Skip to main content
Top
Published in: Experimental & Translational Stroke Medicine 1/2014

Open Access 01-12-2014 | Research

Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke

Authors: Kathleen M Buckley, Daniel L Hess, Irina Y Sazonova, Sudharsan Periyasamy-Thandavan, John R Barrett, Russell Kirks, Harrison Grace, Galina Kondrikova, Maribeth H Johnson, David C Hess, Patricia V Schoenlein, Md Nasrul Hoda, William D Hill

Published in: Experimental & Translational Stroke Medicine | Issue 1/2014

Login to get access

Abstract

Background and purpose

The role of autophagy in response to ischemic stroke has been confusing with reports that both enhancement and inhibition of autophagy decrease infarct size and improve post-stroke outcomes. We sought to clarify this by comparing pharmacologic modulation of autophagy in two clinically relevant murine models of stroke.

Methods

We used rapamycin to induce autophagy, and chloroquine to block completion of autophagy, by treating mice immediately after stroke and at 24 hours post-stroke in two different models; permanent Middle Cerebral Artery Ligation (MCAL), which does not allow for reperfusion of distal trunk of middle cerebral artery, and Embolic Clot Middle Cerebral Artery Occlusion (eMCAO) which allows for a slow reperfusion similar to that seen in most human stroke patients. Outcome measures at 48 hours post-stroke included infarct size analysis, behavioral assessment using Bederson neurological scoring, and survival.

Results

Chloroquine treatment reduced the lesion size by approximately 30% and was significant only in the eMCAO model, where it also improved the neurological score, but did not increase survival. Rapamycin reduced lesion size by 44% and 50% in the MCAL and eMCAO models, respectively. Rapamycin also improved the neurological score to a greater degree than chloroquine and improved survival.

