glia.21059.PubMedCrossRef
69.
go back to reference Yao H, Yang Y, Kim KJ, Bethel-Brown C, Gong N, Funa K, Gendelman HE, Su TP, Wang JQ, Buch S: Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: implications for increased monocyte transmigration. Blood. 2010, 115: 4951-4962. 10.1182/blood-2010-01-266221.PubMedCentralPubMedCrossRef Yao H, Yang Y, Kim KJ, Bethel-Brown C, Gong N, Funa K, Gendelman HE, Su TP, Wang JQ, Buch S: Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: implications for increased monocyte transmigration. Blood. 2010, 115: 4951-4962. 10.1182/blood-2010-01-266221.PubMedCentralPubMedCrossRef
70.
go back to reference Gendelman HE, Ding S, Gong N, Liu J, Ramirez SH, Persidsky Y, Mosley RL, Wang T, Volsky DJ, Xiong H: Monocyte chemotactic protein-1 regulates voltage-gated K+ channels and macrophage transmigration. J Neuroimmune Pharmacol. 2009, 4: 47-59. 10.1007/s11481-008-9135-1.PubMedCentralPubMedCrossRef Gendelman HE, Ding S, Gong N, Liu J, Ramirez SH, Persidsky Y, Mosley RL, Wang T, Volsky DJ, Xiong H: Monocyte chemotactic protein-1 regulates voltage-gated K+ channels and macrophage transmigration. J Neuroimmune Pharmacol. 2009, 4: 47-59. 10.1007/s11481-008-9135-1.PubMedCentralPubMedCrossRef
Metadata
Title
Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood–brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk
Authors
Shinya Dohgu
William A Banks
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2013
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-10-23

Other articles of this Issue 1/2013

Fluids and Barriers of the CNS 1/2013 Go to the issue