Conclusions

While both inhibition and enhancement of autophagy by pharmacological intervention decreased lesion size and improved neurological scores, the enhancement with rapamycin showed a greater degree of improvement in outcomes as well as in survival. The protective action seen with chloroquine may be in part due to off-target effects on apoptosis separate from blocking lysosomal activity in autophagy. We conclude pharmacologic induction of autophagy is more advantageous than its blockade in physiologically-relevant permanent and slow reperfusion stroke models.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fan J, Zhang Z, Chao X, Gu J, Cai W, Zhou W, Yin G, Li Q: Ischemic preconditioning enhances autophagy but suppresses autophagic cell death in rat spinal neurons following ischemia-reperfusion. Brain Res 2014, 1562: 76–86.PubMedCrossRef Fan J, Zhang Z, Chao X, Gu J, Cai W, Zhou W, Yin G, Li Q: Ischemic preconditioning enhances autophagy but suppresses autophagic cell death in rat spinal neurons following ischemia-reperfusion. Brain Res 2014, 1562: 76–86.PubMedCrossRef
3.
go back to reference Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, Han S, Li S, Li J: Down-Regulation of miRNA-30a Alleviates Cerebral Ischemic Injury Through Enhancing Beclin 1-Mediated Autophagy. Neurochem Res 2014. [Epub ahead of print] Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, Han S, Li S, Li J: Down-Regulation of miRNA-30a Alleviates Cerebral Ischemic Injury Through Enhancing Beclin 1-Mediated Autophagy. Neurochem Res 2014. [Epub ahead of print]
4.
go back to reference Zheng Y, Hou J, Liu J, Yao M, Li L, Zhang B, Zhu H, Wang Z: Inhibition of autophagy contributes to melatonin-mediated neuroprotection against transient focal cerebral ischemia in rats. J Pharmacol Sci 2014,124(3):354–364.PubMedCrossRef Zheng Y, Hou J, Liu J, Yao M, Li L, Zhang B, Zhu H, Wang Z: Inhibition of autophagy contributes to melatonin-mediated neuroprotection against transient focal cerebral ischemia in rats. J Pharmacol Sci 2014,124(3):354–364.PubMedCrossRef
6.
go back to reference Harris H, Rubinsztein DC: Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 2012,8(2):108–117.CrossRef Harris H, Rubinsztein DC: Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 2012,8(2):108–117.CrossRef
7.
go back to reference Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, Su L, Zhang Y: Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One 2012,7(9):e46092.PubMedCentralPubMedCrossRef Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, Su L, Zhang Y: Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One 2012,7(9):e46092.PubMedCentralPubMedCrossRef
8.
go back to reference Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM: Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 2010,285(14):10850–10861.PubMedCentralPubMedCrossRef Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM: Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 2010,285(14):10850–10861.PubMedCentralPubMedCrossRef
9.
go back to reference Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J: Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007,100(6):914–922.PubMedCrossRef Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J: Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007,100(6):914–922.PubMedCrossRef
10.
go back to reference Hossmann KA: The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab 2012,32(7):1310–1316.PubMedCentralPubMedCrossRef Hossmann KA: The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab 2012,32(7):1310–1316.PubMedCentralPubMedCrossRef
11.
go back to reference Majid A, He YY, Gidday JM, Kaplan SS, Gonzales ER, Park TS, Fenstermacher JD, Wei L, Choi DW, Hsu CY: Differences in vulnerability to permanent focal cerebral ischemia among 3 common mouse strains. Stroke 2000,31(11):2707–2714.PubMedCrossRef Majid A, He YY, Gidday JM, Kaplan SS, Gonzales ER, Park TS, Fenstermacher JD, Wei L, Choi DW, Hsu CY: Differences in vulnerability to permanent focal cerebral ischemia among 3 common mouse strains. Stroke 2000,31(11):2707–2714.PubMedCrossRef
12.
go back to reference Kahle MP, Bix GJ: Successfully Climbing the "STAIRs": Surmounting Failed Translation of Experimental Ischemic Stroke Treatments. Stroke Res Treat 2012, 2012: 374098.PubMedCentralPubMed Kahle MP, Bix GJ: Successfully Climbing the "STAIRs": Surmounting Failed Translation of Experimental Ischemic Stroke Treatments. Stroke Res Treat 2012, 2012: 374098.PubMedCentralPubMed
13.
go back to reference Hoda MN, Li W, Ahmad A, Ogbi S, Zemskova MA, Johnson MH, Ergul A, Hill WD, Hess DC, Sazonova IY: Sex-independent neuroprotection with minocycline after experimental thromboembolic stroke. Exp Transl Stroke Med 2011,3(1):16.PubMedCentralPubMedCrossRef Hoda MN, Li W, Ahmad A, Ogbi S, Zemskova MA, Johnson MH, Ergul A, Hill WD, Hess DC, Sazonova IY: Sex-independent neuroprotection with minocycline after experimental thromboembolic stroke. Exp Transl Stroke Med 2011,3(1):16.PubMedCentralPubMedCrossRef
14.
go back to reference Hoda MN, Siddiqui S, Herberg S, Periyasamy-Thandavan S, Bhatia K, Hafez SS, Johnson MH, Hill WD, Ergul A, Fagan SC, Hess DC: Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke 2012,43(10):2794–2799.PubMedCentralPubMedCrossRef Hoda MN, Siddiqui S, Herberg S, Periyasamy-Thandavan S, Bhatia K, Hafez SS, Johnson MH, Hill WD, Ergul A, Fagan SC, Hess DC: Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke 2012,43(10):2794–2799.PubMedCentralPubMedCrossRef
15.
go back to reference Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, Fisher EM: Genealogies of mouse inbred strains. Nat Genet 2000,24(1):23–25.PubMedCrossRef Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, Fisher EM: Genealogies of mouse inbred strains. Nat Genet 2000,24(1):23–25.PubMedCrossRef
16.
go back to reference Herberg S, Shi X, Johnson MH, Hamrick MW, Isales CM, Hill WD: Stromal cell-derived factor-1beta mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. PLoS One 2013,8(3):e58207.PubMedCentralPubMedCrossRef Herberg S, Shi X, Johnson MH, Hamrick MW, Isales CM, Hill WD: Stromal cell-derived factor-1beta mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. PLoS One 2013,8(3):e58207.PubMedCentralPubMedCrossRef
17.
go back to reference Li W, Qu Z, Prakash R, Chung C, Ma H, Hoda MN, Fagan SC, Ergul A: Comparative analysis of the neurovascular injury and functional outcomes in experimental stroke models in diabetic Goto-Kakizaki rats. Brain Res 2013, 1541: 106–114.PubMedCrossRef Li W, Qu Z, Prakash R, Chung C, Ma H, Hoda MN, Fagan SC, Ergul A: Comparative analysis of the neurovascular injury and functional outcomes in experimental stroke models in diabetic Goto-Kakizaki rats. Brain Res 2013, 1541: 106–114.PubMedCrossRef
18.
go back to reference Liu F, McCullough LD: The middle cerebral artery occlusion model of transient focal cerebral ischemia. Methods Mol Biol 2014, 1135: 81–93.PubMedCrossRef Liu F, McCullough LD: The middle cerebral artery occlusion model of transient focal cerebral ischemia. Methods Mol Biol 2014, 1135: 81–93.PubMedCrossRef
19.
go back to reference Ren M, Lin ZJ, Qian H, Choudhury GR, Liu R, Liu H, Yang SH: Embolic middle cerebral artery occlusion model using thrombin and fibrinogen composed clots in rat. J Neurosci Methods 2012,211(2):296–304.PubMedCentralPubMedCrossRef Ren M, Lin ZJ, Qian H, Choudhury GR, Liu R, Liu H, Yang SH: Embolic middle cerebral artery occlusion model using thrombin and fibrinogen composed clots in rat. J Neurosci Methods 2012,211(2):296–304.PubMedCentralPubMedCrossRef
20.
go back to reference Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, Ahn HJ, Ait-Mohamed O, Ait-Si-Ali S, Akematsu T, Akira S, Al-Younes HM, Al-Zeer MA, Albert ML, Albin RL, Alegre-Abarrategui J, Aleo MF, Alirezaei M, Almasan A, Almonte-Becerril M, Amano A, Amaravadi R, Amarnath S, Amer AO, Andrieu-Abadie N, Anantharam V, et al.: Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012,8(4):445–544.PubMedCentralPubMedCrossRef Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, Ahn HJ, Ait-Mohamed O, Ait-Si-Ali S, Akematsu T, Akira S, Al-Younes HM, Al-Zeer MA, Albert ML, Albin RL, Alegre-Abarrategui J, Aleo MF, Alirezaei M, Almasan A, Almonte-Becerril M, Amano A, Amaravadi R, Amarnath S, Amer AO, Andrieu-Abadie N, Anantharam V, et al.: Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012,8(4):445–544.PubMedCentralPubMedCrossRef
21.
go back to reference Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004,15(3):1101–1111.PubMedCentralPubMedCrossRef Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004,15(3):1101–1111.PubMedCentralPubMedCrossRef
23.
go back to reference Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM: Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 2005,64(2):113–122.PubMed Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM: Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 2005,64(2):113–122.PubMed
24.
go back to reference Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Näslund J, Mathews PM, Cataldo AM, Nixon RA: Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol 2005,171(1):87–98.PubMedCentralPubMedCrossRef Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Näslund J, Mathews PM, Cataldo AM, Nixon RA: Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol 2005,171(1):87–98.PubMedCentralPubMedCrossRef
25.
go back to reference Ezaki J, Matsumoto N, Takeda-Ezaki M, Komatsu M, Takahashi K, Hiraoka Y, Taka H, Fujimura T, Takehana K, Yoshida M, Iwata J, Tanida I, Furuya N, Zheng DM, Tada N, Tanaka K, Kominami E, Ueno T: Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 2011,7(7):727–736.PubMedCentralPubMedCrossRef Ezaki J, Matsumoto N, Takeda-Ezaki M, Komatsu M, Takahashi K, Hiraoka Y, Taka H, Fujimura T, Takehana K, Yoshida M, Iwata J, Tanida I, Furuya N, Zheng DM, Tada N, Tanaka K, Kominami E, Ueno T: Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 2011,7(7):727–736.PubMedCentralPubMedCrossRef
27.
go back to reference Kume S, Uzu T, Maegawa H, Koya D: Autophagy: a novel therapeutic target for kidney diseases. Clin Exp Nephrol 2012,16(6):827–832.PubMedCrossRef Kume S, Uzu T, Maegawa H, Koya D: Autophagy: a novel therapeutic target for kidney diseases. Clin Exp Nephrol 2012,16(6):827–832.PubMedCrossRef
29.
go back to reference Cipolla MJ: Control of cerebral blood flow. In The Cerebral Circulation, Volume 1. 1st edition. San Rafael (CA): Morgan & Claypool Life Sciences; 2009:41–52. Cipolla MJ: Control of cerebral blood flow. In The Cerebral Circulation, Volume 1. 1st edition. San Rafael (CA): Morgan & Claypool Life Sciences; 2009:41–52.
30.
go back to reference Jiang M, Liu K, Luo J, Dong Z: Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 2010,176(3):1181–1192.PubMedCentralPubMedCrossRef Jiang M, Liu K, Luo J, Dong Z: Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 2010,176(3):1181–1192.PubMedCentralPubMedCrossRef
31.
go back to reference Grishchuk Y, Ginet V, Truttmann AC, Clarke PG, Puyal J: Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy 2011,7(10):1115–1131.PubMedCrossRef Grishchuk Y, Ginet V, Truttmann AC, Clarke PG, Puyal J: Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy 2011,7(10):1115–1131.PubMedCrossRef
32.
go back to reference Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z: Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A 2007,104(36):14489–14494.PubMedCentralPubMedCrossRef Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z: Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A 2007,104(36):14489–14494.PubMedCentralPubMedCrossRef
33.
go back to reference Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S: Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009,461(7264):654–658.PubMedCrossRef Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S: Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009,461(7264):654–658.PubMedCrossRef
34.
go back to reference Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J: AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 2007,3(4):405–407.PubMedCrossRef Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J: AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 2007,3(4):405–407.PubMedCrossRef
35.
go back to reference Jing CH, Wang L, Liu PP, Wu C, Ruan D, Chen G: Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience 2012, 213: 144–153.PubMedCrossRef Jing CH, Wang L, Liu PP, Wu C, Ruan D, Chen G: Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience 2012, 213: 144–153.PubMedCrossRef
36.
go back to reference Zhao H, Ji Z, Tang D, Yan C, Zhao W, Gao C: Role of autophagy in early brain injury after subarachnoid hemorrhage in rats. Mol Biol Rep 2013,40(2):819–827.PubMedCrossRef Zhao H, Ji Z, Tang D, Yan C, Zhao W, Gao C: Role of autophagy in early brain injury after subarachnoid hemorrhage in rats. Mol Biol Rep 2013,40(2):819–827.PubMedCrossRef
Metadata
Title
Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke
Authors
Kathleen M Buckley
Daniel L Hess
Irina Y Sazonova
Sudharsan Periyasamy-Thandavan
John R Barrett
Russell Kirks
Harrison Grace
Galina Kondrikova
Maribeth H Johnson
David C Hess
Patricia V Schoenlein
Md Nasrul Hoda
William D Hill
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Experimental & Translational Stroke Medicine / Issue 1/2014
Electronic ISSN: 2040-7378
DOI
https://doi.org/10.1186/2040-7378-6-8

Other articles of this Issue 1/2014

Experimental & Translational Stroke Medicine 1/2014 Go to the issue